
UNIT-5

5.1 WIN RUNNER

Win Runner is widely used Automated Software Testing Tool for Functional testing.

It was developed by Mercury Interactive. It supports C and web technologies such as (VB,

VC++, D2K, Java, HTML, Power Builder, Delphe, Cibell (ERP)).

WinRunner facilitates easy test creation by recording how you work on your

application. As you point and click GUI (Graphical User Interface) objects in your

application.

WinRunner generates a test script in the C-like Test Script Language (TSL). We can

further enhance our test scripts with manual programming. WinRunner includes the Function

Generator, which helps quickly and easily add functions to our recorded tests.

The important aspects of WinRunner are:

1. We can do functional/regression testing of a variety of application software written in

programming languages such as PowerBuilder, Visual Basic, C/C++, and Java. We can

also carry out the testing on ERP/CRM software packages.

2. Performs testing in all flavors of Windows operating systems and different browser

environments such as Internet Explorer and Netscape Navigator.

3. We can record the GUI operations in the 'record' mode. WinRunner automatically creates

a test script.

4. We can add checkpoints to compare actual and expected results. The checkpoints can be

GUI checkpoints, bitmap checkpoints and web links.

5. It provides a facility for synchronization of test cases.

6. Data Driver Wizard provides the facility to convert a recorded test into a data driven test.

So, We can replace data with variables within a test script.

7. Database checkpoints are used to verify data in a database during automated testing. The

records that are inserted, deleted, modified, or updated will be highlighted so that We can

ensure database integrity and transaction accuracy.

8. The Virtual Object Wizard of WinRunner is used to teach WinRunner to recognize,

record, and replay custom objects.

9. The reporting tools provide the facility to generate automatically the test reports and

analyze the defects.

10. WinRunner can be integrated with the testing management tool TestDirector to automate

many of the activities in the testing process.

WinRunner includes two modes for recording tests:

Context Sensitive

Context Sensitive mode records your actions on the application being tested in terms

of the GUI objects you select (such as windows, lists, and buttons), while ignoring the

physical location of the object on the screen.

https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html
https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html
https://www.wisdomjobs.com/e-university/winrunner-tutorial-171/winrunner-testing-modes-3416.html

Every time you perform an operation on the application being tested, a TSL statement

describing the object selected and the action performed is generated in the test script.

This allows you to easily reuse your Context Sensitive test scripts on future versions

of your application.

Analog

Analog mode records mouse clicks, keyboard input, and the exact x- and y-

coordinates traveled by the mouse. Use Analog mode when exact mouse coordinates are

important to your test, such as when testing a drawing application.

Starting WinRunner

To start WinRunner:

Testing an Application using WinRunner

After installing the WinRunner on your computer, invoke the WinRunner application

Start -> Programs ->WinRunner ->WinRunner

The opening screen of the WinRunner application is displayed, prompting you to select one

of the three options:

 New Test: To create a new test script

 Open Test: To open an existing test script

 Quick Preview: To view the quick preview of WinRunner

Recording Test Cases

To test any application, first we can run the application and understand its operation.

Then, you can invoke WinRunner, again run the application and record the GUI operations.

During the recording mode, WinRunner will capture all your actions, which button

you pressed, where you clicked the mouse etc. You need to work with the application as

usual and perform all the actions to be tested.

Once the recording is completed, WinRunner generates a script in TSL (Test Script

Language). You can run this test script generated by WinRunner to view the results. The test

results will show whether the test has passed or failed.

The procedure for recording a test case is as follows:

Step 1: Open a new document: File -> New (or) Select "New Test" from the WinRunner's

Welcome screen.

Step 2: Open (run) the application to be tested.

Step 3: Start recording a test case.

Create ->Record - Context Sensitive (or) click on the toolbar's "Record" button once,

to record in Context Sensitive mode.

Step 4: Select the application to be tested by clicking on the application's title bar.

Step 5: Perform all the actions to be recorded.

Step 6: Once all required actions are recorded, stop the recording.

Create -> Stop (or) Click on the toolbar's "Stop" button to stop the recording

WinRunner generates the script for the recoded actions.

The procedure for running a test case is as follows:

Step 1: Open the test script to be executed.

Step 2: Run the test

Run -> Run from top (or) press F5 to run the test.

WinRunner executes the generated script and displays the results in the Test Results window.

We will now illustrate using WinRunner to test the "Standard Calculator" application

available on your Windows system.we can invoke the calculator application from the desktop

Start -> Programs -> Accessories -> Calculator. The GUI of the "Calculator"

application is shown in Fig.

The symbols on the buttons of Calculator application represent the following functions:

+ : To perform addition

- : To perform subtraction

 * : To perform multiplication

 / : To perform division

. : Decimal point

sqrt : To find square root of a number

% : To find percent

1/x : To find inverse of a number

MC : To clear the memory

MR : To recall from memory

MS : To save in the memory

M+ : To add to the memory

C : To clear the current calculation

CE : To clear the displayed number

+/- : To give sign to a number (positive or negative)

Backspace: To remove left most digit

To test the complete functionality of the application, we need to generate test cases in

such a way that all the buttons are made use of. We need to generate some test cases which

will give correct output and also some test cases which will give error messages. Table gives

such test cases and the expected output for each test case.

Test Cases and the Expected Output for Testing the Calculater

To test the functionality of the application perform the following steps:

Test Case #1: To test the Inverse operation (inverse of 4 using 1/x button)

Step 1: Open WinRunner application.

Step 2: Open Calculator application.

Step 3: Create a new document as shown in Figure.

File -> New or Click New option on tool bar or press Ctrl+N

Step 4: Start recording

Create -> Record-Context Sensitive (or) press F2 (or) Click on the toolbar

Click the (Record-Context Sensitive) button on the toolbar of WinRunner as shown in Figure

or Select "Record - Context sensitive" option from the "Create" menu as shown in Figure.

Step 5: Select the Calculator application and start recording the actions. a Click "4" on the

Calculator

 Click the "1/x" button on the Calculator to find the inverse of 4.

 The result, 0.25 will be displayed on the Calculator.

Step 6: Stop the Recording process.

Create -> Stop Recording (or) Click (Stop) on toolbar

Click (Stop Recording) button on the toolbar of WinRunner as shown in Figure or Select the

"Stop Recording" option from the "Create" menu as shown in Figure.

Step 8: Save the file as "inverse" in the selected folder.

File-»Save

In the "Save" dialog box that appears, save the test script with name "inverse".

Step 9: Run the test script generated by WinRunner.

Press F5 or Click (Run from Top) on the toolbar

Step 10: After executing the TSL statements, WinRunner generates test results as shown in

Figure.

The Results column indicates whether the test has "Passed" or "Failed". The test

results also give useful information such as the name of the test case, the line numbers in the

test script and the time taken for executing the test case.

Calling the Test Cases using "call" Function

The "call" function can is used to execute a series of test cases without any user interaction.

The syntax of call function is:

call<test-case name> for example, call testl();

 Create a new document

 Write the following test script

 Save the file as "callAll"

 Execute the test case

All the preceding test cases can be combined into one file as follows:

Call inverseO; call sqrootO; call clearO; call MultiplayO; call divideO; call add_subtract()

call PercentO; call msjnrO; call maddmrO; call mclearO; call backspaceO;

When you execute this test script, all the earlier test cases are executed in one shot.

The test results screen will be as shown in Figure. As you can see from the table, the

"Details" column gives the various test cases executed. The "Result" column shows whether

the test has passed or failed. The "Time" column gives the time taken to execute the test case.

When you have to retest the application using the same test cases, you can run the script in

unattended mode. You can save the script in a file and run the script at specified time.

This feature of WinRunner is extremely useful for regression testing. When you are

developing the software, you need to run the same set of test cases many times.

Test Script Language(TSL)

 Test Script Language (TSL) is a scripting language with syntax similar to

C language.

 TSL is a C-like procedural programming language. It has constructs like

statements, comments, constants, variables, mathematical operators,

control statements and functions.

 There are 4 categories of TSL functions.

1. Analog functions: These functions are used when you record in Analog mode, a

mode in which the exact coordinates of the GUI map are required.

2. Context sensitive functions: These functions are used where the exact coordinates

are not required.

3. Customization functions: These functions allow the user to improve the testing tool

by adding functions to the Function Generator.

4. Standard functions: These functions include all the basic elements of programming

language like control flow statements, mathematical functions, string related functions

etc.

The most frequently used functions in each category are as follows:

 click: To click a mouse button.

Syntax: click(mouse_button,[time])

mouse button - specify LEFT, RIGHT or MIDDLE

 dbl_click: To double click a mouse button.

Syntax: dbl_click(mouse_button,[time])

mouse_button - specify LEFT, RIGHT or MIDDLE

 get_x: To get the current x coordinate of the mouse pointer.

Syntax: get_x();

Return value: integer

 get_y: To get the current y coordinate of the mouse pointer.

Syntax: get_y();

Return value: integer

 waitjwindow: Waits for a window bitmap to appear for synchronizing the test procedure.

Syntax: wait_window(time, image, window, width, height, x, y [, rebel, relyl, relx2, rely2])

 get_text: To read the text from the screen specified by the location.

Syntax: get_text(location);

The location can be xl>yl, x2, y2 or x ,y or ()(no location).When no location is specified, it

considers the point closest to the mouse pointer.

 button_check_info: To check the value of the button property.

Syntax: button_check_info (Button, property, property_value);

Button - Name of the button

Property - The property to be checked

Property_value - The property value

The other important features of WinRunner application are as follows:

 Synchronization of test cases

 Data driven testing

 Rapid testing GUI

 Checkpoints

Synchronization of Test Cases

 In WinRunner, it takes by default one second to execute the next statement. But

sometimes there may be a case where the WinRunner has to wait for a few seconds to accept

the data from the user or wait till the current operation is completed, before executing the

next statement.

The Synchronization is required in the following cases:

 When data has to be retrieved from the database.

 When a progress bar has to reach 100%.

 To wait till some message appears.

 Though, by default, WinRunner takes one second to execute the next statement, it is

possible to change the default time to any desired value.

Changing the value of the "Timeout for Checkpoints and CS Statement" option in the Run tab

of the General option's dialog can do this.

 Settings -> General Options.

Creating the Test Case

Creating a synchronized Test

 step 1: Start WinRunner and open a new test.

 step 2: Start the application which you are required to test

 step 3: set to synchronization test

 step 4: Start recording

 step 5: Create a new order

Synchronizing the Test Cases

We will now create a synchronization point into the test script..

Step 1: Open the test script if it is closed.

File -> Open and select the "sync_be-fore" file.

Step 2: Place the cursor at the point where the test has to be synchronized.Insert a line after

the statement

obj_mouse_click ("Add", 49,12, LEFT);

as our aim is to make the WinRunner application wait till the insertion is over.

Step 3: Insert a synchronization point as shown in Figure to make WinRunner wait

until the insertion is completed. Create -> Synchronization Point -> For Object/Window

Bitmap

Once you select the status message, it inserts the following statement into the test

script: obj_wait_bitmap("ThunderRT6TextBox_4"."Irngl",1);

Step 5: By default one-second delay time will be inserted. Manually change the wait time to

10 seconds as it takes about 10 seconds for the insertion action to be completed.

Click the run tab to change the time

Step 6: Run the test script and observe that, WinRunner waits for the image to appear in the

application. If the image does not appear before the timeout time, it displays an error

message; otherwise it executes all the statements in the test script and displays the test result

as shown in Figure

Data Driven Test

Once the test script is created, we may sometimes want to check how the test script behaves

for multiple data. This can be done by creating that many number of test cases and by running

each test case individually, which is a very tedious process. In such cases we make use of

Data-Driver wizard. This involves 3 steps.

1. Inserting the statements to open and close the data table.

2. Retrieving the data from the data table

3. Replacing the static values (for example, the employee name) with the variables

containing the retrieved value from the data table. This is known as parameterizing

the test.

Rapid Test Script Wizard

The Rapid test script wizard is the fastest way of performing the test process. It

systematically opens up all the windows in the application, stores the learnt information in

the GUI Map file and generates the test cases based on the information learnt from the

application.

 It is possible to apply these tests only on those applications, which open windows

upon performing some task (like clicking a button, selecting the menu item etc

GUI Checkpoint used to Verify Properties Of objects which has 3 options such as

 For Single Property (Verify a single property of an object)

 For Object/Window (Verify more than 1 property of a Single Object)

 For Multiple Objects (Verify multiple objects with multiple properties)

Checking GUI Objects

• GUI checkpoints are used to check the GUI object properties

• It is possible to check the behavior of the objects in the application by creating the

GUI Checkpoints.

• The GUI Checkpoints help to find the defects in the application, by examining the

objects.

There are 3 modes in which the application can be executed

 1. Verify mode: By default it is in verify mode. This mode is used to run the test

script. It compares with the expected and actual values

 2. Debug mode:This mode is used to check the values of the variables during runtime

to monitor the variables. The results will be stored in debug folder

 3. Update mode: This mode is used to change the expected value that you assigned

during the checkpoint

5.2 LoadRunner

 Mercury Interactive’s load runner is used to test the client/server applications such as

database management systems and websites.

 Load runner accurately measures and analyzes the performance of the client/server

application.

 Load runner creates Virtual users(Vusers). The Vusers submit the requests to the

server. Vuser script is generated and this script is executed for simulating multiple

users

What are the LoadRunner components?

LoadRunner contains the following components:

➤ The Virtual User Generator captures end-user business processes and creates an automated

performance testing script, also known as a virtual user script.

➤ The Controller organizes, drives, manages, and monitors the load test.

➤ The Load Generators create the load by running virtual users.

➤ The Analysis helps you view, dissect, and compare the performance results.

➤ The Launcher provides a single point of access for all of the LoadRunner components.

LoadRunner addresses the drawbacks of manual performance testing:

 LoadRunner reduces personnel requirements by replacing human users with virtual

users or Vusers. These Vusers emulate the behavior of real users operating real

applications.

 The LoadRunner Controller allows you to easily and effectively control all the Vusers

from a single point of control.

 LoadRunner monitors the application performance online, enabling you to fine-tune

your system during test execution.

 LoadRunner automatically records the performance of the application during a test.

You can choose from a wide variety of graphs and reports to view the performance

data.

 LoadRunner checks where performance delays occur: network or client delays, CPU

performance, I/O delays, database locking, or other issues at the database server.

LoadRunner monitors the network and server resources to help you improve

performance.

 Because LoadRunner tests are fully automated, you can easily repeat them as often as

you need.

Creating Vuser script using Virtual User Generator

For creating the Vuser script, follow the steps given below:

Step 1: Start the Virtual User Generator

Start -> Programs ->LoadRunner -> Virtual User Generator

Step 2: LoadRunner displays the welcome screen as shown in Figure.

Step 3: Click the "New Single Protocol Script" button. It displays the list of protocols as

shown in Figure.

 Select the "Category" under which the application to be tested falls. In case of our example,

select the "Web (HTTP/HTML)" option and click "OK" button.

Step 3: When you click the "OK" button, it displays the dialog as shown in Figure.

The Virtual user script is divided into 3 sections: Vuser_init, Actions, Vuser_end.

Vuser_init: These actions are performed when the Vuser is loaded or initialized.

Actions: These actions are performed when the Vuser is in "Running" state.

Vuser_end: These actions are performed when the Vuser finishes or stops.

You can select the section before or while the recording is under progress.

Step 4: Select the "Actions" section. Click the »»«<*,« button or select the "Start Recording"

option from the "Vuser" menu as shown in Figure.

Step 5: On selecting "Start Recording" option, it displays the "Start Recording" dialog as

shown in Figure.

This prompts you to enter the "URL" of the application for which the test has to be

performed. Enter the URL and select the "Action" section from the "Record into Action"

combo box as shown in Figure and click the "OK" button.

Note that you need to give the URL based on where you installed the application.

Step 6: LoadRunner now opens the specified URL and a "Recording Toolbar..." appears as

shown in Figure.

LoadRunner is now in the "Recording" mode. Perform the actions that are to be recorded

such as clicking on a link to obtain the weather information for a particular city. Once all the

actions are recorded, stop the recording by clicking the "Stop" button in the Recording

toolbajr.

Step 7: LoadRunner generates the script for the actions that are recorded as shown in Figure.

Vuser Scripts can be generated by using a number of tools such as WinRunner, VuGen,

QuickTest etc. which together form a testing suite of Mercury Interactive Corporation.

Step 8: Save the Test Script.

File -> Save

Step 9: Run the script.

Click the ► button to run the test script or click the "Run" from "Vuser" menu or press F5.

Vuser -> Run

Step 10: Once the execution is completed, examine the "Execution log" to see whether the

script ran without errors or not.

Step 11: The test results are displayed in the "Test Results" window, which contains various

sections:"Vuser_init_summary", "Iteration","Vuser_end_summary".

The Results Summary Report is shown in Figure, the Iteration Report is shown in Figure and

Vuser_end Summary Report is shown in Figure

Creating Virtual Users Using Loadrunner Controller

LoadRunner Controller is used to create the virtual users who replace the human users

to test the performance of the application.

By default, it creates 10 virtual users who will access the application simultaneously

and tests the load on the application. It is also possible to increase the number of virtual users.

 Let us now create virtual users for the web-based application for which we have

already generated the test script using the LoadRunner Virtual User Generator.

To create the Virtual users and test the performance of the "Weather India" application whose

home page is shown in Figure, follow the steps given below.

Step 1: Start the Load Runner - Controller

Start -> Programs ->LoadRunner -> Controller

Step 2: On starting the Controller, it displays the screen as shown in Figure.

Select the "Manual Scenario" option and the required test script from the "Available Scripts"

list and click the "OK" button.

Step 3: From the "LoadRunner Controller Scenario 1" dialog, click the "Generator" button or

select the "Load Generators" from the "Scenario" menu. "Load Generators" dialog is opened

as shown in the Figure.

Click the "Add'' button to add a generator, or double-click the "Status" column o the default

host details, which displays the "Load Generator Information" as shown in Figure.

Host Name refers to the identity of the system. Enter the name of the system in this field.

Select the platform (in case of our example select "Windows") and click the "OK" button.

Step 4: In the "Load Generators" dialog, click the "Connect" button to change the status of

the load generator from "Down" to "Ready" and click the "Disconnect" button to change the

status of the load generator from "Ready" to "Down".

Step 5: Click "Close" button to close the "Load Generators" dialog.

Step 6: In the "Load Runner Controller - Scenario 1" dialog, click the "Add Group" to create

the group for the virtual users. It then displays the "Add Dialog" as shown in Figure.

Enter the group name as "gl", select the host name from the "Load Generator Name" and

select the test script from the "Select Script" list box that has to be tested. Enter the number of

virtual users to be created in the "Vuser Quantity" and click the "OK" button.

Step 7: The Group "gl" will be displayed along with its host name and the number of virtual

users in the "Load Generator Controller - Scenariol" dialog as shown in Figure.

Step 8: Click "Vuser" button to view the virtual users. Initially all the users are in "Down"

State as shown in Figure. Select all the users and right click to select the "Initialize Vuser/s"

option as shown in Figure.

All the Vusers will change their state from "Down" - "Initializing" - "Ready" mode. Now to

run the Vusers, again select all the Vusers, right click and select "Run Vuser/s" or click the

"Run" button. The status of the Vusers will change from Ready - Running - Done. Passed or

Done. Failed.

Step 9: Once all the Vusers complete the execution of the script, it displays which user has

passed the test and which has not, as shown in Figure

If only 5 Vusers are allowed to test the "Weather India" application simultaneously, then all

the Vusers successfully complete the test as shown in Figure.This means that the "Server"

that is processing the requests is not able to take the load of all the 10 users at a time.

Step 10:Click the "Close" button to close the "Vusers" window.

Step 11: Analyze the test results.

Tools -> Analysis Load Runner internally opens the "Load Runner Analysis". It displays

"LoadRunner Analysis" dialog as shown in Figure.

It automatically displays the list of reports that can be analyzed. You can obtain the following

reports:

1. Running Vusers: Whole Scenario graph lets you monitor the number of Vusers that

are running at a given time.

2. Hits per second: Whole Scenario graph lets you monitor the number of hits (HTTP

requests) on the Web server made by Vusers during each second of the scenario run.

This enables you to follow the amount of load that is generated on the server.

3. Transaction Response Time - Whole Scenario graph lets you monitor the amount of

time it takes for each transaction to be completed. You can see how long it takes for

your customers to log on, search flights, purchase flights, check itineraries, and log

off the system

4. Windows Resources graph lets you monitor the Windows resource usage measured

during a scenario (such as CPU, disk, or memory utilization).

5. Throughput

Step 12: Analyze the results by studying graphs shown in Figure which shows the transaction

summary report.

The Transaction Summary report specifies the number of Vusers that passed and failed the

various sections of the script i.e. Action, Vuser_init,Vuser_end in the form of Bar graph.

gives the Throughput Report. The Throughput Report shows the rate which the Vusers run

the script and produce the test results.

"Running Vusers" report, shown in Figure, describes the elapsed time for each user in mnv.ss

format shows the graph which indicates the number of requests made by user per second1

5.3 JMeter
JMeter is a software that can perform load test, performance-oriented business

(functional) test, regression test, etc., on different protocols or technologies.

Stefano Mazzocchi of the Apache Software Foundation was the original developer of

JMeter.

Apache later redesigned JMeter to enhance the GUI and to add functional

testing capabilities.

JMeter is a Java desktop application with a graphical interface that uses the Swing

graphical API. It can therefore run on any environment / workstation that accepts a Java

virtual machine, for example: Windows, Linux, Mac, etc.

The protocols supported by JMeter are:

 Web: HTTP, HTTPS sites 'web 1.0' web 2.0 (ajax, flex and flex-ws-amf)

 Web Services: SOAP / XML-RPC

 Database via JDBC drivers

 FTP Service

JMeter Features

Following are some of the features of JMeter:

 Being an open source software, it is freely available.

 It has a simple and intuitive GUI.

 JMeter can conduct load and performance test for many different server types:

Web HTTP, HTTPS, SOAP, Database via JDBC, LDAP, JMS, Mail - POP3, etc.

 It is a platform-independent tool. On Linux/Unix, JMeter can be invoked by

clicking on JMeter shell script. On Windows, it can be invoked by starting the

jmeter.bat file.

 It has full Swing and lightweight component support (precompiled JAR uses

packages javax.swing.*).

 JMeter stores its test plans in XML format. It means you can generate a test plan

using a text editor.

 Its full multi-threading framework allows concurrent sampling by many threads

and simultaneous sampling of different functions by separate thread groups.

 It is highly extensible.

 It can also be used to perform automated and functional testing of the applications

How JMeter Works?

 JMeter simulates a group of users sending requests to a target server, and returns

statistics that show the performance/functionality of the target server/application

via tables, graphs.

 Take a look at the following figure that depicts how JMeter works:

Fig: Working process of JMeter

JMeter test plan

Test Plan

 A Test Plan can be viewed as a container for running tests. It defines what to test and

how to go about it.

 A complete test plan consists of one or more elements such as thread groups, logic

controllers, sample-generating controllers, listeners, timers, assertions, and

 configuration elements. A test plan must have at least one thread group.

Writing a Test Plan

Follow the steps given below to write a test plan:

Step 1: Start the JMeter Window

Open the JMeter window by clicking /home/manisha/apache-jmeter-

2.9/bin/jmeter.sh.

The JMeter window will appear as shown below:

This is a plain and blank JMeter window without any additional elements added to it. It

contains two nodes:

 Test Plan node: It is where the real test plan is kept.

 Workbench node: It simply provides a place to temporarily store test elements while

not in use, for copy/paste purposes. When you save your test plan, Workbench items

are not saved with it.

Step 2: Add/Remove Elements

 Elements can be added to a test plan by right-clicking on the Test Plan node and

choosing a new element from the "add" list.

 Alternatively, you can load an element from a file and add it by choosing the "merge"

or "open" option.

For example, let us add a Thread Group element to a Test Plan as shown below:

To remove an element, make sure the element is selected, right-click on the element, and

choose the "remove" option.

Step 3: Load and Save the Elements

To load an element from file:

 Right-click on the existing tree element to which you want to add the loaded element.

 Select Merge.

 Choose the file where you saved the elements.

 JMeter will merge the elements into the tree.

By default, JMeter does not save the element, you need to explicitly save it.

To save a tree element:

 Right-click on the element.

 Choose the Save Selection As ... option.

 JMeter will save the element selected, plus all the child elements beneath it. By

default,

 JMeter doesn't save the elements, you need to explicitly save it as mentioned earlier.

Step 4: Configure the Tree Elements

 Any element in the Test Plan can be configured using the controls present in JMeter's

righthand side frame. These controls allow you to configure the behavior of that

particular test element.

 For example, the Thread Group can be configured for a number of users, ramp up

periods, etc., as shown below:

Step 5: Save the Test Plan

You can save an entire Test Plan by using either Save or "Save Test Plan As ..." from the

File menu.

Step 6: Run the Test Plan

You can run the Test Plan by clicking Start (Control + r) from the Run menu item.

When JMeter starts running, it shows a small green box at the right-hand end of the section

just under the menubar.

The numbers to the left of the green box are the number of active threads / total number of

threads. These only apply to a locally run test; they do not include any threads started on

remote systems when using client-server mode.

Step 7: Stop the Test Plan

You can stop your test in two ways:

 Using Stop (Control + '.'). It stops the threads immediately if possible.

 Using Shutdown (Control + ','). It requests the threads to stop at the end of any

 current work.

Jmeter Test Plan Elements

 A JMeter Test Plan comprises of test elements.

 A Test Plan comprises of at least one Thread Group. Within each Thread Group, we

may place a combination of one or more of other elements: Sampler, Logic

Controller, Configuration Element, Listener, and Timer.

 Each Sampler can be preceded by one or more Pre-processor element, followed by

Post-processor element, and/or Assertion element. Let us see each of these elements

in detail

Thread Group

Thread Group elements are the beginning points of your test plan. As the name

suggests, the thread group elements control the number of threads JMeter will use during the

test. We can also control the following via the Thread Group:

 Setting the number of threads

 Setting the ramp-up time

 Setting the number of test iterations

The Thread Group Control Panel looks like this:

The Thread Group Panel holds the following components:

 Action to be taken after a Sampler error: In case any error occurs during test

execution, you may let the test either:

 Continue to the next element in the test

 Stop Thread to stop the current Thread.

 Stop Test completely, in case you want to inspect the error before it continues

running.

 Number of Threads: Simulates the number of users or connections to your server

application.

 Ramp-Up Period: Defines how long it will take JMeter to get all threads running.

 Loop Count: Defines the number of times to execute the test.

 Scheduler checkbox: Once selected, the Scheduler Configuration section appears at

the bottom of the control panel.

 Scheduler Configuration: You can configure the start and end time of running the

test.

 Controllers

JMeter has two types of Controllers: Samplers and Logic Controllers.

Samplers

Samplers allow JMeter to send specific types of requests to a server. They simulate a

user request for a page from the target server. For example, you can add a HTTP Request

sampler if you need to perform a POST, GET, or DELETE on a HTTP service.

Some useful samplers are:

 HTTP Request

 FTP Request

 JDBC Request

 Java Request

 SOAP/XML Request

 RPC Requests

The following screenshot shows an HTTP Request Sampler Control Panel:

Logic Controllers

Logic Controllers control the order of processing of Samplers in a Thread. Logic

controllers can change the order of a request coming from any of their child elements. Some

examples are: For Each Controller, While Controller, Loop Controller, IF Controller, Run

Time Controller, Interleave Controller, Throughput Controller, and Run Once Controller.

The following screenshot shows a Loop Controller Control Panel:

The following list consists of all the Logic Controllers JMeter provides:

 Simple Controller

 Loop Controller

 Random Controller

 Runtime Controller

 If Controller

 While Controller

 Switch Controller

 ForEach Controller

 Module Controller

 Include Controller

 Transaction Controller

 Recording Controller

Test Fragments

A Test Fragment is a special type of element placed at the same level as the Thread

Group element. It is distinguished from a Thread Group in that it is not executed unless it is

referenced by either a Module Controller or an Include_Controller. This element is purely for

code re-use within Test Plans.

Listeners

Listeners are used to view the results of Samplers in the form of tables, graphs, trees,

or simple text in some log files. They provide visual access to the data gathered by JMeter

about the test cases as a Sampler component of JMeter is executed. Listeners can be added

anywhere in the test, including directly under the test plan. They will collect data only from

elements at or below their level. The following list consists of all the

Listeners JMeter provides:

 Sample Result

 Graph Results

 Spline Visualizer

 Assertion Results

 View Results Tree

 Aggregate Report

 View Results in Table

 Simple Data Writer

 Monitor Results

 Distribution Graph (alpha)

 Summary Report

Timers

By default, a JMeter thread sends requests without pausing between each sampler.

This may not be what you want. You can add a timer element which allows you to define a

period to wait between each request.

The following list shows all the timers that JMeter provides:

 Constant Timer

 Gaussian Random Timer

 Uniform Random Timer

 Constant Throughput Timer

 Synchronizing Timer

 JSR223 Time

 BeanShell Time

 BSF Time

 Poisson Random Time

The following screenshot shows a Constant Timer Control Panel:

Assertions

Assertions allow you to include some validation test on the response of your request

made using a Sampler. Using assertions you can prove that your application is returning the

correct data. JMeter highlights when an assertion fails.

The following list consists of all the assertions JMeter provides:

 Beanshell Assertion

 BSF Assertion

 Compare Assertion

 JSR223 Assertion

 Response Assertion

 Duration Assertion

 Size Assertion

 XML Assertion

 HTML Assertion

 XPath Assertion

 XML Schema Assertion

The following screenshot shows a Response Assertion Control Panel:

Configuration Elements

Configuration Elements allow you to create defaults and variables to be used by

Samplers. They are used to add or modify requests made by Samplers. They are executed at

the start of the scope of which they are part, before any Samplers that are located in the same

scope. Therefore, a Configuration Element is accessed only from inside the branch where it is

placed.

The following list consists of all the Configuration Elements that JMeter provides:

 Counter

 CSV Data Set Config

 FTP Request Defaults

 HTTP Authorization Manager

 HTTP Cache Manager

 HTTP Cookie Manager

 HTTP Proxy Server

 HTTP Request Defaults

 HTTP Header Manager

 Java Request Defaults

Pre-processor Elements

A pre-processor element is something that runs just before a sampler executes. They

are often used to modify the settings of a Sample Request just before it runs, or to update

variables that are not extracted from response text. The following list consists of all the pre-

processor elements that JMeter provides:

 HTML Link Parser

 HTTP URL Re-writing Modifier

 HTTP User Parameter Modifier

 User Parameters

 JDBC Pre-processor

Post-processor Elements

A post-processor executes after a sampler finishes its execution. This element is most

often used to process the response data, for example, to retrieve a particular value for later

use.

The following list consists of all the post-processor elements that JMeter provides:

 Regular Expression Extractor

 XPath Extractor

 Result Status Action Handler

 JSR223 Post-processor

 JDBC Post-processor

 BSF Post-processor

 CSS/JQuery Extractor

 BeanShell Post-processor

 Debug Post-processor

Execution Order of Test Elements
Following is the execution order of the test plan elements:

1. Configuration elements

2. Pre-Processors

3. Timers

4. Sampler

5. Post-Processors (unless SampleResult is null)

6. Assertions (unless SampleResult is null)

7. Listeners (unless SampleResult is null)

JMeter has some limitations especially when it is run in a distributed environment.

Following these guidelines will assist in creating a real and continuous load:

 Use multiple instances of JMeter in case, the number of threads are more.

 Check the Scoping Rules and design accordingly.

 Use naming conventions always for all elements.

 Check the default browser Connectivity settings, before executing scripts.

 Add Listeners appropriately.

5.4 TEST DIRECTOR

Mercury Interactive TestDirector is an excellent tool for managing the testing process

effectively. To deliver quality software, the testing process has to be very well defined and

managed.

The important features of TestDirector are listed below:

 It is a web-based tool (the earlier versions being Client/Server based) and hence it

facilitates distributed testing.

 As testing the software is linked to the requirements of the software, it provides the

feature of linking the software requirements to the testing plan.

 It provides the features to document the testing procedures.

 It provides the feature of scheduling the manual and automated tests—the testing can

be done during nighttimes or when the system load is less

 It provides the feature of setting groups of machines to carry out testing. For example,

if you want to test the software on both Windows and Linux machines, you can group

the machines based on their OS.

 It keeps a history of all the test runs.

 The audit trail feature allows keeping track of changes in the tests and test runs.

 It keeps a log of all defects (or bugs) found and the status of each bug can be changed

by authorized persons only.

 It provides the feature of creating different users with different privileges (e.g.,

developer, tester, QA manager, beta tester etc.).

 It generates test reports and analysis for the QA manager to decide when the software

can be released into the market.

TEST MANAGEMENT PROCESS

While using the TestDirector, the testing management process can be defined using the

following four steps:

 Testing Requirements management

 Test planning

 Design and develop tests

 Run the tests in manual mode or automatic mode

 Test execution

 Test results analysis

 Analyze the defects Accordingly,

Managing the Testing Process Using Testdirector

The TestDirector testing process includes four phases:

Test Requirements Management

Requirements Manager is used to link the requirements with the tests to be carried

out. Each requirement in the Software Requirement Specification(SRS) has to be tested at

least once.

In the SRS, the functional requirements and performance requirements are specified.

Functional requirements are generated from use-case scenarios. Performance requirements

are dependent on the application.

Specifying Requirements

 Requirements are linked to tests and defects to provide complete traceability and

aid the decision-making process.

 See what percent of requirements are covered by tests

https://www.wisdomjobs.com/e-university/testing-tools-tutorial-239/testing-management-process-14523.html

 Each requirement in the tree is described in detail, and can include any relevant

attachments. The QA tester assigns the requirement a priority level which is taken

into consideration when the test team creates the test plan

Test Planning

In test planning, the QA manager does a detailed planning and addresses the following issues:

 Hardware and software platforms on which the testing has to be carried out.

 The various tests to be performed (functional/regression testing, performance testing,

source code testing etc).

 Time schedule for conducting the tests.

 Roles and responsibilities of the persons associated with the project.

 Procedure for running the tests (manual or automatic).

 Various test cases to be generated.

 Procedure for tracking the progress of the testing.

 Documents to be generated during the testing process.

 The test engineers also identify the common test scripts that can be reused to test

different modules and map the workflow between tests.

 The test plan is communicated to all the test engineers and also the development team.

Note: TestDirector can be integrated with other tools such as WinRunner and LoadRunner.

Hence, the test scripts generated using these tools can be incorporated in the test plan.

Test Execution

 As the application constantly changes, using test lab, run manual and automated tests

in the project in order to locate defects and assess quality.

 By creating test sets and choosing which tests to include in each set, test suite can be

created. A test set is a group of tests in a Test Director project database designed to

achieve specific testing goals.

 Tests can be run manually or scheduled to run automatically based on application

dependencies.

 In the case of automated testing, the test scheduling is done as per the plan.

 A history of all test runs is maintained and audit trail, to trace the history of tests and

test runs, is also maintained. During this phase, Test Sets are created. A test set is a set

of test cases

Test Results Analysis

In this phase, the test results are analyzed—which tests passed and which tests failed.

For the tests that failed, an analysis has to be carried out as to why they failed. Also, each bug

is classified based on its severity. A simple way of classification is

 Critical

 Major

 Minor

When a bug is reported to the developer, it is not enough if you inform that there is a

bug. we need to give additional information such as what is the problem, what is the system

configuration on which the test was run, what is the version of the software ?The bug report

is stored in a database.

Based on the bug tracking and analysis tools, the QA manager and the project manager can

take the decision whether the software can be released to the customer or still more testing is

required.

Tracking Defects:

Locating and repairing application defects efficiently is essential to the testing

process. Defects can be detected and added during all stages of the testing process.

In this phase you perform the following tasks:

 This tool features a sophisticated mechanism for tracking software defects, enabling

Testing Team and the project Team to monitor defects closely from initial detection

until resolution

 By linking TestDirector to e-mail system, defect tracking information can be shared

by all Development and Management Teams

 Software Quality Assurance personnel

