
Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 1

EVENT HANDLING

1) Two Event Handling Mechanisms
2) The Delegation Event Model

a. Events
b. Event Sources
c. Event Listeners

3) Event Classes
4) Sources of Events
5) Event Listener Interfaces
6) Adapter Classes

TWO EVENT HANDLING MECHANISMS

 Event is the change in the state of the object or source. Events are generated as result of user
interaction with the graphical user interface components.

 For example, clicking on a button, moving the mouse, entering a character through keyboard,
selecting an item from list, scrolling the page are the activities that causes an event to happen.

 Event Handling is the mechanism that controls the event and decides what should happen if an
event occurs. This mechanism have the code which is known as event handler that is executed
when an event occurs.

 The Way in which events are handled changed significantly between the original version of java i.e
1.0 and modern versions of java. The Modern approach is called the Delegation Event Model. This
model defines the standard mechanism to generate and handle the events.

 The Delegation Event Model has the following key participants namely

Source- The source is an object on which event occurs. Source is responsible for providing
information of the occurred event to its handler. Java provide as with classes for source object.

Listener - It is also known as event handler. Listener is responsible for generating response to an
event. From java implementation point of view the listener is also an object. Listener waits until it
receives an event. Once the event is received, the listener process the event then returns.

DELEGATION EVENT MODEL

 The Modern approach to handling events is based on the delegation event model, which defines
standard and consistent mechanisms to generate and process events.

 Its concept is quite simple:

 A source generates an event and sends it to one or more listeners.

 In this schema, the listener simply waits until it receives an event. Once an event is received, the
listener processes the event and then returns.

 The advantage of this design is that the application logic that processes events is cleanly separated
from the user interface logic that generates those events.

 A User interface element is able to “delegate” the processing of an event to a separate piece of
code.
In the delegation Event model, listeners must register with a source in order to receive an event
notification.

 This provides an important benefit: notifications are sent only to listeners that want or receive
them.
This is a more efficient want to handle events than the design used by the old java 1.0 approach.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 2

 In this model, there is a source, which generates events.

 There is a Listener, which can listen to the happenings of an event and initiate an action.

 A Listener has to register with a source.
 When an event takes place, it is notified to the listeners, which are registered with the source.

 The Listener then initiates an action.

Events

 In the delegation model, an event is an object that describes a state change in a source.
 It can be generated as a consequence of a person interacting with the elements in a graphical user

interface.

 Some of the activities that cause events to be generated are pressing a button,entering a character
via a Keyboard, selecting an item in a list etc..

 Events may also occur that are not directly caused by interactions with a user interface. For
Example: an event may be generated when a timer expires, a counter exceeds a value etc..

Event Sources

 An Event sources is a GUI Object which generates Events. Buttons, ListBoxes and Menus etc., are
common Event sources in GUI based applications. (or)

 The Graphical User Interface Components that generates the Events are called Event Sources.

 A Source must register listener in order for the listener to receive notifications about a specific type
of event.

 Each type of Event has its own Registration method. Here is the general form

 Public void addTypeListener(TypeListener el)

 Where , type is the name of the event, and el is a reference to the event listener.
 For Example, the method that registers a keyboard event listener is called addKeyListener().

 when an event occurs, all registered listeners are notified and receive a copy of the event object.

 A source must also provide a method that allows a listener to unregister an interest in a specific
type of event. The general form of such a method is

 public void removeTypeListener(TypeListener el)

Event Listeners

 A Listener is an Object that is notified when on event occurs.
 It has two major requirements.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 3

 First, it must have been registered with one or more sources to receive notifications about specific
types of events.

 Second, it must implement methods to receive and process these notifications.

EVENT CLASSES

The Classes that represent events are called Event Classes.

EVENT CLASS DESCRIPTION
ActionEvent Generates when a Button is pressed, a List item is double_clicked,

or a Menu item is selected.
ItemEvent Generated when a check box or list item is clicked

Also occurs when a choice selection is made or a checkable
MenuItem is selected or deselected.

TextEvent Generated when the value of a TextArea or TextField is changed.
AdujustementEvent Generated when a ScrollBar is manipulated
ContainerEvent Generated when a component is added to or removed form a

container.
KeyEvent Generated when inpur is received form the keyboard.
FocusEvent Generated when a component gains or loses keyboard focus.

SOURCES OF EVENTS

An Event sources is a GUI Object which generates Events. Buttons, ListBoxes and Menus etc., are
common Event sources in GUI based applications. (or)
The Graphical User Interface Components that generates the Events are called Event Sources.
Some of the User Interface Components that can generate Events are

EVENT SOURCE DESCRIPTION
Button Generates Action Events when the Button is Pressed
CheckBox Generates Item Events when the checkbox is Selected or Deselected.
Choice Generates Item Events when the choice is changed.
List Generates Action Events when an item is DoubleClicked.

Generates Item Events when a Item is Selected or Deselected.
MenuItem Generates Action Events when an Menu item is Selected.

Generates Item Events when a Checkable Menu Item is Selected and
Deselected.

ScrollBar Generates Adjustment Events when the scroll bar is manipulated.
TextComponent Generates text events when the user enters a character.
Window Generates window Events when a window is activated, closed, deactivated,

deiconified, iconified, opened or quit.
A Source must register listener in order for the listener to receive notifications about a specific type
of event.
Each type of Event has its own Registration method. Here is the general form
Public void addTypeListener(TypeListener el)

EVENTLISTENER

When an Event occurs, the event source invokes the appropriate method defined by the listener and
provides an event object as its argument.
The below table lists commonly used listener interfaces and provides a brief description of methods
that they define.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 4

EVENT
SOURCE

EVENT
CLASS

EVENT
LISTENER

METHODS IN LISTENER
INTERFACE

Button Clicked

MenuItem
Selected

ActionEvent ActionListener void actionPerformed(ActionEvent ae)

Combo box item
selected

ActionEvent

ItemEvent

Action Listener

ItemListener

void actionPerformed(ActionEvent ae)
void itemStateChanged(ItemEvent ie)

List Item Selected ListSelectionE
vent

ListSelectionListene
r

void valueChanged(ListSelectionEvent le)

RadioButton
Selected

ActionEvent

ItemEvent

Action Listener

ItemListener

void actionPerformed(ActionEvent ae)
void itemStateChanged(ItemEvent ie)

Check Box
Selected

ActionEvent

ItemEvent

Action Listener

ItemListener

void actionPerformed(ActionEvent ae)
void itemStateChanged(ItemEvent ie)

Scroll Bar
Repositioned

AdjustmentEve
nt

AdustmentListener void
adjustmentValueeChanged(AdjustmetEvent
ae)

Window Changed WindowEvent WindowListener void windowAcitivated(WindowEvent we)
void windowClosed(WindowEvent we)
void windowClosing(WindowEvent we)
void windowdeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowIconified(WindowEvent we)
void windowOpened(WindowEvent we)

Focus Changed FocusEvent FocusListener void focusLost(FocusEvent fe)
void focusGain(FocusEvent fe)

Key Pressed KeyEvent KeyListener void keyPressed(KeyEvent ke)
void keyReleased(KeyEven tke)
void keyTyped(KeyEvent ke)

Mouse clicked MouseEvent MouseListener void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)

INTERFACE DESCRIPTION
ActionListener Defines one method to receive action events
ItemListener Defines one method to recognize when the state of an item changes.
TextListener Defines one method to recognize when a text value changes.
AdjustementListener Defines one method to receive adjustment event.
ContainerListener Defines two method to recognize when a component is added to or

removed from a container.
KeyListener Defines three methods to recognize when a key is pressed, released, or

typed.
FocusListener Defines two methods to recognize when a component gains or losses

keyboard focus.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 5

void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

Mouse moved MouseEvent MouseMotionListin
er

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

Text value is
changed

TextEvent TextListener void textValueChanged(TextEvent te)

Adapter Classes

 Java Provides a special feature, called an adapter class, that can simplify the creation of event
handlers in certain situations.

 An Adapter class provides an empty implementation of all methods in an event listener interface.

 Adapter classes are useful when you want to receive and process only some of the events that are
handled by a particular event listener interface.

 Adapter classes are useful when you want to receive and process only some of the events that are
handled by a particular event listener interface.

 Commonly used Listener interfaces implemented by Adapter Classes are

Adapter Class Listener Interface
ComponentAdapter ComponentListener
CaontainerAdapter ContainerListener
FocusAdapter FocusListener
KeyAdapter KeyListener
MouseAdapter MousrListener
MouseMotionAdapter MouseMotionListener
WindowAdapter WindowListener

Here's a mouse adapter that beeps when the mouse is clicked

import java.awt.*;
import java.awt.event.*;

public class MouseBeeper extends MouseAdapter {

 public void mouseClicked(MouseEvent evt) {
 Toolkit.getDefaultToolkit().beep();
 }

}

Without extending the MouseAdapter class, I would have had to write the same class like this

import java.awt.*;
import java.awt.event.*;

public class MouseBeeper implements MouseListener {

 public void mouseClicked(MouseEvent evt) {

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 6

 Toolkit.getDefaultToolkit().beep();
 }

 public void mousePressed(MouseEvent evt) {}
 public void mouseReleased(MouseEvent evt) {}
 public void mouseEntered(MouseEvent evt) {}
 public void mouseExited(MouseEvent evt) {}

}

SWING

1) The Origin of Swing
2) Swing is built on the AWT
3) Two Key Features of Swing
4) Swing Components and Containers
5) A Simple Swing Application
6) Event Handling
7) Create a Swing Applet

THE ORIGIN OF SWING

 Swing is a set of classes that provide more powerful and flexible GUI Components than
AWT(Abstract Window Toolkit).

 The AWT defines a basic set of controls, windows and dialog boxes that support a usable, but
limited graphical interface.

 It was a response to deficiencies present in AWT.
 One reason for limited nature of the AWT is that , it translates its various visual components into

their platform-specific equivalents i.e the look and feel of a component is defined by the platform,
not by java.

 Because AWT components use native code resourcess, they are referred as heavyweight.
 Several problems of AWT are
 First, because of variations between OS, a component might look, or even act differently on

different platform.
 Second, the look and feel of each component was fixed and could not be easily changed.
 Third, the use of heavy weight components caused some frustrating restrictions like heavy weight

component is always rectangular and opaque.
 To overcome the limitations and restrictions of AWT, a better approach is needed and the solution

was Swing, which is introduced in 1997.
SWING IS BUILT ON THE AWT

 Although Swing eliminates a number of limitations inherent in the AWT, swing does not replace it.
 Instead, swing is built on the foundation of AWT. This is the reason why the AWT is still a crucial

part of java.
 Swing also uses the same event handling mechanism as the AWT.
 Therefore, a basic understanding of the AWT and of event handling is required to use swing.

TWO KEY FEATURES OF SWING

 Swing was created to address the limitations present in the AWT. It does this through two key
features
1) Lightweight components
2) Pluggable look and feel.

 Together, they provide elegant, yet easy –to-use solution to the problems of the AWT.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 7

1) Swing components are LightWeight
o Swing components are lightweight, means that they are written entirely in java and do not

map directly to platform-specific peers.
o Because light weight components do not translate into native peers, the look and feel of each

component is determined by swing, not by underlying operating system.
o i.e Each component will work in a consistent manner across all platforms.

2) Swing supports a pluggable look and feel
 Swing supports a pluggable look and feel(PLAF). Since swing follows MVC architecture, it

is possible to separate the look and feel of the component from the logic of the component.
 Separating out the look and feel provides a significant advantage
 It becomes possible to change the way that a component is rendered without affecting any of

its other aspects.
 In other words, it is possible to “plug in” a new look and feel for any given component

without creating any side effects in the code that uses that component.
COMPONENTS AND CONTAINERS

Swing GUI consists of two key items
1. Components
2. Containers

 However, this distinction is mostly conceptual because all containers are also Components
 A Component is an independent visual control, such as a push button or radio button. A Container

holds a group of components.

 Thus, a container is a special type of component that is designed to hold other components.
Furthermore, in order for a component to be displayed, it must be held within a container.

 Thus, all Swing GUIs will have at least one container.

 Because containers are components, a container can also hold other containers.

 This enables Swing to define what is called a Containment Hierarchy, at the top of which must be a
top-level container.

1) Components
In general, Swing components are derived from JComponent class. JComponent provides the
functionality that is common to all components. All of Swing’s components are represented by classes
defined within the package javax.swing. Notice that all component classes begin with the letter J.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 8

2) Containers

Swing defines two types of Containers.

2.1) Top-level containers (or) Heavy Weight Containers

2.2) Non Top-level Containers (or) Light Weight Containers

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 9

1) Top-level containers (or) Heavy Weight Containers
 The First type of containers supported by Swing are heavy Weight containers (or) Top-level

containers:
 They are JFrame, JApplet, JDialog, JWindow.
 These containers do not inherit JComponent. They do, however, inherit the AWT classes

Component and Container. So, we call them as Heavy Weight Containers. This makes the
top-level containers a special case in the Swing component library.

 Top-level containers are defined as those which can be displayed directly on the desktop.
 The one most commonly used for applications is JFrame. The one used for Applets is

JApplet.
2) Non Top-level Containers (or) LightWeight Containers

 The second type of Containers supported by Swing are Light Weight Containers (or) Non
top-level Containers.

 JPanel comes under Light Weight Containers because it inherits from JComponent.
 Light Weight Components are often used to organize and manage groups of related controls

that are contained within an outer container.
1) Top-level Container Panes

Each top-level container defines a set of window Panes. A Window Pane represents a free area of a
window where some text or component can be displayed. We have 4 types of window panes
available in javax.Swing package.

These panes can be imagined like transparent sheets lying one below the other.

 The Four Panes are
1) JGlassPane
2) JRoot Pane
3) JLayeredPane
4) JContentPane

1) JGlassPane: This is the Firtst pane and is very lose to the monitor’s screen. Any components to be
displayed in the foreground are attached to this glass pane. To reach this glass pane, we use
getGlassPane() method of JFrame class. The method returns Component class object.

2) JRootPane: JRootPane is a lightweight container whose purpose is to manage the other panes.
Any components to be displayed in the background are displayed in this Pane. JRootPane and
JGlassPane are used in animation also
 ForEg: Suppose we want to display a flying aero plane in the sky. The aeroplane can be displayed
as a.gif of.jpg file in the glass pane whereas the blue sky can be displayed in the JRootPane in the
background.
 To reach this Rootpane, we use getRootPane() method of JFrame class which returns Component
class object.

3) JLayeredPane: This Pane lies below the RootPane. Many complex graphical applications will
contain a number of layers(e.g. one component may be partially covering another, etc.)
 To reach this LayeredPane, we use getLayeredPane() method of JFrame class which returns
Component class object.

4) JContentPane: This is the bottom most pane of all. The pane with which you will add visual
components. In other words, when you add a component, such as a button, to a top-level container,
you will add it to the content pane.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 10

 To reach this ContentPane, we use getContentPane() method of JFrame class which returns
container class object

ASIMPLE SWING APPLICATION

The best way to understand the structure of a swing program is to work through an example. There are two
types of java programs in which swing is typically used. The first is a Desktop application. The second is the
applet. A small example to illustrate the create of swing application is

import java.awt.*;
import javax.swing.*;
class Demo2 extends JFrame
{

JLabel i1,i2;
JTextField t1,t2;
Container con;
ButtonGroup rbg;
Demo2()
{

setSize(400,400);
con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout.LEFT));
i1=new JLabel("Name");
t1=new JTextField(10);
i2=new JLabel("DOB");
t2=new JTextField(10);
rbg=new ButtonGroup();
JRadioButton rb1=new JRadioButton("male");
JRadioButton rb2=new JRadioButton("female");
con.add(i1);
con.add(t1);
con.add(i2);
con.add(t2);
rbg.add(rb1);
rbg.add(rb2);
con.add(rb1);
con.add(rb2);
JButton b1=new JButton("Save");
con.add(b1);

}
}
class Demo3
{

public static void main(String args[])
{

Demo2 ob=new Demo2();
ob.setTitle("trail box");
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);

}
}

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 11

OUTPUT

EVENT HANDLING

 The Event Handling mechanism used by Swing is the same as that used by the AWT. This approach is
called the Delegation Event Model.

 In many cases , swing uses the same events as does the AWT, and these events are packaged in
java.awt.event. Events specific to swing are stored in javax.swing.event.

 Although events are handled in swing in the same way as they are with the AWT, it is still useful to
work through a simple example.

 The following program handles event generated by a swing push button
import java.awt.event.*;
import javax.swing.*;
import java.applet.*;
/*
<applet code=Demo1 width=200 height=200>
</applet>
*/
public class Demo1 extends JApplet implements ActionListener
{

JButton b1,b2;
public void init()
{

b1 = new JButton("Alpha");
b2 = new JButton("Beta");
b1.addActionListener(this);
b2.addActionListener(this);
add(b1);
add(b2);

}
public void actionPerformed(ActionEvent ae)
{

if (ae.getSource() == b1)
showStatus("Alpha is pressed");

else
showStatus("Beta is pressed");

}

}

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 12

OUTPUT

CREATE A SWING APPLET

 The second type of program that commonly uses swing is the applet. Swing-based applets are similar to
AWT-based applets, but with important difference.

 A swing applet extends JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet
includes all of the functionality found in Applet and adds support for swing.

 JApplet is a top-level container, which means that it is not derived from JComponent. Because JApplet is
a top-level container, it includes the various panes and the components are added to JApplets content
pane in the same way that components are added to JFrame’s contentpane.

 A Simple Applet Program
import java.awt.*;
import javax.swing.*;
import java.applet.*;
/*
<applet code=AppletDemo width=300 height=300>
</applet>
*/
public class AppletDemo extends JApplet
{

public void paint(Graphics g)
{

g.drawString("Hello , This is a Simple Applet Program", 20,20);
}

}
OUTPUT

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 13

EXPLORING SWING

a) JLabel and ImageIcon
b) JTextField
c) The swing Buttons

I) Jbutton
II) JRadioButton
III) JToggleButton
IV) JCheckBox

d) JTabbedPane
e) JScrollPane
f) JList
g) JComboBox
h) JTrees
i) JTable

a) JLabel and ImageIcon
 JLabel is Swing’s easiest-to-use component. It is a passive component In that it does not respond to

user input. The text can be changed by the application and not by the user. A JLabel can be used to
display text and/or an icon.

 The JLabel has the following int type constants that indicate the alignment of the labels content.

 JLabel.CENTER,JLabel.LEFT, JLabel.RIGHT,JLabel.TOP,JLabel.BOTTOM
 JLabel defines several constructors. Here are 3 of them

 JLabel(Icon i)// Creates a label using the Icon i
JLabel(String str)//Creates a Label with the specified String str.
JLabel(String str, Icon i, int align)// Creates a Label using the icon I, String Str and

 With the specified Alignment.
 JLabel class has number of methods. Some of them are

 Icon getIcon()//Returns the icon of the Label
 String getText()//Returns the text of the Label

Void setFont(Font font)//Sets the font for the Label’s text
 Void setText(String str)//Sets the specified String str as the Label’s content.

Program to Create JLabel on JFrame
//PROGRAM IILUSTRATES THE USE OF JLabel CLASS
import java.awt.*;
import javax.swing.*;
class lbl extends JFrame
{

JLabel I1,I2,I3;
Container con;
Icon Img1,Img2,Img3;
lbl()
{

setSize(400,400);
con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout.LEFT));
Img1=new ImageIcon("lion.jpg");
Img2=new ImageIcon("giraffee.jpg");

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 14

Img3=new ImageIcon("PBear.jpg");
I1=new JLabel("LION",Img1,JLabel.LEFT);
I2=new JLabel("GIRAFFE",Img2,JLabel.LEFT);
I3=new JLabel("POLAR BEAR",Img3,JLabel.LEFT);
con.add(I1);
con.add(I2);
con.add(I3);

}
}
class JLabelDemo
{

public static void main(String args[])
{

lbl ob=new lbl();
ob.setTitle("JLabel in JFrame");
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);

}
}
OUTPUT:

b) JTextField

 The JTextField class implements a single-line text-entry area, usually called an edit control.
TextField allow the user to enter Strings. JTextField is a subclass of JTextComponent, which is a
subclass of JComponent/

 The Alignment of the text is defined by the following int type constants.

 TextField.LEFT, JTextField.CENTER, JTextField.RIGHT
 JTextField defines the following constructors.

JTextField() // Creates a new Text field; the text is set to null and the number of columns Is set to 0.
JTextField(int columns) //Creates a new empty textfirld with the specified number of columns.
JTextField(String str) // Creates a new Text field with the specified string as text.

 JTextField class has number of methods. Some of them are
String getText() // Returns the text contained in this Text Field.
String getSelectedText() // Returns the selected text contained in this text field.
Void setEditable(Boolean edit) // Sets the textfield to editable(true) or not editable(false)

 Program to create JTextField on JFrame

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 15

//PROGRAM IILUSTRATES THE USE OF JTextField CLASS
Import java.awt.*;
Import javax.swing.*;
Class Txt extends JFrame
{

JLabel I1,I2,I3;
JTextField t1,t2,t3;
Container con;
Txt()
{

setSize(350,200);
con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout.LEFT));
I1=new JLabel(“Name”);
t1=new JTextField(10);
I2=new JLabel(“RollNo”);
t2=new JTextField(10);
I3=new JLabel(“Branch”);
t3=new JTextField(10);
con.add(I1);
con.add(t1);
con.add(I2);
con.add(t2);
con.add(I3);
con.add(t3);

}
}
class JTextFieldDemo
{

public static void main(String args[])
{

Txt ob=new Txt();
ob.setTitle(“JTextField in JFrame”);
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);

}
}
OUTPUT:

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 16

c) The swing Buttons
I) Jbutton
 The JButton is a concrete subclass of AbstractButton which is a subclass of JComponent. The counterpart

of JButton in AWT is Button. Perphaps the most widely used control is the push button.

 A Push button is a component that contains a label and that generates an event when it is pressed.

 JButton defines four constructors
 JButton() \\ constructs a button with no label.
 JButton(String Str) \\ constructs a button with a specified label.
 JButton(Icon i) \\ constructs a button with the icon I as button
 JButton(String str, icon i) \\ constructs a button with the icon I as button and the string as
 Label

 JButton has several methods. Some of them are
 void setText(String str) \\ sets the buttons label to the specified string
 void getText() \\ Returns the label of the button
 Icon getIcon() \\ Returns the icon of the button
 void setToolTipText(String str) \\ Sets the Tool Tip text to the button
 void setMinemonic(char c) \\ sets Shortcut key to the button

 Program to Create JButton in JFrame
 //PROGRAM IILUSTRATES THE USE OF JButton CLASS
 import java.awt.*;
 import javax.swing.*;
 class Btn extends JFrame
 {
 JButton b1,b2,b3,b4,b5;
 Btn()
 {
 setSize(400,350);
 Container con=getContentPane();
 con.setLayout(new FlowLayout(FlowLayout.LEFT));
 Icon Img1=new ImageIcon(“new.jpg”);
 Icon Img2=new ImageIcon(“save.jpg”);
 Icon img3=new ImageIcon(“open.jpg”);
 Icon img4=new ImageIcon(“back.jpg”);

Icon Img5=new ImageIcon(“forward.jpg”);

b1=new JButton(“New”,Img1);
b2=new JButton(“Save”,Img2);
b3=new JButton(“open”,Img3);
b4=new JButton(“Back”,Img4);
b5=new JButton(“Forward”,Img5);
b1.setToolTipText(“New”);
b2.setForeground(Color.red);
b3.setMnemonic(‘c’); // Shortcut key for save Button(ALT+C)
con.add(b1);
con.add(b2);
con.add(b3);
con.add(b4);

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 17

con.add(b5);
}
}
Class JButtonDemo
{
 public static void main(String args[])
 {
 Btn ob=new Btn();
 ob.setTitle(“JButton in JFrame”);
 ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ob.setVisible(true);
 }
}

OUTPUT:

II) JRadioButton

 Radio buttons are like check boxes. In Radio button, theselection is displayed in a round graphics. Radio
buttons are generally used to represent a collection of mutually exclusive options i.e, out of several
options,only one will be selected state and all the remaining are in deselected state. The radio buttons are
created using JRadioButton class, which is subclass of JToggleButton.

 The JRadioButton must be placed in a Button Group. The Button group is created using the ButtonGroup
class which has no argument constructor. After creating JRadioButton, the radio buttons are to be placed to
the ButtonGroup using add() method.

 If the JRadio buttons are not grouped using Buttongroup, then each radio buttn will behave exactly like
JCheckBox.

 JRadioButton generates ActionEvent, ItemEvent and ChangeEvent

 JRadioButton defines several constructors

JRadioButton() // Creates a radio button without any label; the Radio Buton is set to deselected state

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 18

JRadioButton(String str)//Creates a radio button with the string str as label; the ardio button is set to
deselected state
JRadioButton(String str, Boolean state)//Creates a radio button with the string str as label; the radio button is
set to the specified state
JRadioButton(Icon i)// Creates a radio button using the icon I; the radio button is set to deselected state
JRadioButton(Icon I, Boolean state)//Creates a radio button using the icon i;the radio button is set to
deselected state.
JRadioButton(String str,Icon i)// Creates a radio button using the icon I with the string str as label
JRadioButton(String str, Icon I, Boolean state)//Creates a radio button using the Icon I with the string str set
as label; the radio button is set to the specified state.

Note: JRadioButton is like a JcheckBox . To use JRadioButton in mutually exclusive selection of One option out
of many options, it is to be grouped using Buttongroup. All JradioButtons are to be added to the ButtonGroup. All
JRadiobuttons are to be added to the ButtonGroup.

 Program to create JRadioButton in JFrame

import java.awt.*;
import javax.swing.*;
class RButton extends JFrame
{

JRadioButton rb1,rb2,rb3,rb4,mb,fb;
ButtonGroup rbg;
JLabel l1,l2;
RButton()
{

setSize(600,300);
Container c = getContentPane();
c.setLayout(new FlowLayout());
l1 = new JLabel("Buttons to be added");
l2 = new JLabel("Buttons Not added to group");
mb = new JRadioButton("Male");
fb = new JRadioButton("Female");
rb1= new JRadioButton("Times New Roman");
rb2 = new JRadioButton("Courier");
rb3 = new JRadioButton("Terminal");
rb4 = new JRadioButton("Arial");
rbg = new ButtonGroup();
c.add(l1);
c.add(rb1);
c.add(rb2);
c.add(rb3);
c.add(rb4);
rbg.add(rb1);
rbg.add(rb2);
rbg.add(rb3);
rbg.add(rb4);
c.add(l2);
c.add(mb);
c.add(fb);

}
}
class JRadioButtonDemo
{

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 19

public static void main(String args[])
{

RButton ob = new RButton();
ob.setTitle("JRadioButton in Jframe");
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);

}
}
OUTPUT

III) JToggleButton

 A useful variation on the push button is called a toggle button. A Toggle button looks like a push button,
but it acts differently because it has two states: Pushed and Release.

 i.e, when you press a toggle button a second time, it releases(pops up);

 Therefore, each time a toggle button is pushed, it toggles between its two states.
 Toggle Buttons are objects of the JToggleButton class. JToggleButton implements AbstractButton.

 In addition to creating standard toggle buttons, JToggleButton is a superclass for two other Swing
components that also represent tow-state Swing. These are JCheckBox and JradioButton.

 JToggleButton defines the following constructors
 JToggleButton()\\ Creates a toggle button without a label and is set to deselected state.
 JToggleButton(Icon i) // Creates a ToggleButton using the icon and is set to deselected state.
 JToggleButton(Icon I, Boolean State) //Creates a toggle button using the icon I and is set to
 Specified state.
 JToggleButton(String str) //Crates a ToggleButton with the specified label and is set to
 Deselected state.
 JToggleButton(String str,Icon I,Boolean state) \\ Creates a toggle button the specified label
 Using the icon I and is set to the specified State.

 JToggleButton has so many methods.Some of them are
 Object getItem() \\ Returns the reference of the JtoggleButton]
 Boolean isSelected \\ returns true if button is selected otherwise false.

 Program to Create JToggleButton in JFrame
 // JToggleButton in JFrame
 import java.awt.*;
 import javax.swing.*;
 class TButton extends JFrame
 {
 JToggleButton tb1;
 Icon img1;

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 20

 TButton()
 {
 setSize(300,300);
 Container c=getContentPane();
 c.setLayout(new FlowLayout());
 img1=new ImageIcon("lion.jpg");
 tb1=new JToggleButton(img1);
 c.add(tb1);
 }
}
class JToggleButtonDemo
{
 public static void main(String args[])
 {
 TButton ob=new TButton();
 ob.setTitle("JToggleButton in JFrame");
 ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ob.setVisible(true);
 }
}
OUTPUT:

IV JCheckBox

The JCheckBox class provides the functionality of a check box. Its immediate superclass is JToggleButton, which
provides support for two-state buttons.

JCheckBox defines the following constructors

JCheckBox() //Creates an initially unselected check box button with no text, no icon.
JCheckBox(Icon icon)//Creates an initially unselected check box with an icon.
JCheckBox(String text)//Creates an initially unselected check box with text.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 21

JCheckBox(Icon icon, boolean selected)//Creates a check box with an icon and specifies whether or not it
is initially selected.
import java.awt.*;
import javax.swing.*;
class Check extends JFrame
{
JCheckBox r,s,m;
JLabel l1,l2;
Check()
{

setSize(600,300);
Container c = getContentPane();
c.setLayout(new FlowLayout());
l1 = new JLabel("Hobbies");
r = new JCheckBox("Reading");
s = new JCheckBox("Singing");
m = new JCheckBox("Listening Music");
c.add(l1);
c.add(r);
c.add(s);
c.add(m);

}
}
class JCheckBoxDemo
{
public static void main(String args[])
{
Check ob = new Check();
ob.setTitle("JCheckBox in Jframe");
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);
}

}

OUTPUT

d) JTabbedPane Class
 A pane represents a frame area. A tabbed pane represents a frame with tabs attached to it. JTabbedPane is

useful to create a tabbed pane, such that on each tab sheet a group of components can be added.

 JTabbedPane defines 3 constructors. Default constructor creates an empty control with the tabs positioned
across the top of the pane.

 Tabs are added by calling addTab() method.

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 22

import java.awt.*;
import javax.swing.*;
class JTabbedPanelDemo extends JFrame
{

JTabbedPanelDemo()
{

Container c = getContentPane();
JTabbedPane jtp = new JTabbedPane();
jtp.addTab("capitals", new CapitalsPanel());
jtp.addTab("Countries", new CountriesPanel());
c.add(jtp);

}
public static void main(String args[])
{

JTabbedPanelDemo demo = new JTabbedPanelDemo();
demo.setTitle("JTabbed pane");
demo.setSize(300,400);
demo.setVisible(true);
demo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}
class CapitalsPanel extends JPanel
{

CapitalsPanel()
{

JButton b1 = new JButton("Washington");
JButton b2 = new JButton("London");
JButton b3 = new JButton("Tokyo");
add(b1);
add(b2);
add(b3);

}
}

class CountriesPanel extends JPanel
{

CountriesPanel()
{

JCheckBox c1 = new JCheckBox("UnitedStates");
JCheckBox c2 = new JCheckBox("Britain");
JCheckBox c3 = new JCheckBox("Japan");
add(c1);
add(c2);
add(c3);

}
}
OUTPUT

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 23

f) JList
 JList is a subclass of JComponent. JList creates a graphical display of a list of items and allows the user to

select one or more items.

 JList class provides a compact, multiple-choice, scrolling selection list.

 JList provides these constructors

JList()//Creates a list and only one entry will be visible always
JList(ListModel lm)//creates a list with items contained in the list model lm; the list model is an
instance of DefaultList Model

 A swing list does not have a scrollbar to display the list. Hance, the list is to be placed inside a JScrollPane
object.

 A JList is created by passing vector or an array of object as argument. In JList, there is no method for
adding or removing items in the list. i.e.,Lists created by JList by passing an array or vector do not have
many methods to manipulating the items in the list.

 The DefaultListModel, which is a concrete subclass of AbstractListModel has methods for adding and
removing items from a JList.

 A List with DefaultListModel is created in the following steps
Create an instances of DefaultListModel
Add the items to this model
Create the Jlist by passing this model as argument in the constructor

For eg :
DefaultListModel lm = new DefaultListModel();
lm.addElement(“January”);
lm.addElement(“February”);
JList month = new JList(lm);

 Some of the methods of DefaultListModel are
void addElement(Object ob)\\ adds the given object at the end of the list
void clear()\\removes all elements from the list
int getSize()\\returns the number of items in the list
void InsertElementAt(Object ob,int index)\\Inserts the given object at the specified index

import java.awt.*;
import javax.swing.*;
class Lst extends JFrame
{

JList lst1,lst2;
String Months[] = {"jan","feb","mar","apr","may","june","july","aug","sep","oct"};
Lst()
{

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 24

Container c = getContentPane();
c.setLayout(new FlowLayout());
lst1 = new JList(Months);
DefaultListModel lm = new DefaultListModel();
lm.addElement(31);
lm.addElement(28);
lm.addElement(31);
lm.addElement(30);
lm.addElement(31);
lm.addElement(30);
lm.addElement(31);
lm.addElement(31);
lm.addElement(30);
lm.addElement(31);
lst2 = new JList(lm);
lst1.setVisibleRowCount(2);
lst2.setVisibleRowCount(3);
JScrollPane Monthssp = new JScrollPane(lst1);
JScrollPane dayssp = new JScrollPane(lst2);
JLabel l1 = new JLabel("months");
JLabel l2 = new JLabel("No.of days in Month");
c.add(l1);
c.add(Monthssp);
c.add(l2);
c.add(dayssp);

}
}
class JListDemo
{

public static void main(String args[])
{

Lst ob = new Lst();
ob.setTitle("JList in JFrame");
ob.setSize(300,300);
ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ob.setVisible(true);

}
}

OUTPUT

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 25

g) JComoBox
 The user can select a single item only. A combo box is a visual Swing graphical component that gives

popup list when clicked.
 It is the combination of JList and JTextField.

 In Combo box, only one item is visible at a time. A Popup menu displays the choices a user can select
from.

 In JList, the items cannot be edited, but in combo box, the items can be edited by setting the
JComboBox editable.

 JCombobox defines the following constructors
 JComboBox() \\ Creates empty Combo Box
 JComboBox(object[] arr) \\ Creates a combo box taking the items from the specified Object
 Array
 String 1st=(“India”,”America”,”germany”);
 Eg: JComboBox box=new JComboBox(1st);
 JComboBox(Vector v)\\ Creates a combo box taking the items from the specified vector
 JComboBox has so many methods. Some of them are
 Void addItem(Object obj) \\ adds the specified object to the list
 Eg:box.addItem(“Japan”);
 Object getSelectItem() \\Returns the currently selected item
 Eg: Object obj=box.getSelectedItem();
 Int getSelectIndex() \\ Returns the index of item in the list
 Eg: int I=box.getSelectedIndex();
 Int getItemCount() \\ Returns the number of items in the list
 Eg: int I=box.getItemCount();
 Boolean isEditable() \\ Returns a Boolean specifying whether the combobox items are
 Editable or not
 Eg: Boolean x=box.isEditable();
 Void removeItem(Object ob) \\ Removes the specified item from the list
 Eg: box.removeItem(“germany”);

 Program to Create JComboBox in JFrame
 // JCombo Box Demo

import java.awt.*;
import javax.swing.*;
class cmbbox extends JFrame
{
 JComboBox box1,box2;
 String str[]={"Andhra Pradesh","Tamil Nadu","Karnataka"};
 cmbbox()
 {
 Container c=getContentPane();
 c.setLayout(new FlowLayout());
 box1=new JComboBox();
 box2=new JComboBox(str);
 JLabel I1=new JLabel("Countries");
 JLabel I2=new JLabel("States");
 box1.addItem("India");
 box1.addItem("germany");

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 26

 box1.addItem("Japan");
 c.add(I1);
 c.add(box1);
 c.add(I2);
 c.add(box2);

 }
}
class JComboDemo
{
public static void main(String args[])
{
 cmbbox ob=new cmbbox();
 ob.setTitle("JComboBox in JFrame");
 ob.setSize(400,300);
 ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ob.setVisible(true);
}
}
OUTPUT:

i)JTable

JTable is a component that displays rows and columns of data. JTable supplies several constructors. The one
commonly used is

JTable(Object data[][],Object colHeads[])

import java.awt.*;
import javax.swing.*;
class tbl extends JFrame
{

 String colshead[]={"sno","sname"};
 Object[][] data = {{"100","aaa"},{"101","bbb"},{"102","ccc"},{"103","ddd"} };
 tbl()
 {
 Container c=getContentPane();
 c.setLayout(new FlowLayout());
 JTable tb = new JTable(data,colshead);

Object Oriented Programming Through Java UNIT V

R.Padmaja Kishore, Asst.Professor,MCA Department Page 27

 JScrollPane sp = new JScrollPane(tb);
 c.add(sp);

 }
}
class JTableDemo
{
public static void main(String args[])
{
 tbl ob=new tbl();
 ob.setTitle("JTable in JFrame");
 ob.setSize(400,300);
 ob.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ob.setVisible(true);
}
}

OUTPUT

