
Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 1

EXCEPTION HANDLING

1) Exception Handling Fundamentals

2) Exception Types

3) Uncaught Exception

4) Using try and catch

5) Multiple Catch Clauses

6) Nested try Statements

7) Throw

8) Throws

9) Finally

10) Java’s Built-in Exception

11) Creating your Own Exception Subclasses

 EXCEPTION HANDLING FUNDAMENTALS

 An Exception is run time error (or) An exception is abnormal condition that arises in a

code sequence at the run time.

 All exception occur only at runtime but some exception are detected at compile time

and some others at run time

 The exception that are checked at compilation time by the java compiler are called

“checked exception” while the exception that are checked by the jvm are called

”unchecked exception”

 When the jvm encounter an error such as division by zero, it creates an exception

object and thrown it.If the exception object is not caught and handled properly, the

interpreter will display an error message and will terminates the program.

 If we want the programmer to continue with the execution of the remaining code then

,an exceptional condition arises an object representing that exception is created and

thrown in the method that caused the error.

 The method may choose to handle the exception itself, or pass it on. Either way, at

some point the exception is caught and processed.

 Java exception handling is managed via five keywords

1) Try

2) Catch

3) Throw

4) Throws

5) Finally

 Statements that need to be monitored for exceptions should be placed within a try

block

 If an exception occurs within the try block, it is thrown and Your code can catch this

exception using catch block and handles it in some rational manner.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 2

 System generated exception are automatically thrown by the jvm. To manually throw an

exception, use the keyword throw.

 Any exception that is thrown out of method must be specified as such by a throws

clause.

 Any code that obsolutely must be executed after a try block completes is put in a finally

block.

 Java supplies several built in exception types that match the various sorts of run time

error that can be generated.

 Although the default exception handler provided by the java run time system is useful

for debugging ,you will usually want to handle an exception yourself. Doing so provides

2 benefits

 1) first, it allows you to fix the error

2) second, it prevents the program from automatically terminating.

Example:

class Exception

{

Public static void main(String args[])

{

int d,a;

try

{

d=0;

a=42/d;

System.out.println(“this will not be printed”);

}

Catch(“ArthmeticException e)

{

System.out.println(“division bt zero”);

}

}

 This program generates the following output

 Division by zero

 After catch statement

 Notice that the contents of println() inside the try block is never executed

 Once an exception is thrown, program control transfers out of the try block into the

catch block.

RUNTIME ERROR Corresponding Built in Exception

Dividing an Integer by Zero ArithmeticException

Accessing an element that ArrayIndexOutOfBoundsException

Trying to store a value into an array of an

incompatible class or type

ArrayStoreException

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 3

 Once the catch statement has executed program control continues with in the next line

in the program following the entire try/catch block mechanism.

General Form Of An Exception Handling Block

Try

{

Block of code to moniter for errors

}

Catch(Exception type1 exod)

{

 Exception handler for Exception type1

}

Catch(Exception type2 exob)

{

Exception handler for Exception tpye2

}

Finally

{

Block of code to be executed after

Try block ends

}

EXCEPTION TYPES

 The throwable class, which is an immediate subclass of object, is at the root of the

exception hierarchy.

 Throwable has two immediate subclass

 -Exception

 -Error

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 4

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 5

UNCAUGHT EXCEPTIONS

Let us see what happens when exceptions are not caught. The below program includes

an expression that intentionally causes a divide-by-zero error:

Class Exc0

{

 Public static void main(String args[])

 {

 int d = 0;

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 6

 int a = 42/d;

 }

}

 When the java run-time systems detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception. Since the exception is not caught

by the program, it is caught by the default handler provided by the Java run-time system,

which causes the Execution of Exc0 to Stop.

 Any Exception that is not caught by the program will ultimately be processed by the

default handler. The Default Handler displays a string describing the exception, prints a

stack trace from the point at which the exception occurred, and terminates the program.

Here is the Exception generated when the above example is executed

java.lang.ArithmeticException: /by Zero

 at Exc0.main(Exc0.java:4)

the class name, Exc0; the method name, main; the filename,Exc0.java;and the line

number,4, are all included in the simple stack trace.

USING TRY AND CATCH

 Although the default exception handler provided by the java run time system is useful for

debugging ,you will usually want to handle an exception yourself. Doing so provides 2

benefits

 1) first, it allows you to fix the error

2) second, it prevents the program from automatically terminating.

 To Guard against and handle a run-time error, simply enclose the code that you want to

monitor inside a try block.

 Immediately following the try block, include a catch clause that specifies the exception

type that wish to catch.

Example:

class Exception

{

Public static void main(String args[])

{

int d,a;

try

{

d=0;

a=42/d;

System.out.println(“this will not be printed”);

}

Catch(“ArthmeticException e)

{

System.out.println(“division bt zero”);

}

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 7

}

 This program generates the following output

 Division by zero

 After catch statement

 Notice that the contents of println() inside the try block is never executed

 Once an exception is thrown, program control transfers out of the try block into the catch

block.

 Once the catch statement has executed program control continues with in the next line in

the program following the entire try/catch block mechanism

Try block

 The try block can have one or more stmts that could generate an exception.

 If any one stmt generates an exception the remaining stmts in the block are skipped and

exception jumps to the catch block that is placed next to the try block.

 The catch block too can have one or more stmts that are necessary to process the

exception.

 Remember that every try stmt should be followed by atleast one catch stmt Otherwise

compilation error will occur.

Catch method works like a method definition

 The catch stmt is passed a single parameter, which is reference to the exception object

thrown.

 If the catch parameter matches with the type of exception object, then the exception is

caught and stmt in the catch block will be executed.

 Otherwise the exception is not caught and the default exception handler will cause the

execution to terminate.

MULTIPLE CATCH CLAUSES

 In some cases, more than one exception could be raised by a single piece of code.

 To handle this type of situation, specify two or more catch clauses, each catching a

different type of exception.

 When an exception is thrown, each catch statement is inspected in order, and the first

one whose type matches that of the exception is executed.

 After one catch statement executes, the others are bypassed, and execution continues

after the try/catch block.

 Eample

//Demonstrate Multiple Catch Statements

class MultiCatch

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 8

{

 public static void main(String args[])

 {

 try

 {

 int a = args.length;

 System.out.println(“a = “+a);

 int b = 42/a;

 int c[] = {1};

 c[42] = 99;

 }

 catch(ArithmeticException e)

 {

 System.out.println(“Divide by 0:” +e);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(“Array index out of bound:”+e);

 }

 System.out.println(“After try/catch block”);

 }

}

 This program will cause a division-by-zero exception, if it is started with no

command-line arguments, since a will equal zero.

 It will cause an ArrayIndexOutOfBoundsException, if we provide a command-line

arguments, since setting a to something larger than zero and since the int array c has

a length of 1, yet the program attempts to assign a value to c[42].

Here is the output generated by running in both ways

C:\>java MultiCatch

a = 0

Divide by 0 : java.lang.ArithmeticException: /by zero

After try/catch block

C:\>java MultiCatch TestArg

a = 1

Array index out of bound: java.lang.ArrayIndexOutOfBoundsException:42

After try/catch block

 When multiple catch statements are used, it is important to remember that

exception subclasses must come before any of their superclasses.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 9

 This is because a catch statement that uses a superclass will catch exceptions of that

type plus any of its subclasses.

 Thus, a subclass would never be reached if it came after its superclass. Further, in

java, unreachable code is an error.

/* this program contains an error

A subclass must come before its superclass in a series of catch statements. If not,

unreachable code will be created and a compile-time error will result.

*/

class SuperSubCatch

{

 Public static void main(String args[])

 {

 try

 {

 int a = 0;

 int b = 42/a;

 }

 catch(Exception e)

 {

 System.out.println(“generic Exception catch”);

 }

 /* This catch is never reached because ArithmeticException is a subclass

of

Exception */

 Catch(ArithmeticException e)

 {

 System.out.println(“This is never Reached”);

 }

}

}

 If the above program is compiled, an error message is displayed stating that the second

catch statement is unreachable because the exception has already been caught. since

ArithmeticException is a subclass of Exception, the first catch statement will handle all

Exception-based errors, including ArithmeticException. This means that the second catch

statement will never execute.To fix the problem , reverse the order of the catch statements

NESTED TRY STATEMENTS

So far we have been using just single try statement. However, it is possible to nest a try

statement inside another try statement. If one try block does not have a corresponding catch

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 10

block that handles the exception, Java will search the next outer try block for a catch block that

will handle the exception, back through successive nesting. If the Java cannot find the catch

block for the exception, it will pass the exception to its default exception handler.

Often nested try statements are used to allow different categories of errors to be handled in

different ways. Many programmers use an inner try block to catch the less severe errors and

outer try block to catch the more severe errors.

//An example of nested try statements

class NestTry

{

 Public static void main(String args[])

 {

 try

 {

 int a=args.length;

/*If no command-line args are present, the following statement will generate a

divide-by-zero exception. */

int b = 42/a;

System.out.println(“a = “ + a);

try //Nested Try block

{

/* If one command line args are use, then a divide-by-zeroexception will be

generated by the following code. * /

if(a==1) a=a/(a-a); //Division by zero

/*If two command line args are use, then generate an out-of-bounds

exception. */

if(a==2)

{

 int c[]={1};

c[42] = 99; //generate an out-of-bounds exception

}

 }

 Catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println(“Array Index out-of-bounds:” + e);

 }

 }

 Catch(ArithmeticException e)

 {

 System.out.println(“Divide by 0:” + e);

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 11

 }

}

}

 As you can see, this program nests one try block within another. The program works as

follows. When you execute the program with no command-line arguments, a divide-by-zero

exception is generated by the outer try block. Execution of the program with one command-

line-argument generates a divide-by-zero exception from within the nested try block. Since the

inner block does not catch this exception, it is passed on the outer try block, where it is

handled. If you execute the program with two command-line-arguments, an array boundary

exception is generated from within the inner try block. Here are sample runs that illustrate

each case.

 c:\>java NestTry

 Divide by 0: java.lang.ArithmeticException: / by zero

 c:\>java NestTry one

 a=1

Divide by 0: java.lang.ArithmeticException: / by zero

c:\>java NestTry one

 a=2

 Array index out-of-bounds:

 java.lang.ArrayIndexOutOfBoundsException:42

THROW

 There is also a throw statement available in java to throw an exception explicitly and

catch it.

 Till now we have seen catching exceptions that are thrown by the java run-time system.

However, it is possible for our program to throw an exception explicitly, using the throw

statement.

 The general form of throw is shown here.

Throw ThrowableInstance

 The flow of execution stops immediately after the throw statement; any subsequent

statements are not executed.

 The nearest enclosing try block is inspected to see if it has a catch statement that

matches the type of exception.

 If it does find a match, control is transferred to that statement. If not, then the next

enclosing try statement is inspected, and so on.

 If no matching catch is found, then the default exception Handler halts the program and

prints the stack trace.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 12

Eg:

Class Sample

{

static void demo()

{

try

{

System.out.print(“inside demo());

Throw new NullPointerException(“Exception data”);

}

catch(NullPointerException ne)

{

System.out.print(ne);

}

}

}

Class ThrowDemo

{

public static void main(String args[])

{

Sample.demo();

}

}

C:\>javac ThrowDemo.java

C:\>java ThrowDemo

Inside demo()

Java.lang.NullPointerException:Exception data

 In this program we are using throw clause to throw NullPointerException class object.

Then it is caught and its details are displayed in catch block.

1) Throw clause is used in software testing to test whether a program is handling all the

Exception as claimed by the programmer.

Suppose a programmer has written a program to handle some 5 exception

properly. Now the software tester has to test and certify whether the program is handling

all the 5 exception as said by the programmer or not.

 For this, the tester should plan the input data such that if he provides that input, the

said exception will occur. Causing the exceptions intentionally like this will be at times

very difficult. In this case the tester can take the help of the throw clause.

 Suppose the tester wants to test whether IOException is handled by the program

or not, he can introduce a statement in the source code as

 throws new IOException (“my IOException”);

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 13

 The tester compiles and runs the program. Tester checks whether the exception is

handled or not and gives feedback to the programmer. This is the way throw will

help the tester to test a program for exceptions.

2) Throw clause can be used to throw our own Exception also

 Just like the exception available in java we can also create our own exceptions

which are called “user defined exceptions”. We need the throw clause to throw there

user defined exceptions.

THROWS

If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception. You do

this by including a throws clause in the method’s declaration. A throws clause lists the types of

exceptions that a method might throw. This is necessary for all exceptions, except those of

type Error or RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. If they are not, a compile-time error

will result.

 This is the general form of a method declaration that includes a throws clause.

type method-name(parameter-list)throws exception-list

{

 //body of method

}

Here, exception-list is a comma-seperated list of the exceptions that a method can throw.

 Following is an example of an incorrect program that tries to throw an exception that it

does not catch. Because the program does not specify a throws clause to declare this fact, the

program will not compile.

//This program contains an error and will not compile.

class ThrowsDemo

{

 static void throwOne()

 {

 System.out.println(“inside throwone”);

 throw new IllegalAccessException(“demo”);

 }

 public static void main(String args[])

 {

 throwOne();

 }

}

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 14

 To make this example compile, you need to make changes. First, you need to declare

that throwOne() throws IllegalAccessException. Second, main() must define a try/catch

statement that catches this exception.

 The corrected example is shown here:

//This is now correct

class ThrowsDemo

{

 static void throwOne()throws IllegalAccessException

 {

 System.out.println(“inside throwone”);

 throw new IllegalAccessException(“demo”);

 }

 public static void main(String args[])

 {

 try

 {

 throwOne();

 }

 catch(IllegalAccessException e)

 {

 System.out.println(“caught “ + e);

 }

 }

}

FINALLY

 when exceptions are thrown execution in a method takes a rather abrupt, nonlinear path

that alters the normal flow thro’s the method.

 Depending upon how the method is coded it is even possible for an exception to cause

the method to return prematurely.

This could be a problem in some method.

 For Eg. If a method opens a file upon entry and closes it upon exit, then you will not

want the code that closes the file to be bypassed by the exception handling mechanism.

 The finally keyword is designed to address this contingency.

 Finally creates a block of code that will be executed after a try/catch block has

completed and before the code following the try/catch block.

 The finally block will execute whether or not an exception is thrown.

 If an exception is thrown the finally block will execute even if no catch stmt matches the

exception.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 15

 This can be useful for

 -closing file handles and

 -freeing up any other resource that might have been allocated at the beginning of a

method with the intent of disposing of them before returning.

 The finally clause is optional.

 However each by stmt requires at least one catch or a finally clause.

 Any time a method is about to return to the uncaught exception or an explicit return

stmt the finally clause is also executed just before the method return.

 Here is an example program that shows three methods that exit in various ways none

without executing their finally clause.

class FinallyDemo

{

static void procA()

{

try

{

System.out.print(“inside procA”);

Throw New RuntimeException(“Demo”);

}

finally

{

System.out.print(“procA’s finally”);

}

}

static void procB()

{

try

{

System.out.print(“inside procB”);

return;

}

finally

{

System.out.print(“procB’s finally”);

}

}

 static void procC()

{

 try

{

System.out.print(“inside procC”);

}

finally

{

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 16

System.out.print(“procC’s finally”);

}

}

public static void main(String args[])

{

try

{

procA();

}

catch(Exception e)

{

System.out.print(“Exception caught”);

}

procB();

procC();

}

}

Output:

Inside procA

ProcA’s finally

Exception caught

Inside procB

ProcB’s finally

Inside procC

Proc’s finally

JAVA’S BUILT-IN EXCEPTION

 Inside the standard package java.lang, java defines several exception classes. A few have

been used by the preceding examples. The most general of these exceptions are subclasses of

the standard type RuntimeException. As previously explained, these exceptions need not be

included in any method’s throws list. In the language of java, these are called unchecked

exceptions because the compiler does not check to see if a method handles or throws these

exceptions. The unchecked exceptions defined in java.lang are listed in following tables those

exceptions defined by java.lang that must be included in a method’s throws list if that method

can generate one of these exceptions and does not handle it itself. These are called checked

exceptions. Java defines several other types of exceptions that relate to its various class

libraries.

Java’s unchecked RuntimeException subclasses defined in java.lang

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero

ArrayIndexOutOfBoundsException Array index is out-of-bounds

ArrayStoreException Assignment to an array element of an

incompatible type

ClassCastException Invalid cast

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 17

EnumConstantNotPresentException An attempt is made to use an

undefined enumeration value.

IllegalArgumentException Illegal argument used to invoke

amethod

IllegalMonitorStateException Illegal monitor operation, such as

waiting on an unlocked thread

IllegalStateException Environment or application is incorrect

state.

IllegalThreadStateException Requested operation not compatible

with current thread state.

IndexOutOFBoundsException Some type of index is out-of-bounds

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumbeFormatException Invalid conversion of a string to a

numeric format

securityException Attempt to violate security

StringIndexOutOfBounds Attempt to index outside the bounds of

a string

TypeNotPresentException Type not found

UnsupportedOperationException An unsupported

Java’s Checked Exceptions defined in java.lang

Exception Meaning

ClassNotFoundException Class not found

CloneNotSupportedException Attempt to clone an object that does

not implement the cloneable interface.

IllegalAccessException Access to a class is denied

InstantiationException Attempt to create an object of an

abstract class or interface

InterruptedException One threadd has been interrupted by

another thread

NoSuchFieldException A requested field does not exist

NoSuchMethodException A requested method does not exist

CREATING YOUR OWN EXCEPTION SUBCLASSES

 Sometimes, the built in exception in java are not able to describe a certain situation.

 In such cases like the built in exception, the user can also create his own exception

which are called “user defined exception.

 The following steps are followed in creation of user defined exceptions

1. The user should create an exception class as a sub class to exception class. Since

all exception are sub classes of exception class the user should also make his class

a sub class to it. This is done as

 Class MyException extends Exception

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 18

2. The user can write a default constructor in his own exception class. He can use it,

In case he does not want to store any exception details.

 MyException

 {

 }

3. The user can create a parameterized constructor with a strong as a parameter.

He can use this to store exception details as

 MyException

 {

 Super(str)

 }

4. When the user wants to raise his own exception, he should create an object to his

exception class and throw to using throw clause, as

MyException me=new MyException(“Exception details”)

throw me;

5. To understand the user defined exception, we are taking the details of account

numbers, customer names, and balance amounts in the form of three

arrays.Then in main() method, we display these details using a for loop.

 This program checks if the balance amount is less than the minimum balance ,

then MyException is raised and a message is displayed “balance amount is less”.

Example

//user defined exception//

//to throw whenever balance amount is below rs.1000//

class MyException extends Exception

{

Private statcic int accno[]={1001,1002,1003,1004,1005};

Private static string name[]={“raja rao”,rama rao”,”appa rao”,”subba rao”,”laxmi

devi”};

Private static double bal[]={10000,12000,5600,999,1100};

MyException()

{

}

MyException(String args[])

{

}

MyException(String arg[])

{

Super(str);

}

Public static void main(String args[])

{

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 19

try

{

System.out.print(“accno”+”/t”+”customer”+”\t”+”balance”);

for(int i=0;i<5;i++)

{

if(bal[i]<1000)

{

MyException me=new Myexception(“balance amount is

less”);

throw me;

}

}

}

Catch(Myexception me)

{

me.printstackTracec();

}

}

}

C:\>javac Myexception.java

C:\>java MyException

ACCNO CUSTOMER BALANCE

1001 RAJAROA 10000.00

1002 RAMAROA 12000.00

1003 SUBBAROA 5600.00

1004 APPA ROA 999.00

MyException: balance amount is less at MyException , main(MyException.java:39)

 Here , we are throwing our own exception when the balance amount in a bank

account is less than Rs. 1000.

 Here , we created our own exception since there is no exception class available to

describe situation where the balance amount in a bank account is less than the

prescribed minimum.

NOTE:

Throws clause is used when the programmer does not want to handle the exception

and throw it out of a method.

Throw clause is used when the programmer wants to throw an exception explicitly and

wants to handle it using catch block.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 20

MULTITHREADED PROGRAMMING

1) Introduction

2) Thread States

3) Creating a Multiple Threads

4) Thread Priorities

INTRODUCTION

Java is a multithreaded programming language which means we can develop multithreaded

program using Java. A multithreaded program contains two or more parts that can run

concurrently and each part can handle different task at the same time making optimal use of

the available resources specially when your computer has multiple CPUs.

By definition multitasking is when multiple processes share common processing resources

such as a CPU. Multithreading extends the idea of multitasking into applications where you

can subdivide specific operations within a single application into individual threads. Each of

the threads can run in parallel. The OS divides processing time not only among different

applications, but also among each thread within an application.

Multithreading enables to write in a way where multiple activities can proceed concurrently in

the same program.

THREAD STATES

During the life time of a thread there are many states it can enter. They are

A. NewBorn state

B. Runnable state

C. Running State

D. Blocked state

E. Dead state

A thread is always in any one of these five states.It can move from one state to another via a

variety of ways as shown below

Fig

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 21

A. New Born state :

when we create a thread object, the thread is born and is said to be in new born state.
The thread is not yet scheduled for running .At this state, we can do only one of the

following things with it.
Schedule it for running using start() method.

Kill it using stop() method.

Fig

If scheduled ,it moves to the runnable state.

B. Runnable State:

 The runnable state means that the thread is ready for execution and is waiting for

availability of the processor.i.e the thread has joined the queue of threads that are

waiting for execution.

 If all threads have equal priority, then they are given time slots for execution in

Round Robin fashion,i.e FCFS manner.

 The thread that relinguishes control joins the queue at the end & again waits for its

turn.this process of assigning time to threads is known as time slicing.

Fig

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 22

C. Running State:

 Running means that the processor has given its time to the thread for its execution.

 The thread runs until it relinguishes its control in one of the following situations.

 It has been suspended using suspend().a suspended thread can be received by using

the resume() method.

Fig

 It has been made to sleep. we can put a thread to sleep for a specified time period

using the method sleep(time)where time is in milliseconds.

 Hence the thread is out of queue during this time period.

 The thread re-enters the runnable state as soon as this time period is elapsed.

Fig

 It has been told to wait until some event occurs. This is done using the wait()

method.

 The thread can schedule to run again using the notify() method.

Fig

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 23

D. Blocked state:

 A thread can also be temporarily suspended or blocked from entering into the

runnable and subsequently running state by using either of the following thread

methods.

Sleep() // blocked for a specified time

Suspended() // blocked until further orders

Wait() // blocked until certain condition occurs.

 These methods cause the thread to go into the blocked sate. The thread will return

to runnable state when the specified time is elapsed in the case of sleep(),the

resume() method is invoked in case of suspend(),and notify() method is called in

case of wait().

E. Dead State:

 Every thread has a life cycle .A running thread ends its life when it has completed

executing its run().it is natural death.

 However, we can kill it by using stop message to it at any stage.Thus causing

premature death to it.

CREATING A MULTIPLE THREADS

 Creating threads in java is simple. Threads in java can be created in two ways

1) By extending the thread class.

2) By implementing the runnable interface.

1) Creating threads by extending the thread class:

 Define a class that extends thread class and override its run()with the code required by

the thread. Steps to create thread by extending thread class are

a) Declaring the class

b) Implementing the run() method.

c) Starting New Thread.

a) Declaring the class:

 declare the class by extending the thread class as:

Class MyThread extends Thread

{

}

b) Implementing the run() method:

 the run method is the heart and soul of any thread.

 We have to override this method in order to implement the code to be executed by our

thread.

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 24

 It makes up the entire body of a thread and is the only method in which the threads

behavior can be implemented.

 The basic impolementation of run() will look like

 Public void run()

 {

 Thread code

 }

 When we start new thread ,java calls the threads run() method.

C)Starting New Thread:

 create a thread object and call the start() method to initiate the thread execution.

 To create and run an instance of our thread class, we must write the following:

 MyThread t1=new MyThread();

 T1.start();

 The first line instantiates a new object of class MyThread.

 The second line calls start() causing the thread to move into runnable state.

 Then, the java runtime will schedule the thread to run by invoking its run().Hence the

thread is said to be in Running state.

Ex: Class A Extends Thread

{

 Public void run()

 {

 Try

 {

 For(int i=1;i<=5;i++)

 {

 S.o.p(“from thread A:”+i);

 Thread.sleep(100);

 }

 }

Catch(InterruptEx ception e)

{

 S.o.p(e);

}

 }

 }

 Class B extends Thread

{

 Public void run()

 {

 Try

 {

 For(int i=1;i<=5;i++)

 {

 S.o.p(“from thread B :”+i);

 Thread.sleep(100);

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 25

 }

 }

Catch(InterruptException e)

{

 S.o.p(e);

}

 }

 }

 Class ThreadDemo

 {

 Psvm(String args[])

 {

 A t1=new A();

 B t1=new B();

 T1.start();

 T2.start();

 }

 }

Z:\> javac ThreadDemo.java

Z:\> java ThreadDemo

From thread B:1

From thread A : 1

Frrom thread B :2

From thead A:2

From thread B : 5

From thread B :3

From thread A : 3

From thread B :4

From thread A :4

From thread B : 5

From thread A: 5

2.Creating threads by implementing runnable interface:

Define a class that implements Runnable interface .the runnable interface has only one

method ,run() that is to be defined in method with the code to be executed by thread.

Steps to create thread by implementing runnable interface.

a.Declaring the class

b.Implementing the run() method.

c. Starting New Thread.

a.Declaring the class:

The easiest way to create a thread is to create a class that implements the runnable interface.

 Declare a class as

 Class MyThread implements Runnable

{

}

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 26

b.Implementing the run():to implement runnable , which is declared as

 public void run()

{

}

C.Starting New thread:after creating a class that implements runnable ,instantiate an object oif

type thread from within that class .

 Thread (Runnable threadob, string threadName).

Ex:

Class A implements thread

{

 Public void run()

 {

 Try

 {

 For(int i=1;i<=5;i++)

 {

 S.o.p(“from thread A:”+i);

 Thread.sleep(100);

 }

 }

Catch(InterruptException e)

{

 S.o.p(e);

}

 }

 }

 Class B implements Thread

 {

 Public void run()

 {

 Try

 {

 For(int i=1;i<=5;i++)

 {

 S.o.p(“from thread B :”+i);

 Thread.sleep(100);

 }

 }

Catch(InterruptException e)

{

 S.o.p(e);

}

 }

 }

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 27

 Class ThreadDemo

 {

 Psvm(String args[])

 {

 A t1=new A();

 B t1=new B();

 Thread th1= new Thread(t1);

 Thread th2=new Thread(t2);

 Th1.start();

 Th2.start();

 }

 }

Z:\> javac ThreadDemo.java

Z:\> java ThreadDemo

From thread B:1

From thread A : 1

Frrom thread B :2

From thead A:2

From thread B : 5

From thread B :3

From thread A : 3

From thread B :4

From thread A :4

From thread B : 5

From thread A: 5

Choosing an approach:

So, if you will not be over riding any of threads other methods ,it is probably best simply to

implement runnable.

In short,if we want to override only run() method better to use Runnable interface .If it

requires to extend we have no choice but to implement the runnable interface since java

classes cannot have two super classs.

THREAD PRIORITIES AND SCHEDULING

 In java, each thread is assigned a priority,which affects the order in which it is scheduled

for running.

 The thread of the same priority are given equal treatment by java scheduler and

therefore they share the processor on a first come, first serve basis.

 Java permits us to set and get priority of a thread using setPriority() and getPriority() as

follows

ThreadName.setPriority(int Number)

ThreadName.getPriority()

 Thread class constants are

MIN_PRIORITY=1

MAX_PRIORITY=10

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 28

NORM_PRIORITY=5

 NORM_PRIORIty is the default priority.

 Java run time system usually applies one of the two following strategies

 Preemptive scheduling:if the thread has a higher priority then the current running

thread leaves runnable state and higher priority enter to runnable state.

 Time-sliced(Round robin):A running thread is allowed to be execute for the fixed time,

after completion of time , current thread indicates to the another thread to enter it in the

runnable state.

 Example

Class A extends Thread

{

Public void run()

{

 S.o.p(“thread A started”);

 For(int i=1;i<=4;i++) {

 S.o.p(“\t from thread A:i= “+i);

 }

 S.o.p(“exit from A”);

 }

Class B extends Thread{

 {

 Public void run

 S.o.p(“thread B started”);

 For(int j =1 j<=4; ++) {

 S.o.p(“\t from thread B:j= “+j);

 }

S.o.p(“exit from B ”);

 }

Class C extends Thread

{

 Public void run

{

 S.o.p(“thread C started”);

 For(int k=1 k<=4; k++) {

 S.o.p(“\t from thread C:k= “+k);

 }

S.o.p(“exit from c ”);}

}

Class ThreadPriority

{

 psvm(String args[])

{

A t1=new A();

Object Oriented Programming Through Java UNIT IV

R.Padmaja, Asst.Professor,MCA Department Page 29

B t2=new B();

C t3=new C();

t3.setPriority(Thread.MAX_PRIORITY);

t2. setPriority(t1.getPriority()+1);

t1. setPriority(Threag.MIN_PRIORITY);

S.o.p(“start Thread A”);

t1.start();

S.o.p(“start Thread B”);

 t2.start();

S.o.p(“start Thread C”);

t3.start();

ZS.o.p(“end of main thread ”);}

}

}

THREAD SCHEDULING

Java run time system usually applies one of the two following strategies

1.Preemptive scheduling:if the thread has a higher priority then the current running thread

leaves runnable state and higher priority enter to runnable state.

2.Time-sliced(Round robin):A running thread is allowed to be execute for the fixed time, after

completion of time , current thread indicates to the another thread to enter it in the runnable

state.

