
1

UNIT 5 INTRODUCTION TO PYTHON LIBRARIES

Python Libraries- Introduction to Libraries- Creating and Exploring Packages-Numpy, SciPy,

matplotlib, Pandas, Scikit-learn- seaborn.

5.1 Python Libraries

 The Python Standard Library is a collection of exact syntax, token, and semantics of

Python.

 Python has a huge collection of libraries.

 The Python Standard Library contains hundreds of modules for performing common

tasks,

 Python’s standard library is very extensive, offering a wide range of facilities.

 A Python library is a reusable chunk of code that you may want to include in your

programs/ projects.

 Mostly it is written in C, and handles functionality like I/O and other core modules.

 Python supports very huge number of library files. Some examples are:

 Numpy

 SciPy

 Pandas

 Matplotlib

 Scikit-Learn

 Seaborn

 Keras

 PyTorch

 TensorFlow

5.2 Introduction to Libraries

 Library Definition: The library is having a collection of related functionality of codes

that allows you to perform many tasks without writing your code. It is a reusable chunk

of code that we can use by importing it in our program.

 A library means “a bundle of code.”.

 A library is a collection of pre-combined codes that can be used iteratively to reduce the

time required to code.

 They are particularly useful for accessing the pre-written frequently used codes, instead

of writing them from scratch every single time.

 The library contains built-in modules that provide access to system functionality such as

file I/O.

https://www.edureka.co/blog/python-libraries/#z3
https://www.edureka.co/blog/python-libraries/#z8
https://www.edureka.co/blog/python-libraries/#z10
https://www.edureka.co/blog/python-libraries/#z2
https://www.edureka.co/blog/python-libraries/#z4
https://www.edureka.co/blog/python-libraries/#z5
https://www.edureka.co/blog/python-libraries/#z1

2

 A library is a collection of modules.

5.3 Creating and Exploring Packages

 Module Definition: The module is a simple Python file that contains collections of

functions and global variables and with having a .py extension file.

 Package Definition: The package is a simple directory having collections of modules.

This directory contains Python modules and also having __init__.py file by which the

interpreter interprets it as a Package.

 Module can contain multiple objects, such as classes, functions, etc.

 A package can contain one or more relevant modules.

 A package is actually a folder containing one or more module files.

 The package folder contains a special file called __init__.py, which stores the package's

content.

 import statement:

 A file is considered as a module in python. To use the module, you have to

import it using the import keyword.

 import modules from packages using the dot (.) operator.

 import Game.Level.start

Syntax:

import module_name

Example:

import math

Syntax:

Example:

https://www.geeksforgeeks.org/__init__-in-python/

3

from module_name import member_name from math import pi

Syntax:

from module_name import *

Example:

from math import *

Syntax:

import module_name as alias_name

Example:

import math as ma

 Use the following steps to create a package in Python:

1. First, we create a directory and give it a package name, preferably related to its

operation.

2. Then create more modules in a directory, we put the classes and the required

functions in a module.

3. Finally we create an __init__.py file inside the directory, to let Python know that

the directory is a package.

 Example:

1. First create a directory (package) i.e name of the directory is Arithmetic

2. Create first module with name of the module is addition.py and define one

function i.e add() inside the addition.py file

def add(a,b):

 c=a+b

 print(f"Addition is :{c} ")

3. Create second module with name of the module is subtraction.py and define one

function i.e sub() inside the subtraction.py file

def sub(a,b):

 c=a-b

 print(f"Subtraction is :{c} ")

4. Finally create the __init__.py file. This file will be placed inside Arithmetic

directory and can be left blank.

5. Call(import) Arithmetic package in a program i.e ruff.py to perform addition and

subtraction of two numbers.

import Arithmetic.addition

import Arithmetic.subtraction

Arithmetic.addition.add(10,20)

Arithmetic.subtraction.sub(50,30)

Example:

1.Package name is Arithmetic

2.addition.py

Output:

Addition is :30

Subtraction is :20

4

def add(a,b):

 c=a+b

 print(f"Addition is :{c} ")

3.subtraction.py

def add(a,b):

 c=a+b

 print(f"Addition is :{c} ")

4.ruff.py

import Arithmetic.addition

import Arithmetic.subtraction

Arithmetic.addition.add(10,20)

Arithmetic.subtraction.sub(50,30)

5.4 Numpy

 NumPy (Numerical Python) is the fundamental package for numerical computation in

Python

 It is the most popular machine learning library in Python.

 NumPy is a Python library used for working with arrays.

 It also has functions for working in domain of linear algebra, fourier transform, and

matrices.

 It is an open source library.

 NumPy is one of the fundamental packages for Python providing support for large

multidimensional arrays and matrices.

 NumPy relies on BLAS and LAPACK for efficient linear algebra computations.

 NumPy can also be used as an efficient multi-dimensional container of generic data.

 NumPy is one of the most used libraries for tasks involving modern scientific

computations and evolving yet powerful domains like Data Science and Machine

Learning.

 It supports for powerful N-dimensional array objects and built-in tools for performing

intensive mathematical as well as scientific calculations.

 It is used for delivering high performance, interoperability with various computing

platforms and hardware, and ease of use.

https://www.simplilearn.com/tutorials/python-tutorial/numpy-tutorial
http://www.numpy.org/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://numpy.org/
https://towardsdatascience.com/a-tour-of-machine-learning-algorithms-466b8bf75c0a
https://towardsdatascience.com/a-tour-of-machine-learning-algorithms-466b8bf75c0a

5

 NumPy is the fundamental package for scientific computing with Python, adding support

for large, multidimensional arrays and matrices, along with a large library of high-level

mathematical functions to operate on these arrays.

 Features OfNumpy

 Interactive: Numpy is very interactive and easy to use.

 Mathematics: Makes complex mathematical implementations very simple.

 Intuitive: Makes coding real easy and grasping the concepts is easy.

 Lot of Interaction: Widely used, hence a lot of open source contribution

 Applications Of Numpy

 Extensively used in data analysis

 Creates powerful N-dimensional array

 Forms the base of other libraries, such as SciPy and scikit-learn

 Replacement of MATLAB when used with SciPy and matplotlib

Example:

import numpy as np

a=np.array([1,2,3,4,5])

b=np.array([[1,2,3],[4,5,6]])

print(a)

print(b)

print(type(a))

print(b.ndim)

print(a[2])

print(a[1:3])

x = a.copy()

x[0]=0

print(x)

print(b.shape)

Output:

[1 2 3 4 5]

[[1 2 3]

 [4 5 6]]

<class 'numpy.ndarray'>

2

3

[2 3]

[0 2 3 4 5]

(2, 3)

 import numpy library.

 NumPy package can be referred to as np instead of numpy.

 The indexes in NumPy arrays start with 0.

 array() - function to create arrays

 type() - the type of the object passed to it.

 ndim attribute - that returns an integer that tells us how many dimensions the array have.

 copy() – copy the content of one array into another.

 shape attribute - It returns an array has how many dimensions, and each dimension has

how many elements.

6

5.5 SciPy

 SciPy stands for Scientific Python.

 It provides more utility functions for optimization, stats and signal processing.

 Like NumPy, SciPy is open source so we can use it freely.

 SciPy is an open-source library used for solving mathematical, scientific, engineering,

and technical problems.

 It allows users to manipulate the data and visualize the data using a wide range of high-

level Python commands.

 SciPy is built on the Python NumPy extention.

 SciPy library contains modules for optimization, linear algebra, integration, and statistics.

 SciPy is a library used by scientists, analysts, and engineers doing scientific computing

and technical computing.

 It contains modules for optimization, linear algebra, integration, interpolation, special

functions, FFT, signal and image processing, ODE solvers, and other tasks common in

science and engineering.

 Features of Scipy

 Collection of algorithms and functions built on the NumPy extension of Python

 High-level commands for data manipulation and visualization

 Multidimensional image processing with the SciPy ndimage submodule

 Includes built-in functions for solving differential equations

 Applications of Scipy

 Multidimensional image operations

 Solving differential equations and the Fourier transform

 Optimization algorithms

 Linear algebra

 Subpackages in SciPy

Package Name Description

scipy.io File input/output

scipy.special Special Function

scipy.linalg Linear Algebra Operation

scipy.interpolate Interpolation

scipy.optimize Optimization and fit

scipy.stats Statistics and random numbers

scipy.integrate Numerical Integration

scipy.fftpack Fast Fourier transforms

scipy.signal Signal Processing

7

scipy.ndimage Image manipulation

 import the SciPy module using fromscipy import module statement.

 Ex : from scipy import constants - imported the constants module from SciPy

Example:

from scipy import special

a = special.exp10(3)

print(a)

b = special.exp2(3)

print(b)

c = special.sindg(90)

print(c)

d = special.cosdg(45)

print(d)

d = special.tandg(45)

print(d)

Output:

1000.0

8.0

1.0

0.7071067811865475

1.0

5.6 Matplotlib

 Matplotlib is one of the most popular Python packages used for data visualization.

 It is a cross-platform library for making 2D plots from data in arrays.

 It is used to create a wide variety of visualizations, including line plots, histograms, bar

charts, pie charts, scatter plots, tables, and many other styles.

 Matplotlib is a Python 2D plotting library that produces publication-quality figures in a

variety of hard-copy formats and interactive cross-platform environments.

 This 2D plotting library of Python is very famous among data scientists for designing

varieties of figures in multiple formats which is compatible across their respected

platforms.

 Features of Matplotlib:

 Usable as a MATLAB replacement, with the advantage of being free and open

source

 Supports dozens of backends and output types, which means you can use it

regardless of which operating system you’re using or which output format you

wish to use

8

 Pandas itself can be used as wrappers around MATLAB API to drive MATLAB

like a cleaner

 Low memory consumption and better runtime behavior

 Applications of Matplotlib:

 Correlation analysis of variables

 Visualize 95 percent confidence intervals of the models

 Outlier detection using a scatter plot etc.

 Visualize the distribution of data to gain instant insights

Example:

import matplotlib.pyplot as plt

import numpy as np

x = np.array([0, 6])

y = np.array([0, 250])

plt.plot(x, y)

plt.show()

x = np.array([1, 2, 6, 8])

y = np.array([3, 8, 1, 10])

plt.plot(x, y,'*r--')

plt.title("Example")

plt.xlabel("X-Axis")

plt.ylabel("Y-Axis")

plt.grid()

plt.show()

x = np.array(["A", "B", "C", "D"])

y = np.array([3, 8, 1, 10])

plt.bar(x,y,color="red")

plt.show()

y = np.array([35, 25, 25, 15])

l = ["Apples", "Bananas", "Mangoes", "Dates"]

plt.pie(y,labels=l)

plt.legend()

plt.show()

Output:

9

 Most of the Matplotlib utilities lies under the pyplot submodule, and are usually imported

under the plt alias.

 plot() function draws a line from point to point.

 keyword argument marker to emphasize each point with a specified marker

 title() function to set a title for the plot.

 xlabel() and ylabel() functions to set a label for the x- and y-axis

 grid() function to add grid lines to the plot.

 bar() function to draw bar graphs

 pie() function to draw pie charts

5.7 Pandas

 PANDAS referred as Python Data Analysis Library.

 PANDAS is another open source Python library for availing high-performance data

structures and analysis tools.

 Pandas is a machine learning library in Python that provides data structures of high-level

and a wide variety of tools for analysis

 It is an open source library.

 Ability to translate complex operations with data using one or two commands.

 Pandas have so many inbuilt methods for grouping, combining data, and filtering, as well

as time-series functionality.

 Ability to group and sort data, select best suited output for the apply method, and

provides support for performing custom types operations.

 Pandas enable the provision of easy data structure and quicker data analysis for Python

 It provides fast, expressive, and flexible data structures to easily work with structured

(tabular, multidimensional, potentially heterogeneous) and time-series data.

 It is used for solving modern Data Science and Machine Learning problems.

 Reading and writing data into multiple formats like csv, excel, sqletc

 Pandas is the “SQL of Python.”

 It is used to handle two-dimensional data tables in Python.

 Load data into data frames, select columns, filter for specific values, group by values, run

functions (sum, mean, median, min, max, etc.), merge dataframes and so on.

 It contains DataFrame as its main data structure.

 With DataFrame you can store and manage data from tables by performing manipulation

over rows and columns.

 Also create multi-dimensional data-tables.

 It was created for data analysis, data cleaning, data handling and data discovery

 Features Of Pandas

 An efficient DataFrame object for data manipulation

10

 Easy reshaping and pivoting of data sets

 Merging and joining of data sets

 Label-based data slicing, indexing, and subsetting

 working with time-series data

 Eloquent syntax and rich functionalities that gives you the freedom to deal with

missing data

 Enables you to create your own function and run it across a series of data

 High-level abstraction

 Contains high-level data structures and manipulation tools

 Manipulating data will be easier.

 Support for various operations such as Re-indexing, Iteration, Sorting,

Aggregations, Concatenations and Visualizations.

 Applications Of Pandas

 It is the best data analysis tool available for solving real-world problems

 General data wrangling and cleaning

 It is the best data analysis tool available for solving real-world problems

 ETL (extract, transform, load) jobs for data transformation and data storage, as it

has excellent support for loading CSV files into its data frame format

 Used in a variety of academic and commercial areas, including statistics, finance

and neuroscience

 Time-series-specific functionality, such as such as date range generation, moving

window, linear regression and date shifting.

Example:

import pandas as pd

df = pd.DataFrame({'States':['TN', 'AP', 'UP', 'MP'],

 'Capitals':['CHENNAI', 'AMARAVATHI',

'LUCKNOW', 'BHOPAL']})

df.to_excel('data1.xlsx')

df = pd.read_excel('data1.xlsx')

print(df)

Output:

States Capitals

0 TN CHENNAI

1 AP AMARAVATHI

2 UP LUCKNOW

3 MP BHOPAL

Example: Read csv file

import pandas as pd

df = pd.read_csv('stock.csv')

print(df.to_string())

new_df = df.dropna()

print(new_df.to_string())

x = df["maths"].mean()

print(x)

Output:

 Regno name science physics maths

0 111 aaa 89 78 56

1 222 bbb 54 87 64

11

 import pandas library alias name is pd.

 Data sets in Pandas are usually multi-dimensional tables, called DataFrames.

 loc attribute to return one or more specified row(s)

 dropna() - remove rows that contain empty cells.

 fillna() - replace empty cells with a value

 mean() - to calculate the mean value of the column

 median() - to calculate the median value of the column

 mode() - to calculate the mode value of the column

 drop_duplicates() – remove duplicates rows

5.8 scikit-Learn

 It is a Python library is associated with NumPy and SciPy.

 It is considered as one of the best libraries for working with complex data.

 It can be effectively used for a variety of applications which include classification,

regression, clustering, model selection, naive Bayes’, grade boosting, K-means, and

preprocessing.

 Scikit-Learn, which simply defines itself as “Machine Learning in Python.”

 It is designed to be interpolated into NumPy and SciPy.

 It is a simple tool for data analysis and mining-related tasks.

 It is open-source library files.

 It is being used for classification, regression and clustering to manage spam, image

recognition, drug response, stock pricing, customer segmentation etc.

 It also allows dimensionality reduction, model selection and pre-processing.

 Scikit-learn (Sklearn) is the most useful and robust library for machine learning in

Python.

 The sklearn library contains a lot of efficient tools for machine learning and statistical

modeling including classification, regression, clustering and dimensionality reduction

 Features Of Scikit-Learn

 Cross-validation: There are various methods to check the accuracy of

supervised models on unseen data.

 Supervised Learning algorithms: Almost all the popular supervised learning

algorithms, like Linear Regression, Support Vector Machine (SVM), Decision

Tree etc., are the part of scikit-learn.

 Unsupervised learning algorithms: starting from clustering, factor analysis,

principal component analysis to unsupervised neural networks.

 Feature extraction: Useful for extracting features from images and text

 Clustering: This model is used for grouping unlabeled data.

12

 Simple and efficient tools for predictive data analysis.

 It helps in all aspects and algorithms of Machine Learning, even Deep

Learning.

 It is easy to learn and use.

 Applications of Scikit-Learn

 clustering

 classification

 regression

 model selection

 dimensionality reduction

 Modelling process in Scikit-Learn

 Dataset Loading - A collection of data is called dataset.

 Preprocessing the Data - Before inputting that data to machine learning

algorithms, we need to convert it into meaningful data. This process is called

preprocessing the data.

 Splitting the dataset - To check the accuracy of our model, we can split the

dataset into two pieces-a training set and a testing set.

 Train the Model- use our dataset to train some prediction-model.

Example:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import

train_test_split

from sklearn.linear_model import

LinearRegression

dataset=pd.read_csv("fuel.csv")

print(dataset.head())

print(dataset.shape)

X = dataset['ENGINESIZE'].values.reshape(-1,1)

y = dataset['CO2EMISSIONS'].values.reshape(-

1,1)

X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=0)

regr = LinearRegression()

regr.fit(X_train, y_train)

print(regr.intercept_)

y_pred = regr.predict(X_test)

Output:

(1067, 13)

[126.18920155]

Actual Predicted

0 356 342.055315

1 209 220.385324

2 230 220.385324

3 212 232.159839

4 168 224.310162

13

df = pd.DataFrame({'Actual': y_test.flatten(),

'Predicted': y_pred.flatten()})

print(df)

plt.scatter(X_test, y_test, color='gray')

plt.plot(X_test, y_pred, color='red', linewidth=2)

plt.show()

5.9 seaborn

 Seaborn was designed to visualize the complex statistical models.

 It has the potential to deliver accurate graphs such as heat maps.

 Seaborn is a Python data visualization library based on matplotlib.

 It provides a high-level interface for drawing attractive and informative statistical

graphics.

 Seaborn is a data visualization library built on top of matplotlib and closely integrated

with pandas data structures in Python.

 Visualization is the central part of Seaborn which helps in exploration and understanding

of data.

 Seaborn aims to make visualization a central part of exploring and understanding data.

 Visualizing Statistical Data Using Seaborn.

 Seaborn which has powerful libraries to visualize and explore your data.

 Features Of Seaborn

 Dataset oriented API to determine the relationship between variables.

 Automatic estimation and plotting of linear regression plots.

 It supports high-level abstractions for multi-plot grids.

 Visualizing univariate and bivariate distribution.

 Provides a high-level interface to draw statistical graphics.

 Applications of Seaborn

 Distribution Plots

 Pie Chart

 Bar Chart

 Scatter Plots

 Pair Plots

 Heat maps

https://matplotlib.org/

14

 Distplot stands for distribution plot, it takes as input an array and plots a curve

corresponding to the distribution of points in the array.

 Import the Seaborn module with another name is sns

 load_dataset()-loading dataset

 jointplot() - Bivariate Distribution is used to determine the relation between two

variables.

 catplot() - Time series can be plotted using catplot() i.e barchart

Example:

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

dataset=pd.read_csv("fuel.csv")

sns.distplot(dataset['CO2EMISSIONS'],hist=False)

sns.jointplot(x = "ENGINESIZE",y =

'CO2EMISSIONS',data = dataset,kind='hex')

sns.catplot("CO2EMISSIONS", data=dataset,

color='green',kind='count')

Output:

	 Subpackages in SciPy
	 Modelling process in Scikit-Learn
	 Dataset Loading - A collection of data is called dataset.
	 Preprocessing the Data - Before inputting that data to machine learning algorithms, we need to convert it into meaningful data. This process is called preprocessing the data.
	 Splitting the dataset - To check the accuracy of our model, we can split the dataset into two pieces-a training set and a testing set.
	 Train the Model- use our dataset to train some prediction-model.

