
Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 1

INTERFACES AND COLLECTION FRAMEWORK

1.Interfaces

 1.1 Defining an Interface

 1.2 Implementing Interfaces

 1.3 Interfaces can be extended

2.Collection Framework

 2.1 Collection Overview

2.2 The Collection Interfaces

2.3 The Collection Classes

2.4 Accessing a Collection via an Iterator

3.Utility Classes

 3.1 StringTokenizer

 3.2 Scanner

1. INTERFACES

Interface

 An Interface is a specification of method prototypes i.e only method names are

written in the interfaces without method bodies.

 An Interface will have 0 or more abstract methods which are all public and abstract

by default.

 An Interface can have variables which are public, static and final by default, means

all the variables of the interface are constants.

 Objects cannot be created to an interface whereas reference can be created.

 Once interface is defined, any number of classes can implement an interface.

 Also one class can implement any number of interfaces.

 To Implement an interface, a class must create the complete set of methods defined

by the interface.

 By providing the interface keyword, java allows to fully utilize the “one interface,

multiple methods” aspects of polymorphism.

1.1 Defining an Interface

 An Interface is basically a kind of class

 Like classes, interface contain methods and variables but with a major difference.

 The difference is that interfaces define only

o Abstract Method &
o Final and Static Variables

 i.e methods are declared without any body and variables are implicitly final and

static, meaning they cannot be changed by the implementing class. They must also

be initialized.

 All Methods and Variables in the interface are implicitly public.

 The syntax for defining an interface is very similar to that of defining a class

Interface InterfaceName

 {

 Variable declaration

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 2

 Method declaration

 }

Where Interface is the keyword and InterfaceName is any valid java variable

Example:

 Interface Item

 {

 static final int code = 1001;

 static final String name = “Fan”;

 void display();

 }

1.2 Implementing Interface

 Once it is defined, any number of classes can implement an interface.

 Also, one class can implement any number of interface

 To implement an interface, a class must create the complete set of methods defined by

the interface.

 To implement an interface, include the implements clause in a class definition, and then

create the methods defined by the interface.

 General form of a class that includes the implements clause looks like

 Class ClassName [extends SuperClass]

 [implements Interface1[,... Interface N]]

 {

 // class body

 }

 Example

 Class A Extends B Implements I1,I2

 {

}

 i.e if a class implements more than one interface, the interfaces are separated with a

comma.

 Interface Methods must be declared as public,.

 Also the type signature of the implementing method must match exactly the type

signature specified in the interface definition

 It is both permissible and common for classes that implement interfaces to define

additional members of their own.

1.3 Interfaces can be Extended

 Like classes, interface can also be extended.

 i.e an interface can be subinterfaced from other interfaces.

 The new subinterface will inherit all the members of the superinterface in the manner

similar to subclasses.

 This is achieved using the keyword “extends”.

 General form of extending interfaces is

 Interface NameNew extends name1[,…nameN]

 {

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 3

 Body of Interface

 }

 Example

 interface A

 {

 void meth1();

 void meth2();

 }

 interface B extends A

 {

 void meth3();

 }

 Class MyClass implements B

 {

 public void meth1()

 {

 System.out.println(“implementing meth1()…..”);

 }

 public void meth2()

 {

 System.out.println(“Implementing meth2()….”);

 }

 public void meth3()

 {

 System.out.println(“Implementing meth3()….”);

 }

 }

 Class InterfaceDemo

 {

 Public static void main(string args[])

 {

 MyClass obj = new MyClass();

 obj.meth1();

 obj.meth2();

 obj.meth3();

 }

 }

When a class implements an interface that inherits another interface, it must provide
implementations for all methods defined within the interface inheritance chain.

Note : if a class that implements an interface and the class does not give
implementations to all the methods of the interface, then the class becomes an abstract

class and cannot be instantiated.

Interface Example

Interface Area

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 4

{

 final static float PI = 3.145;

 float compute(float x);

}

Class Square implements Area

{

 public float compute(float x)

 {

 return (x*x);

 }

}

Class Circle implements Area

{

 public float compute(float x)

 {

 return (PI*x*x);

 }

}

Class InterfaceDemo

{

 Public static void main(String args[])

 {

 Square s = new Square();

 double asqr = s.compute(10);

 Circle c = new Circle();

 double acir = c.compute(10);

 System.out.println(“Area of Square:”+asqr);

 System.out.println(“Area of Circle:”+acir);

 }

}

2. COLLECTION FRAMEWORK

2.1 Collection Overview

2.2 The Collection Interfaces

2.3 The Collection Classes

2.4 Accessing a Collection via an Iterator

2.1 COLLECTION OVERVIEW

A collection object or a container object is an object which can store a group of other objects.

We are using a collection object to store 4 objects. A collection object has a class called as

“collection class” or “container class”. All the collection classes are available in the java.util

package.

Collection Framework:

 A group of collection classes is called a “collection framework” (or) A collection

framework is a class library to handle group of objects. Collection framework is implemented

in java.util package.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 5

All the collection classes in java.util package are the implementation classes of different

interfaces as shown in the table.

Interface type Implementation classes

Set<T> HashSet<T>

List<T> Stack<T>

LinkedList<T>

ArrayList<T>

Vector<T>

Queue<T> LinkedList<T>

Map<K,V> HashMap<K,V>

Hashtable<K,V>

Sets:A set represents a group of elements arranged just like an array. The set will grow

dynamically when the elements are stored into it. A set will not allow duplicate elements. If we

try to pass the same element that is already available in the set,then it is not stored into the set.

Lists: Lists are like sets. They store a group of element, but lists allow duplicate values to be

stored.

Queues: A Queue represents arrangement of elements in FIFIO(First In First Out) order.

This means that an element that is stored as a first element into the queue will be removed first

from the queue.

Maps: Maps store elements in the form of key and value pairs. If the key is provided then its

corresponding value can be obtained. Of course, the keys should have unique values.

2.2 COLLECTION INTERFACES

 Collection framework defines several interfaces. This will provides an overview of each

interface. Beginning with the collection interfaces is necessary because they determine the

fundamental nature of the collection classes.

The List Interface:

 The List Interface extends Collection and declares the behaviour of a collection that stores

a sequence of elements. Elements can be inserted or accessed by their position in the list.

Some of the methods of List Interface are

METHOD DESCRIPTION

Void add(int index, E obj) Inserts obj into the invoking list at the index

passed in index. Any pre-existing elements at

or beyond the point of insertion are shifted

up. Thus, no elements are overwritten.

Boolean addAll(int index, collection<?

Extends E> c)

Inserts all elements of c into the invoking list

at the index passed in index. Returns true , if

the invoking list changes and returns false

otherwise.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 6

E get(int index) Returns the object stored at the specified

index within the invoking collection.

Int indexOf(object obj) Returns the index of the first instance of obj

in the invoking list. If obj is not an element of

the list, -1 is returned.

Int lastIndexOf(Object obj) Returns the index of the last index of obj in

the invoking list. If obj is not an element of

the list ,-1 is returned.

E removed(int index) Removes the element at the position index

from the invoking list and returns the deleted

element. The resulting list is compacted. That

is, the indexes of subsequent elements are

decremented by one.

The Set Interface:

 Set is an interface which extends Collection. It is an unordered collection of objects in

which duplicate values cannot be stored.

 Basically, Set is implemented by HashSet, LinkedHashSet or TreeSet (sorted

representation).

 The Set interface contains only methods inherited from Collection and adds the

restriction that duplicate elements are prohibited.

 Set Interface declaration

 public interface Set<E> extends Collection<E>

 Set has various methods to add, remove clear, size, etc to enhance the usage of

this interface.

2.3 COLLECTION CLASSES

Some of the collection classes provide full implementations that can be used as - is. Others are

abstract, providing skeletal implementations that are used as starting points for creating

concrete collections. The standard collection classes are summarised in the following table.

Class Description

HashSet Extends AbstractSet for use with the Hash table.

LinkedHashSet Extends Hashset to allow insertion order itereations.

LinkedList Implements a LinkedList by extending AbstractSequentialList

ArrayList Implements a dynamic array by extending AbstractList.

Stack Implements List interface

Vector Implement List Interface

 The ArrayList Class: An ArrayList is like an array, which can grow in memory

dynamically. It means that when we stored elements into the ArrayList, depending on the

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 7

number of elements, the memory is dynamically allotted and re-allotted to accommodate

all the elements. ArrayList is not synchronized. This means that when more than one

thread acts simultaneously on the ArrayList object, the results may incorrect in some cases.

ArrayList can be written as

class ArrayList<E>

For Example, to store String type elements, we can create an objects to ArrayList as:

ArrayList<String>arl = new ArrayList<String>();

 ArrayList class includes the following methods:

 boolean add(element obj): This method add an element to the array list. It

returns true if the element is added successfully.

 void add(intposition, element obj): This method inserts the specified elements at

the specified position in the ArrayList

 element remove(int position):This method removes an element at the specified

position in array list.

 boolean remove (Object obj): This method removes the first occurrence of the

specified element obj from the ArrayList, if it present.

 void clear(): This method removes all the elements from the ArrayList.

 element set(int position, element obj): This method replaces an element at the

specified position in the ArrayList with the specified element obj.

 boolean contains(Object obj): This method returns the element available at the

specified position in the ArrayList.

 element get(int position): this method returns the element available at the

specified position in the ArrayList.

 intindexOf(Object obj): This method returns the position of the first occurrence

of the specified element obj in the list, or -1 if the element is bot found in the list.

 intlastIndexOf(Object obj): This method returns the position of the last

occurrence of the specified element obj in the list, or -1 if the element is bot

found in the list.

 int size(): This method returns the number of elements present in the ArrayList.

 Object[] toArray(): This method returns an Object class type array containing all

the elements in the ArrayList in proper sequence.

Program:

import java.util.*;

Class ArraylistDemo

{

 public static void main(String args[])

 {

 ArrayList<String>arl=new ArrayList<String();

 arl.add("JAVA");

 arl.add("CN");

 arl.add("OS");

 arl.add("PSQT");

 arl.add("AFM");

 System.out.println("Element in ArrayList are" +arl);

 //remove two objects

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 8

 arl.remove(3);

 boolean b=arl.remove("JAVA");

 //display again

 System.out.println("Element in Array list after removing are “+arl);

 Iterator it =arl.iterator();

 while(it.hasNext())

 {

 String s=(String)it.next();

 System.out.println(s);

 }

 }

}

OUTPUT:

Element in ArrayList are[JAVA, CN, OS, PSQT, AFM]

Element in Array list after removing are [CN, OS, AFM]

CN

OS

AFM

 LinkedList Class: A Linked list contains a group of elements in the form of nodes. Each

node will have three fields- the data field contains data and the link fields contain references

to previous and next nodes.

Linked list is very convenient to store data. Inserting the elements into the linked list and

removing the elements from the linked list is done quickly and takes the same amount of

time. A linked list is written in the form of: class LinkedList<E>

For Example, to store String type elements, we can create an objects to LinkedList as:

LinkedList<String>ll = new LinkedList<String>();

 LinkedList class includes the following methods;

 boolean add(element obj): This method add an element to the linked list. It

returns true if the element is added successfully.

 void add(int position, element obj): This method inserts the specified elements at

the specified position in the linked List

 voidaddFirst(element obj): This method adds the element obj at the first position

of the linked list.

 void addLast(element obj): This method appends the specified element to the

end of the linked list

 elementremoveFirst(): This method removes the first element from the linked list

and returns it.

 element removeLast(): This method removes the last element from the linked list

and returns

 element remove(int position): This method removes an element at the specified

position in the linked list

 void clear(): This method removes all the elements from the linked list.

 element get(int position): This method returns the element at the specified

position in the linked list

 element getFirst(): This method returns the first element from the list.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 9

 Element getLast(): This method returns the last element from the list.

 int indexOf(Object obj): This method returns the position of the first occurrence

of the specified element obj in the list, or -1 if the element is not found in the list.

 intlastIndexOf(Object obj): This method returns the position of the last

occurrence of the specified element obj in the list, or -1 if the element is not

found in the list.

 int size(): This method returns the number of elements present in the linked List.

 Object[] toArray(): This method converts the linked list into an array of Object

class type. All the elements of the linked list will be stored into the array in the

same sequence.

Program:

//Demonstrate Linkedlist class

import java.util.*;

class LLDemo

{

 public static void main(String args[])

 {

 LinkedList<String>ll= new LinkedList<String>();

 ll.add("Java");

 ll.add("Computer Network");

 ll.add("Operating System");

 ll.add("Accounts");

 ll.add("Statistics");

 System.out.println("LinkedList elements are:");

 for(String i:ll);

 {

 System.out.println(i);

 }

 }

}

OUTPUT:

LinkedList Elements are:

Java

Computer Network

Operating System

Accounts

Statistics

 HashSet Class: A HashSet represents a set of elements (objects). It does not guarantee the

order of elements. Also it does not allow the duplicate elements to be stored.A HashSet is

written in the form of: class HashSet<E>

For Example, to store String type elements, we can create an objects toHashSetas:

HashSet<String>hs= new HashSet<String>();

 HashSet class includes the following methods.

 boolean add(obj): This method add an element obj to the HashSet. It returns

true if the element is removed successfully,else it return false.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 10

 boolean remove(obj): This methods removes the element obj from the HashSet.

If it is present. It returns true if the element is removed successfully otherwise

false.

 void clear(): This removes all the elements from the HashSet.

 boolean contains(obj): This returns true if the HashSet contains the specified

element obj.

 booleanisEmpty(): This returns true if the HashSet contains no elements.

 int size(): This returns the number of elements present in the Hashset.

Program// Hashset Demo

import java.util.*;

class HSDemo

{

 public static void main(String args[])

 {

 HashSet<string> hs= new HashSet<String>();

 hs.add(“Java”);

 hs.add(“Computer Network”);

 hs.add(“Operating System”);

 hs.add(“Accounts”);

 hs.add(‘Statistics”);

 System.out.println(“HashSet elements are:”);

for(String i:hs);

{

 System.out.println(i);

}

 }

}

OUTPUT:

Hash elements are:

Java

Computer Network

Operating System

Accounts

Statistics

 LinkedHashSet:This is a subclass of HashSet class and does not contain any additional

members on its own. It is a generic class that has the declaration: class LinkedList<E>

For Example, to store String type elements, we can create an objects toLinkedHashSetas:

LinkedHashSet<String>lh= new LinkedHashSet<String>();

LinkedHashSet class includes the following methods.

 boolean add(obj): This method tests whether the stack is empty or not. If the

stack is empty then true is returned otherwise false.

 element peek(): This method returns the top-most object from the stack without

removing it.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 11

 element pop(): This method pops the top-most element form the stack and

returns it

 element push(element obj): This method pushes an element obj onto the top of

the stack and returns that element.

 int search(Object obj): This method returns the positionof an element obj

form the top of the stack. If the element is not found in the stack then returns

-1

Program:
//Demonstrate linkedHashset Class

import java.util.*;

class LinkedHashDemo

{

 public static void main(String args[])

 {

 LinkedHashSet<String> lhs= new LinkedHashSet<String>();

 lhs.add("Mango");

 lhs.add("Banana");

 lhs.add("Apple");

 lhs.add("Grapes");

 lhs.add("Orange");

 System.out.println("LinkedHashSet Elements are:");

 iterator it=lhs.iterator();

 while(it.hasNext())

 {

 String s=(String)it.next();

 System.out.println(s);

 }

 }

}

OUTPUT:

LinkedHashSet Elements are:

Mango

Banana

Apple

Grapes

Orange

 Stack class:

 A stack represents a group of elements stored in LIFO(Last In First Out) order. This

means that the element which is stored as a last element into the stack will be first element to

be removed from the stack. Inserting elements (objects) into the stack is called “push

operation” and removing elements from stack is called “pop operation”. Searching for an

element in the stack is called a side of the stack, called ‘top’ of the stack, as shown in the

following figure:

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 12

A pile of places in a cafeteria where the lastly washed plate will be coming out first can be

taken as an example for a stack. We can write a stack class as:

 class Stack<E>

where E stands for element type. Suppose, we want to create a stack object that contains

Integer objects, we can do so as shown here:

 Stack<Integer> obj= new Stack<Integer>();

Stack class includes the following methods:
i. boolean empty(): This method tests whether the stack is empty or not. If the stack

is empty then true is returned otherwise false.

ii. element peek(): This method returns the top-most object from the stack without

removing it.

iii. element pop(): This method pops the top-most element from the stack and returns

it.

iv. element push(element obj): This method pushes an element obj onto the top of the

stack and returns that element.

v. int search(Object obj): This method returns the position of an element obj from the

top of the stack. If the element(object) is not found in the stack then it returns

Example of using the Stack class:

import java.util.*;

public class Stackex

{

 Public static void main(String args[])

{

 Stack st=new Stack();

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 13

 st.push(“Java”);

 st.push(“Latest”);

 st.push(“Edition”);

 st.push(“Fifth”);

 System.out.println(“The elements in the stack:”+st);

 System.out.println(“The element at the top:”+st.peek());

 System.out.println(“The element popped out of the stack:”st.pop());

 System.out.println(“The element in a stack after pop out anelement:”+st);

 System.out.println(“The result of searching:”+st.search(“r” “u”));

}

}

Output:

 The elements in the stack:[Java, Latest, Edition, -Fifth]

 The element at the top: -Fifth

 The element popped out of the stack: -Fifth

 The element in a stack after pop out anelement: :[Java, Latest, Edition]

 The result of searching: -1

 Vector class:

 A vector also stores elements(objects) similar to ArrayList, but vector is synchronized.

 It means even if several threads act on vector object simultaneously, the results will be

reliable.

 We can write a Vector class as:

 class Vector<E>

 where E, represents the type of elements stored into the vector.

 For example, if we want to create an empty Vector that can be used to store Float type

objects, we can write as:

 Vector<Float> v= new Vector<Float>();

 vector class includes the following methods

1) void add(int index, object element)

 Inserts the specified element at the specified position in this vector

2) boolean add(Object 0)

 Appends the specified element to the end of this vector.

3) Boolean addAll(Collection c)

 Appends all of the elements in the specified Collection to the end of this Vector.

4) void addElement(Object obj)

 Adds the specified component to the end of this vector, increasing its size by one.

5) boolean contains(Object elem)

Tests if the specified object is a component in this vector.

6) Object elementAt(int index)

Returns the component at the specified index.

7) int indexOf(Object elem)

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 14

Searches for the first occurence of the given argument, testing for equality using
the equals method.

8) boolean isEmpty()

Tests if this vector has no components.

Example of using the Vector class:
/* PROGRAM TO ILLUSTRATE Vector CLASS*/

import java.util.*;

import java.awt.*;

class VectorDemo

{

 public static void main(String args[])

 {

 Vector<Integer> V=new Vector<Integer>();

 int x[]={22,20,10,40,15,60};

 for(int i=0;i<x.length;i++)

 {

 V.add(x[i]);

 }

 System.out.println("Vector Elements:");

 for(int i=0;i<V.size();i++)

 {

 System.out.println(V.get(i));

 }

 System.out.println("Retrieving Elements using ListIterator Interface:");

 ListIterator Lit= V.listIterator();

 System.out.println(" In Forward direction:");

 while(Lit.hasNext())

 System.out.print(Lit.next()+"\t");

 System.out.println("\n In BackWard direction:");

 while(Lit.hasPrevious())

 System.out.print(Lit.previous()+"\t");

 }

}

OUTPUT:

Z:\>javac VectorDemo.java

Z:\>java VectorDemo

Vector Elements:

22

20

10

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 15

40

15

60

Retrieving Elements using ListIterator Interface

 In Forward direction:

22 20 10 40 15 60

 In BackWard direction:

60 15 40 10 20 22

2.4 Retrieving elements from Collections

Following are the 4 ways to retrieve any elements form a collection object:

 Using for-each loop.

 Using Iterator interface.

 Using ListIterator interface.

 Using Enumeration interface.

For-each Loop: for-each loop is like for loop which repeatedly executes a group of statements

for each element of the collection. The format is

for(variable: collection-object)

{

Statements;

}

Here, the variable assumes each element of the collection-object and the loop is

executed as many times as there are number of elements in the collection-object. If

collection-object has n elements the loop is executed exactly n times and the variable

stores each element in each step.

Iterator Interface :Iterator is an interface that contains methods to retrieve the elements one by

one from a collection object. It has 3 methods:

 booleanhasNext(): This method returns true if the iterator has more elements.

 element next(): This method returns the next element in the iterator.

 void remove(): This method removes form the collection the last element returned by

the iterator

ListIterator Interface: ListIterator is an interface that contains methods to retrieve the elements

from a collection object, both in forward and reverse directions. It has the following methods

 boolean hasNext(): This returns true if the ListIterator has more elements when

traversing

the list in the forward direction.

 boolean hasPrevious(): This returns true if the ListIterator has more elements when

traversing

the list in the reverse direction.

 element next(): This returns the next element in the list.

 element previous(): This returns the previous elemnt.

 void remove(): This removes from the list the last element that was returned

by the

next() or previous() methods.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 16

Note : Difference between Iterator and ListIterator : Both are useful to retrieve elements from

collection. Iterator can retrieve the elements only in forward direction. But ListIterator can

retrieve the elements in forward and backward direction also. So ListIterator is preffered to

iterator.

3. UTILITY CLASSES

 3.1 StringTokenizer Class

 This class is useful to break a string into pieces, called ‘tokens’. These tokens are then

stored in the StringTokenizer object form where the can be retrieved. The code to create an

object to StringTokenizer class is:

StringTokenizerst= new StringTokenizer (str, “delimiter”0;

The actual string str is broken into pieces at the positions marked by a group of characters,

called ‘delimiters’. For example, to break the string wherever a comma is found, we can write:

StringTokenizerst =new StringTokenizer (“Keep, Smiling, Always”);

StringTokenizer Class Methods

StringTokenizer class includes the following methods:

 IntcountTokens(): This method counts and returns the number of tokens

available in a StringTokenizer object.

 Boolean hasMoretokens(): This method test if there are more tokens available in

the StringTokenizer object or not. If next token is there then it returns true.

 String nextToken():This method returns the next token form the

StringTokenizer.

Program:

//Demonstrate StringTokenizer class

import java.util.*;

class StringTokenizerDemo

{

public static void main(String args())

{

int sum=0,c=0;

String str =”Keep Smiling Always”;

StringTokenizer st =new StringTokenizer(str);

System.out.println(“The given string is: ”+str);

c=st.CountTokens();

While(st.hasMoreTokens())

{

Stringtoken=st.nextToken();

System.out.println(token);

}

System.out.println(“ Total No. of tokens in the given string is “+c);

}

}

Output

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 17

Z:>\javac StringTokenizerDemo.java

Z:\javac StringTokenizerDemo

The given string is: Keep Smiling Always

Keep

Smiling

Always

Total no. of tokenin the given string is 3

3.2 Scanner

 Scanner is the complement of Formatter. Added by JDK 5, Scanner reads formatted

input and converts it into its binary form. It is used to read input from different sources like

disk file , keyboard etc. It makes easy to read all types of numeric values, strings and other

types of data, whether it comes from a disk file keyboard, another source.

When the scanner class receives the input into it breaks the input into several tokens.

Scanner can be created for a String, an InputStream, a File, or any object that implements the

Readable or ReadableByteChannel interfaces. The following sequence creates a Scanner that

reads the file Test.txt:

 FileReader fin =new FileReader(“Test.txt”0;

 Scanner src=new Scanner(fin);

The tokens can be retrieve from the scanner object using the following methods:

 next(): to read a string

 nextByte(): to read byte value

 nextInt(): to read an integer value

 nextFloat(): to read a float value

 nextLong(): to read long value

 nextDouble:(): to read double value

Program:

//Demonstrate Scanner Class

import java.util.Scanner;

class ScannerDemo

{

public static void main(String args[])

 {

System.out.println(“Enter ID, Name,Course,Salary”);

Scanner sc=new Scanner(System.in);

int id=sc.nextInt();

String name=sc.next();

String course=sc.next();

float salary=sc.nextFloat();

System.out.println(“ID of Employee:” +id)

System.out.println(“Name of the Employee:” +name);

System.out.println(“Qualification: +course);

System.out.println(“Salary: “ +salary);

 }

}

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 18

Output:

Z:\>javac ScannerDemo.java

Z:\>java ScannerDemo

Enter ID, Name, Course,Salary : 001 GoldSmith MCA 15000

ID of Employee: 001

Name of the Employee: GoldSmith

Qualification: MCA

Salary: 15000

Setting Delimiters:

Scanner breaks input into tokens based on default delimiters i.e white space. This

default delimiters can change using methods

Scanner useDelimiters(String pattern)

Scanner useDelimiters(pattern pattern)

Here pattern is a regular expression that specifies the delimiters set.

Other Scanner Features:

 findInLine Method is used to search for the specified pattern within the next line of text.

If the pattern is found, matching token is consuming and returned otherwise null is returned.

Program:

import java.util.*;

class FindlnLineDemo

{

 public static void main(String args())

 {

 String instr=”Name: Chinna Age:21 ID:13”;

 Scanner conin=new Scanner(instr);

 Conin.findInLIne(“Age”);

 if(conin.hasNext())

 System.out.println(conin.next());

 else

 System.out.println(“Error!”);

 }

}

Note: The Output is 21the above program in the line is used to findInLine method and

occurrence of the pattern Age. Once found the next token read, which is the age.

Object Oriented Programming Through Java UNIT -III

R.Padmaja, Asst Professor ,MCA Department Page 19

