Arithmetic

 Micro-operations

 Micro-operations}

Definitions:-
A micro-operation is an elementary operation performed with the data stored in registers. Arithmetic Microoperations perform arithmetic operation on numeric data stored in registers.

The basic arithmetic micro operations are:-

- Addition
- Subtraction
- Increment
- Decrement

Addition
 Micro-operation

- The arithmetic add micro operation is given by the statement.
$\circ \mathbf{R} 3 \leftarrow \mathbf{R 1} 1+\mathbf{R} 2$
- It states that the contents of register R1 are added with the contents of register R2 and the result will be transferred to register R3.

4 - bit Binary Adder

Working

Add Micro operation can be implemented using Full adders. Each full adder takes 2 inputs from 2 numbers and a third input as a previous carry.
All the carries are connected in serial fashion to the next full adder.
Number of full adders depends upon number of bits of data. When $\mathbf{A}_{0} \mathbf{B}_{0}$ are added and initially \mathbf{C}_{0} is 0 then as a result \mathbf{S}_{0} gives the sum of \mathbf{A}_{0} and \mathbf{B}_{0} and so on.

Addition / Subtraction Micro-operation

- The arithmetic addition / subtract micro operation is given by the statements,
$\circ R 3<R 1+\overline{R 2+1}$
$\circ \mathbf{R} 3 \leftarrow \mathbf{R 1}+\mathbf{R} 2$
- The addition and subtraction operations are performed in one common circuit by including an exclusive-OR gate with each full adder.

4 - bit Adder - Subtractor

Working

The addition and subtraction operations can be combined into one common circuit by including an XOR gate with each full-adder.
With the help of a mode bit we can add or subtract.

- $\mathbf{M}=\mathbf{0}$

When M is 0 then $\mathrm{C}_{\text {in }}$ will be 0 and $0 \quad \oplus_{0}$ gives B_{0} then S_{0} will be the sum of A_{0} and B_{0}. hence by $M=$ 0 will perform addition.

- $M=1$

When M is 1 then $\mathbf{C}_{\text {in }}$ will be 1 and $1 \oplus_{0}$ gives \mathbf{B}_{0} then $\mathbf{A}_{0}+\mathbf{B}_{0}+1=\mathbf{A}_{0}-\mathbf{B}_{0}$ hence $\mathrm{M}=1$ will perform subtraction.

Increment Micro-operation

- The increment micro operation is given by the
statement,
- $\mathbf{R 1} \leftarrow \mathbf{R} 1+1$
- The contents of register R1 are incremented by one.

4 - bit Binary Incrementer

Working

The increment Micro operation adds 1 to a number in a register.
This Micro operation easily carried out using half adders as described in previous slide.
Each half adder needs 1 input and 1 carry. In the very first half adder the carry is 1 .
As this is the increment micro operation hence the carry is forward to the next half adder if generated and as a result sum bits $\mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{0}}$ are generated along with a possible carry out.

Arithmetic Circuit

The basic arithmetic micro operations (addition, subtraction, increment and decrement) can be performed in one composite arithmetic circuit.

Select			Input	Output	Micro operation
S_{1}	S_{0}	$C_{i n}$	Y	$D=A+Y+C_{i n}$	
0	0	0	B	$D=A+B$	Add
0	0	1	B	$D=A+B+1$	Add with Carry
0	1	0	\bar{B}	$D=A+\bar{B}$	Subtract with Borrow
0	1	1	\bar{B}	$D=A+\bar{B}+1$	Subtract
1	0	0	0	$D=A$	Transfer A
1	0	1	0	$D=A+1$	Increment A
1	1	0	1	$D=A-1$	Decrement A
1	1	1	1	$D=A$	Transfer A

Working

This arithmetic circuit can perform 8 operations among them some are :-

Addition:-

When $S_{1} S_{0}=00$, the value of B is applied to the Y inputs of the adder. If $C_{i n}=0$, the output $D=A+B$. if $C_{i n}=1$, output $\mathrm{D}=\mathrm{A}+\mathrm{B}+1$. Both cases perform the add microoperation with or without adding the input carry.

Subtraction:-

When $S_{1} S_{0}=01$, the value of B is applied to the Y inputs of the adder. If $\mathrm{C}_{\text {in }}=1$, then $\mathrm{D}=\mathrm{A}+\mathrm{B}+1$. this produces A plus the 2's complement of B, which is equivalent to a subtraction of $A-B$. when $C_{\text {in }}=0$, then $D=A+B$. this is equivalent to a subtract with borrow, that is,$A-B-1$.

Increment:-

When $S_{1} S_{0}=10$, the inputs from B are neglected, and instead, all 0 's are inserted into the y inputs. The output becomes $D=A+0+C_{\text {in }}$. This gives $D=A$ when $C_{\text {in }}=0$ and $D=A+1$ when $C_{i n}=1$. in the first case we have a direct transfer from the input A to output D. in the second case, the value of A is incremented by 1 .

Decrement:-

When $S_{1} S_{0}=11$, all 1's are inserted into the Y inputs of the adder to produce the decrement operation $\mathrm{D}=\mathrm{A}-1$ when $\mathrm{C}_{\text {in }}=0$. this is because a number with all 1 's is equal to the 2's complement of 1 (the 2's complement of binary 0001 is 1111). Adding number A to the 2 'complement of 1 produces $\mathrm{F}=\mathrm{A}+2$'s complement of $1=\mathrm{A}-1$ when $\mathrm{C}_{\text {in }}=$ 1, then $D=A-1+1=A$, which causes a direct transfer from input A to output D.

NOTE :-

Microoperation $\mathrm{D}=\mathrm{A}$ is generated twice , so there are only 7 distinct Microoperations in the arithmetic circuit.

