
U
N

IT
 –

IV
Introduction to Schema Refinement

Functional Dependencies

Reasoning about FDs

Normal Forms

Properties of Decomposition

Normalization

Transaction concept

Transaction states

Concurrent Executions

Serialiazability

Recoverability

Testing for Serializability



1) Introduction to Schema Refinement

▪ The Schema Refinement refers to refining the schema by using techniques like

decomposition.

▪ Normalization or Schema Refinement means organizing the data in the database.

▪ It is a systematic approach of decomposing tables to eliminate data redundancy

and undesirable characteristics like Insertion, Update and Deletion Anomalies.

▪ Redundancy refers to repetition of same data or duplicate copies of same data

stored in different locations.

▪ Data redundancy leads to insertion/updation/deletion anomalies

Anomalies or  problems due to redundancy

▪ Anomalies refers to the problems occurred after poorly planned and unnormalised

databases where all the data is stored in one table which is sometimes called a flat file

database.



▪ Let us consider such type of schema –

▪ Here all the data is stored in a single table which causes redundancy of data or say

anomalies

1) Insertion anomalies : It may not be possible to store some information

unless some other information is stored as well.

2) update anomalies: If one copy of redundant data is updated, then

inconsistency is created unless all redundant copies of data are updated.

3) deletion anomalies: It may not be possible to delete some information

without losing some other information as well.

Sid sname cid cname Fee

S1 A C1 C 5K

S2 B C1 C 5K

S3 C C2 DBMS 10k

S4 D C2 DBMS 10K

S1 A C3 JAVA 15K



Problem in updation / updation anomaly

If there is updation in the fee from 5000 to 7000, then we have to update FEE

column in all the rows, else data will become inconsistent

InsertionAnomalies

New course is introduced C4, But no student is there who is having C4 subject.



Deletion Anomaly 

Deletion of S3 student cause the deletion of course. Because of deletion of some data 

forced to delete some other useful data. 

❖ Data Redundancy leads to Anomalies

❖ Schema Refinement or Normalization helps to remove redundancy .

❖ The best Technique for Schema Refinement is Decomposition of Tables





2) Functional Dependencies

❑ Functional dependency is a relationship that exist when one attribute uniquely

determines another attribute.

X→ Y

X Determines Y or Y functionally dependent on X

❑ Functional dependency is a form of integrity constraint that can identify schema

with redundant storage problems and to suggest refinement.

❑ A functional dependency A→B in a relation holds true if two tuples having the

same value of attribute A also have the same value of attribute B

❑ IF t1.X=t2.X then t1.Y=t2.Y where t1,t2 are tuples and X,Y are attributes.



Consider relation obtained from Hourly_Emps:

Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

Notation: We will denote this relation schema by listing the attributes: SNLRWH

Some FDs on Hourly_Emps:

ssn is the key:

S→SNLRWH

rating determines hrly_wages:

R→W

Problems due to R→W :

❑ Update anomaly: Can we change W in just the 1st tuple of SNLRWH?

❑ Insertion anomaly: What if we want to insert an employee and don’t know the

hourly wage for his rating?

❑ Deletion anomaly: If we delete all employees with rating 5,we lose the

information about the wage for rating 5!





3) Reasoning about FDs

❖ Given some FDs, we can usually infer additional FDs:

ssn→ did, did→ lot implies ssn→ lot

F+= closure of F is the set of all FDs that are implied by F.
❖ Armstrong axioms defines the set of rules to infer all the functional dependencies

on a relational database.

❖ Various axioms rules or inference rules: 

Primary axioms: 

❖ These are sound and complete inference rules for FDs!
R1(SSN,DID,LOT)
F = SSN→DID

DID→LOT F+ = SSN →LOT [ TRANSITIVITY]
SSN,LOT →DID,LOT [AUGMENTATION]



secondary or derived axioms:

Consider the relation called Contracts(cid,sid,jid,did,pid,qty,value) .let us denote cid,

sid, jid, did, pid, qty, value as c, s, j, d, p, q, v and its FD’s are

C→CSJDPQV

F = JP→C

SD→ P

Then closure of F i.e F+ is

F+ = JP→ C, C→CSJDPQV implies JP→ CSJDPQV [ From Transitivity]

SD→P implies SDJ→JP [From Augmentation]

SDJ→JP, JP→CSJDPQV implies SDJ→CSJDPQV [From Transtivity]



So for  set FD’s in F

F = C →CSJDPQV 
JP →C
SD→ P

The closure of F i.e F+  is

= JP → CSJDPQV
SDJ →JP
SDJ →CSJDPQV 



❖ Computing the closure of a set of FDs can be expensive. (Size of closure is

exponential in # attrs!)

❖ Typically, we just want to check if a given FD X→Y is in the closure of a set of FDs F.

❖ An efficient check is

❑ Compute attribute closure of X (denoted X+) wrt F

❑ Check if Y is in X+



Algorithm to compute Attribute Closure of X

To Check if A→E exists in F+, it is enough to calculate A+ and check if E exits in A+

To Compute A+

A+ = {A}
{A,B} [ Using A→B]
{A,B,C} [ Using B→C]



Consider a relation R ( A , B , C , D , E , F , G ) with the functional dependencies-
A → BC
BC → DE
D → F
CF → G

Now, let us find the closure of some attributes and attribute sets-

Closure of attribute A-

A+ = { A }
= { A , B , C } ( Using A → BC )
= { A , B , C , D , E } ( Using BC → DE )
= { A , B , C , D , E , F } ( Using D → F )
= { A , B , C , D , E , F , G } ( Using CF → G )

Thus,
A+ = { A , B , C , D , E , F , G }



Closure of attribute D-

D+ = { D }
= { D , F } ( Using D → F )
We can not determine any other attribute using attributes D and F contained 

in the result set.
Thus,
D+ = { D , F }

Closure of attribute set {B, C}-

{ B , C }+ = { B , C }
= { B , C , D , E } ( Using BC → DE )
= { B , C , D , E , F } ( Using D → F )
= { B , C , D , E , F , G } ( Using CF → G )

Thus,
{ B , C }+ = { B , C , D , E , F , G }



4.Normal Forms

❖ Normalization is the process of organizing the data in the database.

❖ Normalization is used to minimize the redundancy from a relation or set of

relations. It is also used to eliminate the undesirable characteristics like

Insertion, Update and Deletion Anomalies.

❖ Normalization divides the larger table into the smaller table and links them using

relationship.

❖ Normalization rules are divided into the following normal forms:

1) First Normal Form

2) Second Normal Form

3) Third Normal Form

4) BCNF

5) Fourth Normal Form



1) FIRST NORMAL FORM

❖ A relation will be 1NF if it contains an atomic value.

❖ A Relation will be in 1NF if it does not contain Multi-valued Attributes

❖ A relation is said to be in 1 NF  if the intersection of row and column of a relation  

contains single value(atomic value)



2) SECOND NORMAL FORM

❖ For a table to be in the Second Normal Form,

✓ It should be in the First Normal form.

✓ And, it should not have Partial Funtional Dependency.

❖ If a Non prime Attribute depends on a Partial Key , Then such FD is called

Partial Functional Dependency . For Eg, Ename is a Non prime attribute and

it depends on part of key i.e ssn so , it is a Partial FD



3) THIRD NORMAL FORM

❖ For a table to be in the Third Normal Form,

✓ It should be in the Second Normal form.

✓ And, it should not have Transitive Dependency

❖ Dependency between two Non prime Attributes is called Transitive

Dependency i.e X→Y is a Transtive Dependency if both X and Y are

Non Prime Attributes

(or)

❖ For a table to be in the Third Normal Form,

✓ It should not contain Multi-Valued Attributes

✓ it should not have Partial Functional Dependency

✓ And,it should not have Transitive Dependency

(or)

❖ A table is in 3NF if it is in 2NF and for each functional dependency X-> Y

✓ Either X should be super key of table or

✓ Y should be a prime attribute of table

https://beginnersbook.com/2015/04/super-key-in-dbms/




4) BOYCE CODD NORMAL FORM

❖ For a table to be in the BCNF

✓ It should not contain Multi-Valued Attributes

✓ it should not have Partial Functional Dependency

✓ And,it should not have Transitive Dependency and

✓ For each FD X→ Y , either X should be key attribute or Y may or may not  

be prime attribute

(or)

❖ A table is in BCNF if it is in 2NF and for each functional dependency X-> Y

✓ X should be super key of table and                                                                                                                          

✓ Y may or may not be a prime attribute of table

https://beginnersbook.com/2015/04/super-key-in-dbms/




5) Properties of Decomposition
❖ When a relation in the relational model is not in appropriate normal form then the

decomposition of a relation is required.

❖ In a database, it breaks the table into multiple tables.

❖ If the relation has no proper decomposition, then it may lead to problems like loss

of information.

❖ Two Important Properties of Decomposition are

1) Loss Less Decomposition

2) Dependency Preserving Decomposition



1. Lossless decomposition-

Lossless decomposition ensures-

❖ No information is lost from the original relation during decomposition.

❖ When the sub relations are joined back, the same relation is obtained that was

decomposed.

❖ Every decomposition must always be lossless.

2. Dependency Preservation-

Dependency preservation ensures-

❖ None of the functional dependencies that holds on the original relation are lost.

❖ The sub relations still hold or satisfy the functional dependencies of the original

relation.



Types of Decomposition-

Decomposition of a relation can be completed in the following two ways-

1. Lossless Join Decomposition-

❖ Consider there is a relation R which is decomposed into sub relations R1 , R2 ,

…. , Rn.

❖ This decomposition is called lossless join decomposition when the join of the

sub relations results in the same relation R that was decomposed.

❖ For lossless join decomposition, we always have-

R1 ⋈ R2 ⋈ R3 …….⋈ Rn = R where ⋈ is a natural join operator



Lossy Join Decomposition-

❖ Consider there is a relation R which is decomposed into sub relations R1 ,

R2 , …. , Rn.

❖ This decomposition is called lossy join decomposition when the join of the

sub relations does not result in the same relation R that was decomposed.

❖ The natural join of the sub relations is always found to have some

extraneous tuples.

❖ For lossy join decomposition, we always have-

R1 ⋈ R2 ⋈ R3 ……. ⋈ Rn ⊃ R    where ⋈ is a natural join operator



Consider the following relation R( A , B , C )-

Consider this relation is decomposed into two sub relations as R1( A , C ) and R2( B , C )-

The two sub relations are-



❖ This relation is same as the original relation R.

❖ Thus, we conclude that the above decomposition is lossless join

decomposition

❖ Now, let us check whether this decomposition is lossy or not. For lossy

decomposition, we must have-

R1 ⋈ R2 = R

❖ Now, if we perform the natural join ( ⋈ ) of the sub relations R1 and R2 we get-





❖ Let's take 'E' is the Relational Schema, With instance 'e'; is decomposed into: E1, E2, 

E3, . . . . En; With instance: e1, e2, e3, . . . . en, If e1 ⋈ e2 ⋈ e3 . . . . ⋈ en, then it is 

called as 'Lossless Join Decomposition'.

❖ In the above example EMP_DEPT is decomposed into EMP and DEPT .we can 

say that decomposition is Loss Less Decomposition because the natural join of 

EMP and DEPT is equal to the original relation EMP_DEPT.

❖ The Decomposition is Lossy if 

EMP ⋈ DEPT   Ͻ EMP_DEPT          Natural Join of EMP and DEPT  should not be superset of EMP_DEPT

❖ The Decomposition is Loss Less if 

EMP ⋈ DEPT   =  EMP_DEPT         Natural Join of EMP and DEPT is equal to 

EMP_DEPT                         



❖ If we decompose a relation R into relations R1 and R2,

1) Decomposition is lossy if R1⋈ R2 Ͻ R

2) Decomposition is lossless if R1⋈ R2 = R

❖ To check for lossless join decomposition using FD set, following conditions

must hold:

1) Union of Attributes of R1 and R2 must be equal to attribute of R. Each

attribute of R must be either in R1 or in R2.

Att(R1) U Att(R2) = Att(R)

1) Intersection of Attributes of R1 and R2 must not be NULL.

Att(R1) ∩ Att(R2) ≠ Φ

2) Common attribute must be a key for at least one relation (R1 or R2)

Att(R1) ∩ Att(R2) -> Att(R1) or Att(R1) ∩ Att(R2) -> Att(R2)



Dependency Preserving

❖ A Decomposition D = { R1, R2, R3….Rn } of R is dependency preserving wrt

a set F of Functional dependency if

(F1 ∪ F2 ∪ … ∪ Fm)+ = F+.

❖ Consider a relation R

R ---> F{...with some functional dependency(FD)....}

R is decomposed or divided into R1 with FD { f1 } and R2 with { f2 },

then there can be three cases:

1) f1 U f2 = F -----> Decomposition is dependency preserving.

2) f1 U f2 is a subset of F -----> Not Dependency preserving.

3) f1 U f2 is a super set of F -----> This case is not possible.



❖ Consider a schema R(A,B,C,D) and functional dependencies A->B and C->D. 

Then the decomposition of R into R1(AB) and R2(CD) is

A->B can be ensured in R1(AB) and C->D can be ensured in 

R2(CD). Hence it is dependency preserving decomposition.



Consider a Relation R(A,B,C,D,E) with FD’s 
F = {A→B,B→C,C→D,D→A}
If R(A,B,C,D,E) is decomposed into R1(ABC) and R2(CDE)
To Check the decomposition is Dependency preserving

R1(ABC)
Find A+,B+,C+ w.r.t FD’s of R
A+ = ABCD = A→BC [ A is trival and D doesn not exists in R1.so remove A and D]

B+ =  BCDA = B→CA [ B is trival and D doesn not exists in R1.so remove A and D]

C+ =  CDAB = C→AB [ C is trival and D doesn not exists in R1.so remove A and D]

So, F1 = {A→BC,B→CA,C→AB}

R2 (CDE)
Find C+,D+,E+ w.r.t FD’s of R
C+ = CDAB = C→D [ C is trival and A,B doesn not exists in R2.so remove A and B]

D+ =  DABC = D→C [D is trival and A,B doesn not exists in R2.so remove A and B]

E+ =  E = NO FD

So, F2 = {C→D,D→C}



To check the decomposition is Dependency Preserving, it is necessary to  to check 
F = F1 U F2

{A→B,B→C,C→D,D→A}  = {A→BC,B→CA,C→AB ,C→D,D→A} 
i.e we have to check whether al FD’s in F exists in F1 U F2

A→ B exists in F1 U F2  because A→BC means A→B , A→C
B→C exists in F1 U F2 because B→CA  means B→C,B→A

C→D exists in F1 U F2 
D→A does not exists in F1 U F2 directly but we cant conclude it by seeing so we have to 

compute D+    w.r.t F1 U F2
D+  = DABC. Since D+ contains A , D→A also exists in F1 U F2

So , all the FD’s in F exists in F1 U F2 , the decomposition is a dependency preserving 
decomposition.



7) Transactions
❖ Collection of several operations on the Database appears to be single unit from the 

point of view of the db user. 

❖ For example, a transfer of funds from a checking A/C to savings A/C is a single 

operation from the customer’s standpoint, within the database system, however, it 

consists of several operations.

For example :  Fund Transfer Transaction

R (CA2090)

Ca2090 := CA2090 – 10000

W(CA2090)

R(SB2091)

SB2091 := SB2091 + 10000

W (SB2091)

❖ So, Collection of operations that form a single Logical unit of work are called 

transaction.



ACID Properties

To preserve integrity of data, the database system must ensure:

❖ Atomicity. Either all operations of the transaction are properly reflected in the

database or none are.

❖ Consistency. Execution of a transaction in isolation preserves the consistency of

the database.

❖ Isolation. Although multiple transactions may execute concurrently, each

transaction must be unaware of other concurrently executing transactions.

Intermediate transaction results must be hidden from other concurrently

executed transactions.

That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution after Ti

finished.

❖ Durability. After a transaction completes successfully, the changes it has made

to the database persist, even if there are system failures.



Example of Fund Transfer

Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

❖ Consistency requirement – the sum of A and B is unchanged by the execution of 

the transaction.

❖ Atomicity requirement — if the transaction fails after step 3 and before step 6, 

the system should ensure that its updates are not reflected in the database, else 

an inconsistency will result.



❖ Durability requirement — once the user has been notified that the transaction

has completed (i.e., the transfer of the $50 has taken place), the updates to the

database by the transaction must persist despite failures.

❖ Isolation requirement — if between steps 3 and 6, another transaction is

allowed to access the partially updated database, it will see an inconsistent

database

(the sum A + B will be less than it should be). Can be ensured trivially by running

transactions serially, that is one after the other. However, executing multiple

transactions concurrently has significant benefits, as we

will see.



8) Transaction States
❖ A transaction goes through many different states throughout its life cycle. These

states are called as transaction states.

❖ Transaction states are as follows-

1) Active state

2) Partially committed state

3) Committed state

4) Failed state

5) Aborted state

6) Terminated state





1. Active State-

❖ This is the first state in the life cycle of a transaction.

❖ A transaction is called in an active state as long as its instructions are getting

executed.

❖ All the changes made by the transaction now are stored in the buffer in main

memory.

2. Partially Committed State-

❖ After the last instruction of transaction has executed, it enters into a partially

committed state.

❖ After entering this state, the transaction is considered to be partially

committed.

❖ It is not considered fully committed because all the changes made by the

transaction are still stored in the buffer in main memory.



3. Committed State-

❖ After all the changes made by the transaction have been successfully stored

into the database, it enters into a committed state.

❖ Now, the transaction is considered to be fully committed.

NOTE-

❖ After a transaction has entered the committed state, it is not possible to roll

back the transaction.

❖ In other words, it is not possible to undo the changes that has been made by

the transaction.

❖ This is because the system is updated into a new consistent state.

❖ The only way to undo the changes is by carrying out another transaction called

as compensating transaction that performs the reverse operations.



4. Failed State-

❖ When a transaction is getting executed in the active state or partially

committed state and some failure occurs due to which it becomes impossible

to continue the execution, it enters into a failed state.

5. Aborted State

❖ After the transaction has failed and entered into a failed state, all the changes

made by it have to be undone.

❖ To undo the changes made by the transaction, it becomes necessary to roll

back the transaction.

❖ After the transaction has rolled back completely, it enters into an aborted

state.



4. Failed State-

❖ When a transaction is getting executed in the active state or partially

committed state and some failure occurs due to which it becomes impossible

to continue the execution, it enters into a failed state.

5. Aborted State

❖ After the transaction has failed and entered into a failed state, all the changes

made by it have to be undone.

❖ To undo the changes made by the transaction, it becomes necessary to roll

back the transaction.

❖ After the transaction has rolled back completely, it enters into an aborted

state.

6. Terminated State-

❖ This is the last state in the life cycle of a transaction.

❖ After entering the committed state or aborted state, the transaction finally

enters into a terminated state where its life cycle finally comes to an end.



9) Concurrent Execution
❖ Multiple transactions are allowed to run concurrently in the system.

Advantages are:

✓ Increased processor and disk utilization, leading to better

transaction throughput

E.g. one transaction can be using the CPU while another is

reading from or writing to the disk

✓ Reduced average response time for transactions: short

transactions need not wait behind long ones.



Schedules

❖ A schedule thus consists of sequence of operations from a group of transactions

subject to the condition that the order of operations for each individual transaction

is preserved (or)

❖ A schedule is the order in which the operations of multiple transactions appear for

execution.

Let T1 and T2 be two transactions 

Transaction T1 transfers $50 from account A to account B. It is defined as

T1 : Read (A);
A: = A – 50;
Write (A);
Read (B);
B: = B + 50;
Write (B);

Transaction T2 transfers 10 percent of the balance from account A to account B . it 
is defined as

T2 : Read (A);
Temp: =  A * 0.1;
A := A – temp;
Write(A);
Read(B);
B := B + temp;
Write(B);



Suppose these two transactions are submitted to the system at the same time, it 

is the responsibility of the Concurrency Control Module of DBMS software to 

schedule these transactions. 

The Concurrency Control Module can schedule transactions in two ways

Serial 

Non-Serial 

Serial schedule :   A Schedule where the operations of each transactions are 

executed consecutively without any other interference from other transactions 

is called a Serial Schedule.

Non Serial schedule :   A Schedule where the operations from a group of 

concurrent transactions  are interleaved.



SERIAL SCHEDULE :

❖ In serial schedules,
➢ All the transactions execute serially one after the other.
➢ When one transaction executes, no other transaction is allowed to execute

Example of Serial Schedule

Schedule 1 – a Serial Schedule in which T1 is followed by T2

❖ In this schedule,
✓ There are two transactions T1 and T2 executing serially one after the other.
✓ Transaction T1 executes first.
✓ After T1 completes its execution, transaction T2 executes.

✓ So, this schedule is an example of a Serial Schedule.



NON SERIAL SCHEDULE

A Schedule where the operations from a group of concurrent transactions  
are executed in an interleaving Fashion.

Example of Non Serial schedule

Schedule 2 – a Non Serial Schedule  equivalent to Serial Schedule



Suppose two users submit T1 and T2 at same time, if no interleaving of operations

is permitted, there are only 2 possible outcomes i.e.

◦ T1 after T2

◦ T2 after T1



So, for a set of n transactions, there exists n! Different valid serial Schedules.

The Problem with Serial schedules is that they limit concurrency or interleaving
of operations.

In a serial schedule, if a Transaction wait for I/O operation to complete, we can’t
switch the CPU processor to another transaction, thus wasting valuable CPU
processing time.

In addition, if some transaction ‘T’ is quite Long, the other transaction must wait
for T to complete all its operations before commencing i.e. (Short transactions will
get stuck behind Long transactions.)

Hence, serial schedules are generally considered
unacceptable in practice. So, we go for Non-serial Schedules



If the above transactions are submitted to the system, and if interleaving of

operations are permitted then there will be many possible outcomes, two of them

are

However, some non-serial schedule gives the correct expected result. We would like 

to determine which of the non-serial schedule always give a correct and which may 

give erroneous result.



10) Serializability

❖ A schedule is the order in which the operations of multiple transactions appear for

execution.

❑ Serial schedules are always consistent.

❑ Non-serial schedules are not always consistent.

❖ Some non-serial schedules may lead to inconsistency of the database.

❖ Serializability is a concept that helps to identify which non-serial schedules are

correct and will maintain the consistency of the database.

If a given non-serial schedule of ‘n’ transactions is equivalent to some 

serial  schedule of ‘n’ transactions, then it is called as a serializable schedule.

(or)

A Non serial schedule which preserves the sequence of operations and 

produces the same result as that of a serial schedule is called Serializability



Two definitions of Schedule Equivalence are

1) Conflict Equivalence

2) View equivalence

1) CONFLICT EQUIVALENCE 

Two operations in a schedule are said to be conflict, if they satisfy all three of the 

following conditions.

1. They belong to different Transactions

2. They access the same data item

3. At least one of the operation is a Write operation 

In short we can write above Schedule NS1 in terms of only Read and write operations

Schedule NS1 = { R1(A) , W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)}

Conflict Operations of 

Schedule NS1

Some of the Non Conflicting Operations 

of schedule NS1 are

W2(A), R1(B) R1(A) , W2(A)

R1(B) , R2(A) W1(A), W2(A)

W1(B) ,W2(A) R1(B), W2(B)

W1(B), R2(A) W1(B), W2(B)



If a Schedule ‘NS’ can be transformed into   ‘S ‘  by a series of swaps of Non Conflicting 
operations , we say that  NS and S are Conflict Equivalent.

For Example if we consider  only Read and Write Operations of a Non serial schedule NS1.



T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

Here  W1(A), R2(A)  and  W1(B),R2(B) are conflicting  Operations and



❖ Thus , the Non serial schedule NS1 after swapping the non conflicting

operations , it is equivalent to a serial schedule S1 .

❖ So, The non serial schedule NS1 is conflict equivalent to s1 .

❖ Hence we can say the non serial schedule NS1 is a Conflict Serializability



View Serializability

❖ View Serializability is a process to find out that a given Non serial schedule is

view serializable or not.

❖ To check whether a given non serial schedule is view serializable, we need to

check whether the given schedule is View Equivalent to its serial schedule.

https://beginnersbook.com/2018/12/dbms-schedules/


1. Initial Read: Initial read of each data item in transactions must match in both

schedules.

2. Final Write: Final write operations on each data item must match in both the

schedules.

3. Update Read: If in schedule S1, the transaction T1 is reading a data item updated by

T2 then in schedule S2, T1 should read the value after the write operation of T2 on

same data item.



Initial Read
In schedule NS1, transaction T1 first reads the data item A. In S1 also transaction T1 first reads the data item A.
In schedule NS1, transaction T1 first reads the data item B .In S1 also transaction T1 first reads the data item B
We checked for both data items A & B and the initial read condition is satisfied in NS1 & S1.

Final Write
In schedule NS1, the final write operation on A is done by transaction T2. In S1 also transaction T2 performs the 
final write on A.
In schedule NS1, the final write operation on B is done by transaction T2. In schedule S2, final write on B is done 
by T2.
We checked for both data items A & B and the final write condition is satisfied in NS1 & S1

Update Read
In NS1, transaction T2 reads the value of A, written by T1. In S1, the same transaction T2 reads the  A after it is 
written by T1.
In NS1, transaction T2 reads the value of B, written by T1. In S1, the same transaction T2 reads the value of B 
after it is updated by T1.
The update read condition is also satisfied for both the schedules.



Since the three conditions are satisfied among the non serial schedule NS1 and the serial

Schedule S1 , so we can say that NS1 is View Equivalent to S1 and NS! Is a View

Serializable Schedule.



Testing for conflict Serializable (or) Precedence Graph

➢ We now present a Simple and Efficient method for determining Conflict

Serializabilty of schedule .

➢ The Precedence Graph for a schedule S contains

➢ A Node for each committed transaction in S.

➢ An Arc from Ti to Tj if one the three conditions holds

▪ Ti Executes W(Q) before Tj Executes R(Q)

▪ Ti Executes R(Q) before Tj Executes W(Q)

▪ Ti Executes W(Q) before Tj Executes W(Q)

A Schedule S is Conflict Serializable if and only if its Precedence Graph is Acyclic.

Lets us consider two Non serial schedules NS1 and Ns2 and draw precedence

Graph for each Non serial schedules NS1 and NS2





➢The Precedence Graph for Schedule NS1 contains the Edge from T1  to   T2 because T1 

Executes Read (A) before T2 Executes Write (A).

➢The Precedence Graph for Schedule NS2 Contains the  edge from T1 to T2,  and it also 

contains edge from T2 to T1 .

Since the Precedence Graph  of  Schedule NS1 is acyclic, We say

NS1 is a Conflict Serializable Schedule.



Recoverability



❖ A schedule is the order in which the operations of multiple transactions appear for

execution.

❖ A Schedule can be either Serial or Non serial Schedule

❖ Non-serial schedules may be serializable or non-serializable.

❖ A non-serial schedule which is not serializable is called as a non-serializable

schedule.

❖ Non-Serializable schedules may be recoverable or irrecoverable

❖ The Recoverable schedule is one where, for each pair of transactions T1 and T2, for T2

to read a data item previously written by T1, the Commit operation of T1 should appear

before the Commit operation of T2.

❖ Consider a situation where the transaction T1 fails before it commits. Since T2 has read

the value written by T1, we must abort T2 also to ensure atomicity . But this is not

possible as transaction T2 has already been Committed

❖ Thus we have a situation where it is impossible to recover correctly from the failure of

T1.The above situation is an example of a non-recoverable schedule.



T1 T2

Read(CA2090)

Write(CA2090)

Read(CA2090)

Commit

abort

Non recoverable Schedule

Recoverable Schedule

T1 T2

Read(CA2090)

Write(CA2090)

commit

Read(CA2090)

Commit



Types of Recoverable Schedules-

A recoverable schedule may be any one of these kinds-

1) Cascading Schedule

2) Cascadeless Schedule

3) Strict Schedule



1) Cascading Schedule-

❖ If in a schedule, failure of one transaction causes several other dependent

transactions to rollback or abort, then such a schedule is called as a Cascading

Schedule or Cascading Rollback or Cascading Abort.

In this schedule,

The failure of transaction T1 causes the

transaction T2 to rollback.

The rollback of transaction T2 causes the

transaction T3 to rollback.

The rollback of transaction T3 causes the

transaction T4 to rollback.

Such a rollback is called as a Cascading

Rollback.



2) Cascadeless Schedule-

If in a schedule, a transaction is not allowed to read a data item until the last

transaction that has written it is committed or aborted, then such a schedule is

called as a Cascadeless Schedule.

In other words,

Cascadeless schedule allows only committed read operations



3) Strict Schedule-

❖ If in a schedule, a transaction is neither allowed to read nor write a data

item until the last transaction that has written it is committed or aborted,

then such a schedule is called as a Strict Schedule.

In other words,

❖ Strict schedule allows only committed read and write operations.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

