

MASTER OF COMPUTER APPLICATIONS

TEACHER’S LAB MANUAL

II YEAR

 Sr. Asst. Professor

SREENIVASA INSTITUTE OF TECHNOLOGY

MANAGEMENT STUDIES

(Approved by AICTE, New Delhi, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC, Bangalore)

Murukambattu, Chittoor

MASTER OF COMPUTER APPLICATIONS

UNIX LAB

TEACHER’S LAB MANUAL

II YEAR I SEMESTER

Faculty In-Charge

Dr. M. Kalpana Devi
Professor, MCA Department

SREENIVASA INSTITUTE OF TECHNOLOGY

AND
MANAGEMENT STUDIES

(Autonomous)
(Approved by AICTE, New Delhi, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC, Bangalore)

Murukambattu, Chittoor – 517127

2018-19

MASTER OF COMPUTER APPLICATIONS

SREENIVASA INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC, Bangalore)

INSTITUTE VISION AND MISSION

INSTITUTE VISION
To emerge as a Centre of Excellence for Learning and Research in the

domains of engineering, computing and management.

INSTITUTE MISSION

 Provide congenial academic ambience with state-art of resources for

learning and research.

 Ignite the students to acquire self-reliance in the latest technologies.

 Unleash and encourage the innate potential and creativity of students.

 Inculcate confidence to face and experience new challenges.

 Foster enterprising spirit among students.

 Work collaboratively with technical Institutes / Universities / Industries of

National and International repute

DEPARTMENT VISION AND MISSION

PROGRAM EDUCATIONAL OBJECTIVES (PEO’S)

Graduates of Computer Applications shall

PEO1: Have Professional competency through the application of knowledge gained from
fundamental and advanced concepts of structural and functional components in software.
(Professional Competency)

PEO2: Excel in one’s career by critical thinking toward successful services and growth of
the organization or as an entrepreneur or through higher studies. (Successful Career Goals)

PEO3: Enhance Knowledge by updating advanced technological concepts for facing the
rapidly changing world and contribute to society through innovation and creativity.
(Continuing Education to Society)

DEPARTMENT VISION

To become the Centre of excellence for skilled software
professionals in Computer Applications.

DEPARTMENT MISSION

 Provide congenial academic ambiance with necessary

infrastructure and learning resources.

 Inculcate confidence to face and experience new challenge

from industry and society

 Ignite the students to acquire self reliance in the State-of-the

Art Technologies.

 Foster Enterprise spirit among students

PROGRAM OUTCOMES (PO’s)

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals

and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences and

engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety and the cultural, societal and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data and synthesis of the

information to provide valid conclusions.

PO5. Modern tool usage: Create, select and apply appropriate techniques, resources and modern

engineering and IT tools including prediction and modelling to complex engineering activities with an

understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable

development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

PO9. Individual and team work: Function effectively as an individual and as a member or leader in

diverse teams and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective

reports and design documentation, make effective presentations and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

LAB COURSE SYLLABUS, LAB COURSE OUTCOMES,
CO Vs PO

III MCA - I Semester L T P C

 0 0 3 2

16MCA217 UNIX LAB

PREREQUISITES: A course on “Operating System”.
Course Educational Objectives:

CEO1 To Practice Basic Unix Commands for Files and Directories.

CEO2 To Practice Vi editor and to know about awk .

CEO3 To Explore Basic Shell Script Programs.

Syllabus:

Practice the Following commands in UNIX

1. Entering commands.

2. Common Commands for Files and Directories

3. Searching Files

4. More about Listing Files

5. Permission Commands

6. Commands for viewing Long Files, to Print Files

7. Editing with vi Editor

8. Finding Patterns in Files

9. Compressing and Packing Files

10. Counting Lines , words and File Size

11. Working with Columns and Fields

12. Sorting the Contents of Files

13. Comparing Files

14. Editing and Formatting Files

15. Working with Dates and Times

16. Performing Mathematical Calculations.

17. Standard input and Output (Redirection Commands)

18. awk Utilities.

19. Write a Shell Script that copies multiple files to a directory.

20. Write a Shell Script (small calculator) that adds, subtracts, multiplies and divides the

given two integers. There are two division options: one returns the quotient and the

other returns reminder. The Script requires 3 arguments : The operation to be used and

two integer numbers. The options are add(-a), subtract(-s), multiply(-m), quotient(-c)

and reminder (-r).

21. Write a Shell Script that counts the number of lines and words present in a given

file.

22. Write a Shell Script that displays the list of all files in the given directory.

23. Write a Shell Script to generate a Multiplication Table.

24. Write a Shell Script to reverse the rows and columns of a matrix.

Course Outcomes:

On successful completion of this course, students will be able to:

COURSE OUTCOMES
POs

related
to COs

CO1
Demonstrate knowledge on working in the Unix
environment

PO1

CO2
Analyze the way in which programs and files are
manipulated in the Unix environment

PO2

CO3
Design and develop algorithms and programs using various
shell scripting .

PO3

CO4
Conduct investigation and test the networking commands
in managing multiple users

PO4

CO5
Use appropriate design tools to understand the
networking implementation in the Unix multiuser
environment

PO5

CO6
Follow ethical principles in designing and implementing
multitasking and multiuser environment.

PO8

CO7
Do experiments effectively as an individual and as a
member in a group.

PO9

CO8
Communicate verbally and in written form, the
understandings about the experiments.

PO10

CO9
Continue updating their skill related to Verilog HDL and
FPGA implementation for various application during their
life time

PO12

CO- PO MAPPING

Course

PO PO PO PO PO PO PO PO PO PO PO PO PO

CO 1 2 3 4 5 6 7 8 9 10 11 12

 U
N

IX
 L

ab

CO1 3 - - - - - - - - - - -

CO2 - 3 - - - - - - - - - -

CO3 - - 3 - - - - - - - - -

CO4 - - - 3 - - - - - - - -

CO5 - - - - 3 - - - - -

-

CO6 - - - - - - - 3 - - - -

CO7 - - - - - - - - 3 - - -

CO8 - - - - - - - - - 3 - -

CO9 - - - - - - - - - - - 3

Course Outcome Attainment (R13/R16)

Course Outcome Attainment (R18)

Day – To –
Day

Evaluation)

Fair Level 1
If Student scored less than 80% of the total mark
allotted.

Good Level 2
If Student scored greater than 80 % and less than 90%
of the total mark allotted.

Excellent Level 3
If Student scored greater than 90% of the total mark
allotted.

Term End
Exam (TEE)

Fair Level 1
If Student scored less than 80% of the total mark
allotted.

Good Level 2
If Student scored greater than 80 % and less than 90%
of the total mark allotted.

Excellent Level 3
If Student scored greater than 90% of the total mark
allotted.

Day – To –
Day

Evaluation

Fair Level 1
If Student scored less than 80% of the total mark
allotted.

Good Level 2
If Student scored greater than 80 % and less than 90% of
the total mark allotted.

Excellent Level 3
If Student scored greater than 90% of the total mark
allotted.

Internal
Practical

Exam

Fair Level 1
If Student scored less than 80% of the total mark
allotted.

Good Level 2
If Student scored greater than 80 % and less than 90% of
the total mark allotted.

Excellent Level 3
If Student scored greater than 90% of the total mark
allotted.

Term End
Exam (TEE)

Fair Level 1
If Student scored less than 80% of the total mark
allotted.

Good Level 2
If Student scored greater than 80 % and less than 90% of
the total mark allotted.

Excellent Level 3
If Student scored greater than 90% of the total mark
allotted.

RUBRICS FOR UNIX LAB

 Excellent(3) Good(2) Fair(1)

Conduct
Experiments

(CO1)

Student successfully
completes

the experiment, records
the data,

analyzes the experiment's
main

topics, and explains the
experiment concisely and

well.

Student successfully
completes

the experiment,
records the

data, and analyzes the
experiment's main

topics

Student successfully
completes

the experiment, records
the

data, and unable to
analyzes.

Analysis and
Synthesis

(CO2)

Thorough analysis of
program developed

designed

Reasonable analysis
of program developed

Improper analysis of
program developed

Design
(CO3)

Student understands what
needs to be tested and

designs an
appropriate experiment,

and explains the
experiment concisely and

well

Student understands
what needs to be

tested and designs an
appropriate
experiment.

Student understands
what needs to be tested

and
does not design an

appropriate
experiment.

Complex
Analysis &
Conclusion

(CO4)

Thorough
comprehension through

analysis/ synthesis

Reasonable
comprehension

through analysis/
synthesis

Improper comprehension
through analysis/

synthesis

Use modern
tools in

executing
the

programs
(CO5)

Student uses the tools to
develop and execute the

programs, and
understands the

limitations of the tool.

Student uses the tools
correctly.

Student uses the tools
correctly, unable to

understand properly.

Report
Writing
(CO6)

Status report with clear
and logical sequence of

parameter using excellent
language

Status report with
logical sequence of

parameter using
understandable

language

Status report not properly
organized

Lab safety
(CO7)

Student will demonstrate
good

understanding and follow
lab safety

Student will
demonstrate good

understanding of lab
safety

Students demonstrate a
little knowledge of lab

safety.

Ability to
work in
teams
(CO8)

Performance on teams is
excellent with clear
evidence of equal

distribution of tasks and
effort

Performance on
teams is good with

equal distribution of
tasks and effort

Performance on teams is
acceptable with one or

more
members carrying a larger

amount of the effort

Continuous
learning
(CO9)

Highly enthusiastic
towards continuous

learning

Interested in
continuous learning

Inadequate interest in
continuous learning

SREENIVASA INSTITUTE of TECHNOLOGY and MANAGEMENT

STUDIES (autonomous)

UNIX LAB

LABORATORY MANUAL

II MCA- I SEMESTER Regulation: 16

 FACULTY INCHARGE: DR. M. KALpANA DEvI
 DEsIGNATIoN : sR. AssT. pRoFEssoR
 DEpARTMENT: MCA

SITAMS

UNIX LABLABORATORY Subject Code
:16MCA217

INDEX

Signature of the faculty in-charge with date

Sl.
No.

Date Name of the Experiment/Exercise Page
No.

Marks Signature

1 Entering commands.
2 Common Commands for Files and

Directories

3 Searching Files
4 More about Listing Files
5 Permission Commands
6 Editing with vi Editor
7 Finding Patterns in Files
8 Compressing and Packing Files
9 Counting Lines , words and File Size
10 Working with Columns and Fields
11 Sorting the Contents of Files
12 Comparing Files
13 Editing and Formatting Files
14 Working with Dates and Times
15 awk Utilities.
16 Write a Shell Script that copies multiple files

to a directory.

17 Write a Shell Script (small calculator) that
adds, subtracts, multiplies and divides the
given two integers. There are two division
options: one returns the quotient and the
other returns reminder. The Script requires 3
arguments : The operation to be used and two
integer numbers. The options are add(-a),
subtract(-s), multiply(-m), quotient(-c) and
reminder (-r).

18 Write a Shell Script that counts the number of
lines and words present in a given file.

19 Write a Shell Script that displays the list of all
files in the given directory.

20 Write a Shell Script to generate a Multiplication
Table.

21 Performing Mathematical Calculations

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
(AUTONOMOUS)
MCA Department

Name: RollNo: Year&Sem : AY:

SNO. Experiment Name

K
no

w
le

d
ge

G
ai

ne
d

A
na

ly
si

s,
 D

es
ig

n
an

d
us

e
of

 M
od

er
n

T
oo

l/
T

ec
hn

iq
u

e
A

b
ili

ty
 o

f
do

in
g

ex
pe

ri
m

en
t

an
d

fo
ll

ow
in

g
of

 e
th

ic
al

pr

in
ci

pl
es

R
es

ul
t

&
C

on
cl

us
io

n

V
IV

A
 V

O
C

E

(C
om

m
un

ic
at

io
n,

L

on
g

L
ea

rn
in

g)

Total Signature
of the

Faculty

10 10 5 5 10 40

1 Entering commands.

2
Common Commands for
Files and Directories

3 Searching Files

4 More about Listing Files

5 Permission Commands
6 Editing with vi Editor

7 Finding Patterns in Files

8
Compressing and Packing
Files

9
Counting Lines , words
and File Size

10
Working with Columns
and Fields

11 Sorting the Contents of
Files

12 Comparing Files

13
Editing and Formatting
Files

14
Working with Dates and
Times

15 awk Utilities.

16
Write a Shell Script that
copies multiple files to a
directory.

17

Write a Shell Script (small
calculator) that adds,
subtracts, multiplies and
divides the given two
integers. There are two
division options: one

returns the quotient and the
other returns reminder.
The Script requires 3
arguments : The operation
to be used and two integer
numbers. The options are
add(-a), subtract(-s),
multiply(-m), quotient(-c)
and reminder (-r).

18

Write a Shell Script that
counts the number of lines
and words present in a given
file.

19
Write a Shell Script that
displays the list of all files in
the given directory.

20
Write a Shell Script to
generate a Multiplication
Table.

21
Performing Mathematical
Calculations

Total Attainment

% of Attainment

Level

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
(AUTONOMOUS)
MCA Department

S.No Experiment Name

CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9

K
n

ow
le

dg
e

A
na

ly
si

s

D
es

ig
n

C
om

p
le

x
A

na
ly

si
s

&

C
on

cl
u

si
on

U
se

 o
f

m
od

er
n

to

ol
s

C
om

m
un

ic
at

io
n

 a
b

ili
ty

E
th

ic
s

In
d

iv
id

ua
l /

T

ea
m

 w
or

k

L
if

e
L

on
g

L
ea

rn
in

g

1 Entering commands.

2
Common Commands
for Files and
Directories

3 Searching Files

4
More about Listing
Files

5
Permission
Commands

6 Editing with vi Editor

7
Finding Patterns in
Files

8
Compressing and
Packing Files

9
Counting Lines ,
words and File Size

10
Working with
Columns and Fields

11
Sorting the Contents
of Files

12 Comparing Files

13
Editing and
Formatting Files

14
Working with Dates
and Times

15 awk Utilities.

16

Write a Shell Script
that copies multiple
files to a directory.

17

Write a Shell Script
(small calculator) that
adds, subtracts,
multiplies and divides
the given two integers.
There are two division
options: one returns

the quotient and the
other returns
reminder. The Script
requires 3 arguments :
The operation to be
used and two integer
numbers. The options
are add(-a), subtract(-
s), multiply(-m),
quotient(-c) and
reminder (-r).

18

Write a Shell Script that
counts the number of
lines and words present
in a given file.

19

Write a Shell Script that
displays the list of all
files in the given
directory.

20
Write a Shell Script to
generate a
Multiplication Table.

21
Performing
Mathematical
Calculations

Average of Day– to – Day
evaluation (C1)

SITAMS

EXPERIMENT: 1

ENTERING COMMANDS
Page. No.

Aim:

To Perform Entering Commands

Commands:

Passwd : This command is used to his or her password

Syntax: $ passwd

Cal : This command display a calendar for any month or year.

Syntax: $Cal 2018

Who: This command is used to know the login details of all the current users.

Syntax: $who

Finger : This command provides complete information about other users on the system

Syntax: $finger

Write: This command is used to send short message to another user

Syntax: $write username

Talk: This command is an enhanced communication program

 Syntax: $talk username

Mesg: This command is used to accept or refuse messages sed via write or talk
command

 Syntax: $mesg username

Man: This command is used to display more information about other users

 Syntax: $man

Date: This command is used to display the current day date

 Syntax: $date

Clear: This command is used toclear the full screen

 Syntax: $clear

Exit: This command is used to exit to the terminal

 Syntax: $exit

1. ENTERING COMMANDS

[mca@linux ~]$ finger
Login Name Try Idle Login Time Office Office Phone
mca26 pts/2 Nov 17 12:00 (10.1.5.46)
mca30 pts/1 Nov 17 11:44 (10.1.5.48)

[mca@linux ~]$ who
mca30 pts/1 2017-11-10 11:44 (10.1.5.48)
mca26 pts/2 2017-11-10 12:00 (10.1.5.46)

mca45 pts/3 2017-11-10 12:02 (10.1.5.49)

[mca@linux ~]$ passwd
Changing password for user mca26.
Changing password for mca26
(current) UNIX password: *******
New UNIX password: *******
Retype new UNIX password: *******
passwd: all authentication tokens updated successfully.

[mca@linux ~]$ cal
 November 2017

Su Mo Tu We Th Fr Sa
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

[mca@linux ~]$ cal 6 2017
 June 2017

Su Mo Tu We Th Fr Sa
 1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

[mca@linux ~]$ write mca43
Hai , all the best to every one ……,
CTRL+D
[mca@linux ~]$ talk mca43
INBOX SENT MGS
Mca: Hai , all the best to every one Mca44:thank you,
[mca@linux ~]$ mesg y
[mca@linux ~]$ mesg n
[mca@linux ~]$ man cat

CAT(1) User Commands CAT(1)
NAME
cat - concatenate files and print on the standard output
SYNOPSIS cat [OPTION] [FILE]...
DESCRIPTION Concatenate FILE(s), or standard input, to standard output.
-A, --show-all
equivalent to –vET

[mca@linux ~]$ date
 Thu Nov 10 12:20:34 IST 2017

[mca@linux ~]$ clear
 clear the full screen.

[mca@linux ~]$ Exit
 Exit to the terminal.

SITAMS

EXPERIMENT: 2

COMMON COMMANDS FOR FILES AND
DIRECTORIES

Page No.

Aim:

 To perform files and directories commands

Commands:

Ls: This command is used to see all the files in the directory.

Syntax:

 ls -a: list all files including hidden files. These are files that start with “.”.

 ls -A: list all files including hidden files except for “.” and “..” – these refer to the entries for
the current directory, and for the parent directory.

 ls -R: list all files recursively, descending down the directory tree from the given path.

 ls -l: list the files in long format i.e. with an index number, owner name, group name, size,
and permissions.

 ls – o: list the files in long format but without the group name.

 ls -g: list the files in long format but without the owner name.

 ls -i: list the files along with their index number.

 ls -s: list the files along with their size.

 ls -t: sort the list by time of modification, with the newest at the top.

 ls -S: sort the list by size, with the largest at the top.

 ls -r: reverse the sorting order.

Cat: This command is used to create a new file in current directory.

$cat> filename // to create new file

$cat filename // to view content of file

$cat> file1 file2 file3 > destination // combines one or more files into another file

$cat> file1>>file2 //add or appends the content of file2

$cat> file@ > destination // displays list of files with similar names.

Pwd: This command is used to view current directory

$pwd -L: Prints the symbolic path.
$pwd -P: Prints the actual path.

Cd: This command is used to move between directories.

$cd // to move between directories

$cd filename // to change from one directory to another

$cd .. // used to come out of the directory

$cd ~ // move to previous directory

Mv: This command is used to move or remove files.

$mv <source file> <destination file> // move file to new file.

$mv <file1> <file2> <file3>……. <destination file> //move all files into destination file.

Cp: This command is used to copy a file from directory to another.

$cp <source file > <destination file> // copy file from source file to destination

$cp -r <directory name1> <directory number> // copies file from one directory to another
directory.

Ln: This command is used to create link between files which enables a single file at
two or more locations in the directory system.

$ln /home /dkrout/project project // it creates a hard link for a file in /home/drkout.

$ls -I // to seeif two files are hard linked to each other.

$ls -s /home/dkrout/mca1 mca2 // it will create symbolic link called mca2

Rm : this command removes the named files from the file system

$rm <filename> //used to remove a specified file

$rm -r <directoryname> //used to remove directory with file

$rm -I <filename> //used to remove file to move safely.

Mkdir: This command is used to make a directory.

$mkdir <directory name>

$rmdir<directory name> // to remove directory with all the files.

$rmdir<directory name> // to remove directory with all the files with its content..

2. COMMON COMMANDS FOR FILES AND
DIRECTORIES.

(i)ls COMMAND:

[mca@linux sitams] $ ls
regfile1 regfile2 regfile3 dir1 dir2 sym.lnk

[mca@linux sitams] $ ls -F
regfile1 regfile2 regfile3 dir1/ dir2/ sym.lnk@

[mca@linux sitams] $ ls -R
.
..
dir1 dir2 regfile1 regfile2 regfile3 sym.lnk
./dir1:
dir1file

(ii)cat COMMAND:

[mca@linux sitams] $ cat > file1
Unix is an operating system
.

[mca@linux sitams] $ cat file2

cat command is to create a file in the current directory

[mca@linux sitams] $ cat file2 >> file1
[mca@linux sitams] $ cat file1

Unix is an operating system.
cat command is to create a file in the current directory

[mca@linux sitams] $ file *
regfile1: ASCII text
dir2: empty
dir1: directory
regfile2: ASCII text
regfile: ASCII text

(iii) MOVING AROUND DIRECTORIES:

[mca@linux ~] $ cd sitams // to move to sitams from current directory
[mca@linux sitams] $ cd ~ //to move to home directory
[mca@linux ~] $ pwd //to view the Present Working Directory

/home/mca26
[mca@linux ~] $ cd .. [enter]
 Move to previous directory.
[mca@linux ~]$ cd home/sitams/mca/2year [enter]
 //to move to more directories at same time.

(iv) MOVING AND COPYING FILES:

[mca@linux sitams] $ cat file1
Unix is an operating system.

[mca@linux sitams] $ mv file1 file2 //moves the contents from file1 to
file2

 // content does not exists in file1
[mca@linux sitams] $ cat file2

Unix is an operating system.
[mca@linux sitams] $ cat file1

cat: file1:No such file or directory.
[mca@linux sitams] $ cp file1 file2 // the contents of file1 is copied to

file2
//content exists in both file1 andfile2

[mca@linux sitams]$ cat file1
Unix is an operating system.

[mca@linux sitams]$ cat file2
Unix is an operating system.

[mca@linux sitams]$ rm file3 //the file3 is removed from current
directory

 rm: remove regular file ‘file3’?y
[mca@linux sitams]$ cat file3

file3: work: No such file or directory
[mca@linux sitams]$ mkdir dir3 //makes a new directory called dir3
[mca@linux sitams]$ cd dir3 // move to dir3 directory
[mca@linux sitams dir3]$
[mca@linux sitams]$ rmdir dir3 //removes the directory dir3
[mca@linux sitams] $ cd dir3

-bash: cd: dir3: No such file or directory

SITAMS

EXPERIMENT: 3

SEARCHING COMMANDS
Page No.

Aim:

 To search the contents in the one or more directories.

Searching Files:

 Using find.
 Running find in background.
 Other search criteria.

Using find:

 ‘find’ command used to search the contents in one or more directories including all sub
directories.

Syntax:

1. $find /_name new. Data-print //search starts from root directory and display the files that
matches filename.

2. $find/temp/project-name new. Data-print //searches in its current and its subdirectories.
3. $find.-name “*data”-print //searches from all files in current directory that ends with

data.

Running find in background:

 To achieve multitasking feature of Unix system we use this command.

Syntax:

 $find /-name new. Data-print > found & //searches the file from room directory and
results are send to found file.

Other search criteria:

Search criteria can be specified in the find command.

Syntax:

 $find.-name “music” –u sue-m times +7-print //To search four a file called music
belonging to user ‘sue’ that was modified more than a week ago.

3.SEARCHING COMMANDS.

[mca@linux sitams]$pwd //it displays present work directory.//
 /home/unix

[mca@linux sitams]$ find . -name "mca*"

./mca4

./mca1

./mca3

./mca2

[mca@linux sitams]$ find . -name "mca*"> pgcourse
[mca@linux sitams]$ cat pgcourse

./mca4

./mca1

./mca3

./mca2

[mca@linux sitams]$ find .name “music” –u &ue –ontime +7 –print

-ontime //option is used to specify the number of days it hs been since the file was modified

-u //option is used to search the files to a particular..

SITAMS

EXPERIMENT: 4

MORE ABOUT LISTING FILES
Page No.

Aim:

 To perform listing files in various types.

Commands:

 Listing hidden files.
 Controlling the way ls display file names.
 Showing non printing character.
 Sorting listings.
 Combining option to ls and the long form to ls.

Listing hidden files:

 Due to some reasons we have to hide the files. We can view the hidden files using “ls
with –a”.

Syntax:

1. $ls-a // list files including hidden files.
2. $ls // To list current directories.

Controlling the way ls display file names:

 By default ls command displays files in multiple columns, sorted down the column as

Syntax:

 $ls-x // To display file names horizontally in as many lines as necessary.

Showing non printing character:

 For suppose, we have missed a single character while making a file, such missed
character is said to be non printing character.

Syntax:

 $ls-b // replaces a non printing character with its octal code.

Sorting listings:

 Several options enable to control the order in which ls sorts its output.

Syntax:

1. $ls-t //most recently changed files are listed first.
2. $ls-r // lists files in reverse alphabetical order.

4.MORE ABOUT LISTING FILES.

ls options file|dir

options can be

Option description

ls -a list all files including hidden file starting with '.'

ls –color colored list [=always/never/auto]

ls –d list directories - with ' */'

ls –F add one char of */=>@| to entries

ls –i list file's inode index number

ls -l list with long format - show permissions

ls -la list long format including hidden files

ls -lh list long format with readable file size

ls -ls list with long format with file size

ls -r list in reverse order

ls -R list recursively directory tree

ls -s list file size

ls -S sort by file size

ls -t sort by time & date

ls –X sort by extension name

[mca@linux sitams]$ ls –a //includes hidden files also

. .. regfile1 regfile2 regfile3 dir1 dir2 sym.lnk

[mca@linux sitams]$ ls –x //lists files row wise

 abc biggest cal
 dir1 dir2 dir3
 hello sample1 sample2

[mca@linux sitams]$ ls –l //lists files in long form

total 20
-rw-rw-r-- 1 mca mca 56 Jun 16 14:16 regfile1
-rw-rw-r-- 1 mca mca 29 Jun 16 14:22 regfile2
drwxrwxr-x 2 mca mca 4096 Jun 16 14:07 dir1
-rw-rw-r--1 mca mca 0 Jun 16 14:35 regfile3

[mca@linux sitams]$ ls –F // Lists files with marks that indicates the type of
file

regfile1 regfile2 regfile3 dir1/ dir2/ sym.lnk@ mulline* // @ for symbolic link, /
for

directory*for executable file

[mca@linux sitams]$ ls –R // Lists the contents of subdirectories also
regfile1 regfile2 regfile3 dir1 dir2 sym.lnk mulline

 dir1
 file1
 file2
 dir2
 file3
 file4

[mca@linux sitams]$ ls –S

0 Regfile3 29 regfile2 56 regfile1 4096 dir1

SITAMS

EXPERIMENT: 5

PERMISSION COMMANDS
Page No.

Aim:

 To perform the permission commands.

Permission commands:

Chmod command:

 This command is used to alter a files permissions.

Syntax:

1. $chmod ugo+rwx quotations // To add permissions.

$ls –l quotations.

2. $chmod go-rx quotations // To remove permissions.

$ls –l quotations.

Setting permissions:

 Absolute permissions.
 Relative permissions.
 Umask.

Absolute permissions:

 Absolute permissions are set by using a numeric code to specify them. Code represents a
files permission by 3 digits.

Syntax:

 $chmod 700 quotations // To set absolute permission.

 $ls –l quotation.

Relative permission:

 Relative permission are set using the ugo +/- rwx notation.

Syntax:

1. $chmod go –rwx * //to remove read, write and execute permissions except hidden files in
current directory.

2. $chmod –R u+r email // changes to all of the files and subdirectories in directory.

Umask:

 Umask is also used to alter file permissions. It uses a numeric code for representing
absolute permissions.

Syntax:

1. $umask 777 // means read, write and execute permissions for user, group and others.
2. $umask 022 //all new files in this session will be given permissions.

5.CHANGING PERMISSION COMMANDS:

chmod is used to change the permissions of files or directories. Permission setting can be done in two

ways

1) Relative Permission Setting

2) Absolute Permission Setting

1) Relative Permission Setting

General Form of Relative Permission Setting using chmod

 Chmod options permissions filename

Following are the symbolic representation of different options:

 u is for user,

 g is for group,

 and o is for others.

Following are the symbolic representation of different permissions:

 r is for read permission,

 w is for write permission,

 x is for execute permission

[mca@linux sitams] $$ls -l testfile

 -rwxrwxrwx 1 amrood users 1024 Nov 12 00:10 testfile

[mca@linux sitams]$$chmod u-x testfile

[mca@linux sitams]$$ls -l testfile

 -rw-rwxrwx 1 amrood users 1024 Nov 12 00:10 testfile

[mca@linux sitams] $$chmod g = rx testfile

[mca@linux sitams]$$ls -l testfile

 -rw-r-xrwx 1 amrood users 1024 Nov 12 00:10 testfile

Here's how you can combine these commands on a single line −

[mca@linux sitams]$$chmod o+wx,u-x,g = rx testfile

[mca@linux sitams]$$ls -l testfile

 -rw-r-xrwx 1 amrood users 1024 Nov 12 00:10 testfile

2) Obosulte Permission Setting

S.No. Chmod operator & Description

1 + Adds the designated permission(s) to a file or directory.

2 - Removes the designated permission(s) from a file or directory.

3 = Sets the designated permission(s).

General Form of obsolute Permission Setting using chmod

 Chmod 3digitnumber filename

 Each digit is a combination of the numbers 4, 2, 1, and 0:

 4 stands for "read",

 2 stands for "write",

 1 stands for "execute", and

 0 stands for "no permission."

So 7 is the combination of permissions 4+2+1 (read, write, and execute), 5 is 4+0+1(read, no write, and

execute), and 4 is 4+0+0 (read, no write, and no execute).

ca@linux sitams]$ chmod 777 file1 // obsolute Permission Setting

-rwxrwxrwx 1 mca mca 28 Jun 16 14:37 file1

[mca@linux sitams]$ chmod 744 file2 // all permission to user and only read permission to

group and others

-rwxr--r-- 1 mca mca 28 Jun 16 14:37 file1

SITAMS

EXPERIMENT: 6

EDITING WITH VI EDITOR
Page No.

Aim:

 To edit a file using vi editor.

Procedure:

Step1: open a file for editing by typing

 [mca@linux~] $vi sample

 This is unix lab

 The file is to illustrate the vi editor

 Through which file can be edited.

 Add lines

 This lines is added in the end of the file.

Step2: press ‘esc:wq!’ to save the file content and quit the editor.

Commands to edit the files:

Pointer moving commands:

K //moves the cursor up one line.

J // moves the cursor down one line.

H // moves the cursor to the left one character position.

L // moves the cursor to the right one character position

Editing commands:

 i // inserts text before the current cursor location.

 I // inserts text at the beginning of the current line.

 a // inserts text after the current cursor location.

 A // inserts text at the end of the current line.

 o // creates a new line for text entry below the cursor location.

 O // creates a new line for text entry above the cursor location.

6.EDITING WITH VI EDITOR:

[mca@linux ~]$ cat > sample

This is unix lab

This file is to illustrate the vi editor

Through which file can be edited

[mca@linux ~]$ cat sample

This is unix lab

This file is to illustrate the vi editor

Through which file can be edited

[mca@linux ~]$ vi sample

This is unix lab

This file is to illustrate the vi editor

Through which file can be edited

Add lines

This line is added in the end of the file

[mca@linux ~]$ cat sample

This is unix lab

This file is to illustrate the vi editor

Through which file can be edited

Add lines

This line is added in the end of the file

SITAMS

EXPERIMENT: 7

FINDING PATTERNS IN FILES
Page. No.

Aim:-

 To implement finding patterns in files.

Commands:-

1. The grep Command

2. The fgrep Command

3. The egrep Command

1.The grep Command:-

 This grep command displays all the lines from the files which contains specified pattern.

Syntax:-

$ grep ‘searchword/pattern’ filename.

i. $grep–i // ignores the case i.e., matches either upper or lowercase.
ii. $grep–v // displays lines or files that doesn’t contains search pattern.

iii. $grep –n // prints the matched line and its line numbers.
iv. $grep –l // prints only the name of file which matching lines.
v. $grep –c // prints only the count of matching lines.

2. The fgrep Command:-

 This command searches for multiple targets and doesnot allow regular expressions.

Syntax:-

 $fgrep “searchword1

 searchword2

 searchword3”filename.

7.FINDING PATTERNS IN FILES:

(i) grep COMMAND:
[mca@linux ~]$ cat > sample

This is unix lab
The commands searches pattern in a file
We are doing commands

[mca@linux ~]$ cat sample
This is unix lab
The commands searches pattern in a file
We are doing commands

[mca@linux ~]$ grep commands sample
The commands searches pattern in a file
We are doing commands

[mca@linux ~]$ grep "unix" sample //displays line that contains “unix” pattern
This is unix lab

[mca@linux ~]$ grep lab * //displays files and corresponding lines where the pattern
“lab”exists

Sample:This is unix lab
[mca@linux ~]$ grep -i unix sample // -i to ignore the case

This is unix lab
[mca@linux ~]$ grep -v unix sample // to display lines that does not contain “unix”
pattern

The commands searches pattern in a file
We are doing commands

[mca@linux ~]$ grep -n unix sample// displays matched lines with line numbers
1:This is unix lab

[mca@linux ~]$ grep -l unix sample //displays the filenames which contains the pattern
unix

Sample
Demo

[mca@linux ~]$ grep -c unix sample// displays number of lines that contains the pattern
“unix” in sample file

(ii) fgrep COMMAND:

[mca@linux ~]$ fgrep "unix
> pattern
> file" sample
This is unix lab
The commands searches pattern in a file

(iii) egrep COMMAND:

[mca@linux ~]$egrep "unix|file|commands" sample

This is unix lab
The commands searches pattern in a file
We are doing commands

SITAMS

EXPERIMENT: 8

COMPRESSING AND PACKING FILES
Page. No.

Aim:-

 To implement compressing and packing files.

Commands:-

1. The pack command

2 .The compress command

3. The gzip command

1. The pack command:-

 The pack command replaces a file with compressed version.
 The compressed file has ‘.z’ extension appended to the filename, to indicate how it was

compressed.

Syntax:-

 $ pack filename

To uncompress the compressed file, use “unpack” command.

Syntax:-

 $unpack filename

2. The compress command:-

 The “compress” command works much the same as ‘pack’ command.
 It adds ‘-z’ [upper case] at the end of compressed file.

Syntax:-$compress filename

 It is also possible to uncompress the file using “uncompress” command.
Syntax:-$uncompress filename

3. The gzip command:-

 The gzip commands also replace a file with a compressed version.
 A compressed file with gzip has ‘-gz’ extension.

Syntax:-$gzip filename

 To uncompress the file using gzip, use either ‘gzip –d’ or ‘gunzip’.

Syntax:-$gunzip filename

8.Compressing and packing Files:

[mca@linux ~]$ pack research_data

 pack:research_data 45.4% compression

[mca@linux ~]$ ls research*

 research_data.z

[mca@linux ~]$ unpack research_data

 unpack:research_data : unpacked

[mca@linux ~]$ ls research*

 research_data

[mca@linux ~]$ compress research_data

[mca@linux ~]$ ls research*

 research_data.Z

[mca@linux ~]$ uncompress research_data

[mca@linux ~]$ ls research*

 research_data

[mca@linux ~]$ ls research*

 research_data

[mca@linux ~]$ gzip –v research_data

 research_data :81.3% -- replaced with research_date.gz

[mca@linux ~]$ ls research*

 research_data.gz

[mca@linux ~]$ gunzip –v *.gz

 research_data : 81.3% -- replaced with research_data

[mca@linux ~]$ ls research*

 research_data

SITAMS

EXPERIMENT: 9

COUNTING LINES,WORDS AND FILE SIZE
Page No.

Aim:-

 To implement counting lines, words and filesize in the file.

Commands:-

1 The wc command

2 The nl command

1 The wc command:-

The word count (wc) command prints the number of bytes, lines or words in a file.

i. $wc –c // size of file in bytes.
ii. $wc–w // number of words in files.

iii. $wc –l // number of lines in file that contains.
iv. $wc –L // lengthof the longest line.

2 The nl command:-

The ‘nl’ command is used to number each line in a file.

Syntax:-

 $ nl filename>numbered

9.COUNTING WORDS AND LINES IN FILES:

wc-to perform word count

wc OPTION FILE

options can be

–l prints the number of lines in file
–w prints the number of words in the file
–c count the file size in bytes
–m count the number of charecters in the file
–L print only length of the longest line in the file.

wc and nl commands
[mca@linux ~]$ cat > sample

This is unix lab

The commands searches pattern in a file

We are doing commands

[mca@linux ~]$ cat sample

This is unix lab

The commands searches pattern in a file

We are doing commands

[mca@linux ~]$ wc -c sample

79 sample

[mca@linux ~]$ wc -w sample

15 sample

[mca@linux ~]$ wc -L sample

39 sample

[mca@linux ~]$ grep commands sample | wc -l

2

[mca@linux ~]$ nl sample

 1 This is unix lab

 2 The commands searches pattern in a file

 3 We are doing commands

SITAMS

EXPERIMENT: 10

WORKING WITH COLUMNS AND FIELDS
Page No.

Aim:-

 To work with columns and fields.

Commands:-

UNIX system indicates a no. of tools designed to work with files organized in columns.

1. Cut command:-

 Cut command is used to exact specific fields from file.
 Specify –f option and field with field number to select.

Syntax:-

$cut –f2 filename//extracts second field from the file.

$cut –f1,3 filename//extracts 1 and 3 fields from the file.

$cut –f1-3 filename//extracts from 1st field to 3rd field.

$cut –d//extracts and displays using specified delimeter.

$cut –c3// filename//cut to identify fields in terms of character positions.

2. Column command:-

‘colrm’ is used to remove one or more columns from a file or set of files.

Syntax:-

 $colrm 2 filename

3. The paste command:-

‘paste’ command joins files together line by line.

Syntax:-

 $paste file1 file2 > file3

The above command joins file1 and file2 into file3.

$paste –d // used to specify along with the default delimeter.

4 The Join command:-

‘Join’ command joins together two existing files in the basis of a key field that contain entries
common to both of them.

Syntax:-

 $join file1 file2

The above command joins 2 files.

10.WORKING WITH COLUMNS AND FIELDS:

[mca@linux ~]$ cat > phoneno

dan dnidz 1234
robin rpele 5678
ben bsquared 9876

 [mca@linux ~]$ cut -f1,3- phoneno > new1

[mca@linux ~]$ cat new1

dan dnidz 1234
robin rpele 5678
ben bsquared 9876

[mca@linux ~]$ cat > states

alabama
alaska
arizona
arkansas
California

[mca@linux ~]$ cat >state_abbr

al
ak
az
ar
ca

[mca@linux ~]$ paste states state_abbr >states.imp

[mca@linux ~]$ cat states.imp

Alabama al
alaska ak
arizona az
arkansas ar
california ca

[mca@linux ~]$ cat > merch

63A457 mans gold watch
73B312 garnet ring
82B119 sapphire pendant

[mca@linux ~]$ cat > costs

63A457 125.50
73B312 255.00
82B119 534.75

[mca@linux ~]$ join merch costs

63A457 mans gold watch 125.50
73B312 garnet ring 255.00
82B119 sapphire pendant 534.75

[mca@linux ~]$ cat columns

smith ctr 9898983999 ap

john tpt 9898291899 ap

ram ctr 9839898989 ap

sita chennai 9897878788 TN

situ Bangalore 9385935893 KN

 [mca@linux ~]$ cut -f3 columns

9898983999
9898291899
9839898989
9897878788

 [mca@linux ~]$ cut -f1,2 columns

smith ctr
john tpt
ram ctr
sita chennai
situ Bangalore

[mca@linux ~]$ cut -f1 columns|sort

john

ram

sita

situ

[mca@linux ~]$ cut -f2 columns

ctr

tpt

ctr

chennai

Bangalore

[mca@linux ~]$ cut -f2 columns|sort|uniq –u

Bangalore

chennai

tpt

[mca@linux ~]$ cut -f2 columns|sort|uniq –d

Ctr

SITAMS

EXPERIMENT: 11

SORTING THE CONTENTS OF FILE
Page. No.

Aim:-

 To implement sorting on the file contents.

Commands:-

1. The sort command:-

 ‘Sort’ command order(or) reorders the lines of a file.
 ‘Sort’ is also used to combine the contents of several files into a single sorted file.

Syntax:-

$sort –o// sort to save the results of a file.

$sort –f// Ignores uppercase &lowercase.

$sort –n// sort by numeric values, in ascending order.

$sort –r// reverse order of output.

$sort –u// eliminates duplicate lines in output.

2. The uniq command:-

This ‘uniq’ command filters or remove repeated lines from files.

Syntax:-

 $ unique filename

11.SORTING CONTENTS OF THE FILE:

[mca@linux ~]$ cat > names
lincroft
summit
holmden
Middletown

[mca@linux ~]$ cat > names
Lincroft
Summit
holmden
Middletown

[mca@linux ~]$ sort names
holmden
Lincroft
middletown
Summit

[mca@linux ~]$ sort -rn names
Summit
middletown
Lincroft
Holmden

SITAMS

EXPERIMENT: 12

COMPARING FILES
Page No.

Aim:-

 To implement comparing on files

Commands:-

The cmp command:-

 ‘cmp’ is the simplest way of the file comparison tool.
 It tells whether two files differ and if they do it reports the position in the file where the

first difference occurs.

Syntax:- $ cmp file1 file2

 ‘cmp’ does not print anything if there are no difference in the files.

The comm command:-

 The compare two sarted files and shows lines that are the same or different.

Syntax:-

 $ comm file1 file2.

 Comm prints its output in 3 colums
 Lines unique to the first file
 Lines unique to the second file
 Lines found in both

$ comm-23 file1 file2//displays only the lines that are unique to the first file

The diff command:-

 Compares two files,line by line and print out differences.

Syntax:-

 $diff file1 file2

c//change(c) means there is change in the line

a//append indicates that file is added with 3lines.

12.COMPARING FILES:

[mca@linux ~]$ cat > notes
Nate,
heres the first draft of the plan
i think it needs more work

[mca@linux ~]$ cat >notes.more
Nate,
heres the first draft of the new plan
i think it needs more work
let me know what you think

[mca@linux ~]$cmp notes notes.more
notes notes.more differ: byte 36, line 2

[mca@linux ~]$ cat > cities1
newyork
palo alto
san fransico
seattle

[mca@linux ~]$ cat > citites2
palo alto
san fransico
santamonica
seattle

[mca@linux ~]$comm cities1 cities2
newyork

 palo alto
 san fransico
 santamonica
 seattle

[mca@linux ~]$ diff notes notes.more
2c2
<heres the first draft of the plan

>heres the first draft of the new plan
3a4
> let me know what you think

[mca@linux ~]$ diff notes notes.more> difference

[mca@linux ~]$ cat difference

2c2
<heres the first draft of the plan

>heres the first draft of the new plan
3a4
> let me know what you think

[mca@linux ~]$ patch notes difference
patching file notes

SITAMS

EXPERIMENT: 13

EDITING AND FORMATTING FILES
Page No.

Aim:-

 To implement editing and formatting files.

Commands:-

 There are many ways to edit and format files in the unix system.

The pr command:-

 ‘pr’ command is used to add a header to every page of a file

Syntax:-$pr headername

$pr |lp//adds header to the file when they are printed

$pr-d-n file1|lp//prints the file1 with double spaced and with line numbers

$ls | lp//prints the names of the file in current directory in 3 columns.

The first command:-

 Used to control the width of the output

 Default width is 72 character and that can be changed using -w option

Syntax:- $ fmt -w<width>filename

The tr command:-

 This command replaces one set of characters with another set

Syntax:- $ tr:’\t’ </etc/password

 <// redirection symbol used to send contents of /etc/passwd to tr.

13.EDITING AND FORMATTING FILES:

[mca@linux ~]$ cat >names
Nate nate@engineer.com
Rebecca rif@library.edu
Dan dkraut@bio.ca.edu
Liz liz@thebest.net

[mca@linux ~]$ pr names
2015-06-16 15:08 names Page 1
Nate nate@engineer.com
Rebecca rif@library.edu
Dan dkraut@bio.ca.edu
Liz liz@thebest.net

[mca@linux ~]$ cat names
Nate nate@engineer.com
Rebecca rif@library.edu
Dan dkraut@bio.ca.edu
Liz liz@thebest.net

[mca@linux ~]$ cat > sample1
this is an example of
a short

file
that contains lines of varying width

[mca@linux ~]$fmt -w 16 sample1
this is an
example of a
short file that
contains lines
of varying
width

[mca@linux ~]$ cat >newfile
bin
robin
dan

[mca@linux ~]$tr '[a-z]''[A-Z]'<newfile
BIN
ROBIN
DAN

[mca@linux ~]$ cat > textfile
command
encodad
lowercase

[mca@linux ~]$ spell textfile
encodad
lowercase

[mca@linux ~]$ispell textfile

SITAMS

EXPERIMENT: 14

WORKING WITH DATE AND TIME
Page No.

Aim:-

 To work with date and time

Commands:-

Date command:

 ‘Date’ used to print current time and date in any of variety of formats

Also used to set or change the system time.

 $date//prints current date,time with default format.

 $ date ‘+’//used to display date with user own formate along with text and using unit
symbol.

 $ date -d//allows to specify a particular time or date to display

The touch command:-

 ‘touch’ used to change the access and modification times for each file.

$ls-l//used to display files with last changed time.

$ls-ul//to display files with last changed time and access time

$touch -m//used to change modification time

$touch -a//used to change access time

14.WORKING WITH DATE AND TIME:

date [OPTION]... [+FORMAT]

1) To Print current system date and time:

 [mca@linux ~]$ date

Sat Nov 10 21:38:15 IST 2017

2) To print date of next Monday:

 [mca@linux ~]$ date --date="next mon"

 Sat Nov 10 00:00:00 IST 2017

3) To display past date

 [mca@linux ~]$ date --date="1 day ago"

 [mca@linux ~]$ date --date="yesterday"

Sat Nov 10 21:39:53 IST 2017

4) To display future date

 $ date --date="1 day"

 $ date --date="tomorrow"

 Sat Nov 10 21:41:26 IST 2017

5) To set date:

 $ date -s "Sat Nov 10 21:00:00 PDT 2017"

6) To display Universal Time:

[mca@linux ~]$ date -u

Sat Nov 10 16:13:26 UTC 2017

7) To display Weekday name:

 [mca@linux ~]$ date +%a

 [mca@linux ~]$ date +%A

 Saturday

8) To display Month name:

 [mca@linux ~]$ date +%b

mca@linux ~]$ date +%B

 November

9) To display current day of month:

 [mca@linux ~]$ date +%d

 08

10) To display Current Date in MM/DD/YY format:

 [mca@linux ~]$ date +%D

 01/08/17

11) To display date in YYYY-MM-DD format:

 [mca@linux ~]$ date +%F

 2017-01-08

12) To display time as HH:MM:SS, Note: Hours in 24 Format

 [mca@linux ~]$ date +%T

 21:47:05

SITAMS

EXPERIMENT: 15

AWK UTILITIES
Page No.

Aim:-

 To perform Awk commands

Procedure:-

How AWK works:-

 AWK is used for pattern matching. This is also called as the pattern scanning language.

Syntax:- $awk ‘/pattern/{action}’filename.

Default pattern and action:-

 This command is used for finding the default pattern and action in the given filename.

Syntax:- $awk ‘{action}’filenmae

 (Or)

 $awk ‘pattern’/filename

Working with fields:-

 This command is used for pattern matching by using fildes.

Syntax:-

 $awk ‘/filename/{action}’filename.

Using standed input and output:-

 This command is used for sending the output of one command is given as input to
another command.

Syntax:-

$awk ‘{action}’oldfilename->new filename

Running awk program:-

Awk -f is used to run a program from a file

Syntax:-

 $awk -f progfile inputfile

Multiple line programs:-

 It is simply consists of multiline pattern location statements

Syntax:-

 $awk -f filename1 filename2

Specifying patterns:-

 Pattern matching is fundamental part of awk.

Regular expression:-

 There are sequence of letters,numbers and special characters that specify string to be
matched.

Syntax:-

 $awk ‘/string/{action}’filename

Comparision patterns:-

 <,>,<=,>= comparision operators can be used to compare two numbers or two strings.

Syntax:-

 $awk ‘$>10{action}’filename

15.HOW AWK WORKS

[mca@linux ~]$ cat > inventory

awk program was originally developed by Aho,kernighan and Weinberger in 1977.

It is also called as pattern scanning language.

[mca@linux ~]$ awk '/scanning/{print}' inventory //displays lines that contains the
//“scanning” pattern

It is also called as pattern scanning language.

Default Patterns and Actions

[mca@linux ~]$ cat contacts

Ben IN 650-333-4321
Dan AK 907-671-4321
Morissa NJ 732-741-2431
Robin CA 650-273-1034

 [mca@linux ~]$ awk '{print $1}' inventory //default pattern

Ben
Dan
Morissa
Robin

[mca@linux ~]$ awk '/Aho/' inventory //default action

Awk program was originally developed by Aho,kernighan and Weinberger in 1977.

Working with Fields

 [mca@linux ~]$ cat > contacts

Ben IN 650-333-4321
Dan AK 907-671-4321
Morissa NJ 732-741-2431
Robin CA 650-273-1034

[mca@linux ~]$ awk '/650-/{print $2}' contacts //displays 2nd fields that matches the pattern

IN
CA

Using Standard Input and Output

[mca@linux ~]$ awk '{print}' inventory > standard

[mca@linux ~]$ cat standard

Awk program was originally developed by Aho,kernighan and Weinberger in 1977.

It is also called as pattern scanning language.

Running awk Program from a file

[mca22@linux ~]$ cat > fmtdemo //awk commands in file fmtdemo

/Mor+/{print $1}

[mca@linux ~]$ awk -f fmtdemo contacts //executing fmtdemo program

Morissa

Multiline Programs

 [mca@linux ~]$ cat > numberline

{
n=n+1
print n " " $0
}

 [mca@linux ~]$ awk -f numberline contacts //Executing numberline program on contacts
1 Ben IN 650-333-4321
2 Dan AK 907-671-4321
3 Morissa NJ 732-741-2431
4 Robin CA 650-273-1034

Specifying Patterns

REGULAR EXPRESSION :

[mca@linux ~]$ cat > stationary1

pencil 100 2 3
markers 50 20 22
pens 200 10 12
notes 200 30 34

[mca@linux ~]$ awk '/pe*/{print $0}' stationary1

pencil 100 2 3
pens 200 10 12

Comparision Operators

[mca@linux ~]$ awk '$3 >10 {print $0}' stationary1

markers 50 20 22

notes 200 30 34

SITAMS

EXPERIMENT: 16

COPIES MULTIPLE FILES TO A DIRECTORY
Page No.

Aim:-

 To write a shell script that copis multiple files to a directory.

Procedure:-

Step1:-create a file in vi editor as $vi multidir.

Step 2:-Read the directory name and create a new directory with name as Mkdir
 $dir

Step3:-Read the no.of files that we need to add to a directory ‘n’.

 Now,read the filename and copy it to the directory at each iteration until ‘n’as cp
$filename $dir.

16. SHELL SCRIPT THAT COPIES MULTIPLE FILES
TO A DIRECTORY:

$ vi mulindir
i=1
echo "Enter New Directory Name"
read dir
mkdir $dir
echo "Enter the Number of Files to be Added"
read n
while [$i -le $n]
do
 echo "Enter the file Name"
 read filename
 cp $filename $dir
 let i=$i+1
done

output:

[mca45@linux ~]$ chmod +x mulindir
[mca45@linux ~]$./mulindir
Enter New Directory Name
NewDir
Enter the Number of Files to be Added
2
Enter the file Name
file1
Enter the file Name
file2
[mca45@linux ~]$ cd NewDir
[mca45@linux NewDir]$ ls
file1 file2
[mca45@linux NewDir]$

SITAMS

EXPERIMENT: 17

ADD, SUB, MUL, DIV OF TWO INTEGERS
Page No.

Aim :-

 To write a shell script that adds, subtracts, multiplies and divides two integers.

Procedure:-

Step1:- create of file in vi editor as vi arithmetic c.

Step2:- enter option for performing addition, subtracts, multiplies and division and that appears
on the screen.

Step3:- Input two integers.

Step4:- using case statements write the arithmetic operation for each case that is for add, sub,
div, mul.

Step5:-Use let command at each case for arithmetic expression.

17. SHELL SCRIPT SMALL CALCULATOR
(ADDITION, SUBTRACTION, MULTIPLICATION,
DIVIDE)

$ vi Arithmetic

options "enter -a for addition"
echo "enter -s for subtraction"
echo "enter -m for multiplication"
echo "enter -c for quotient and remainder"
echo "enter the option"
read opt
echo "enter 2 numbers"
read a
read b
case $opt in
 -a)let d=$a+$b
 echo "sum=$d"
 ;;
 -s)let d=$a-$b
 echo "difference=$d"
 ;;
 -m)let d=$a*$b
 echo "product=$d"
 ;;
 -c)let d=$a/$b
 let e=$a%$b
 echo "quotient=$d"
 echo "remainder=$d"
 ;;
*)echo "wrong option"
 ;;
Esac

Output:

$ chmod +x Arithmetic
$./Arithmetic
enter -a for addition
enter -s for subtraction
enter -m for multiplication
enter -c for quotient and remainder
enter the option
-a
enter 2 numbers
2
4
sum=6

SITAMS

EXPERIMENT: 18

COUNT THE NUMBER OF LINES ,CHARACTERS AND
WORDS

Page. No

 Aim:-

 To write a shell script program that counts the number of lines, words, characters in a
file.

Procedure:-

Step1:-create a file in vi editor as

 $vi count.

Step2:-Read the file.

Step3:-Count the number of files in the file using wc-d $file.

Step4:-Count the number of files in the file using wc-w $file.

Step5:-Count the number of files in the file using wc-c $file.

18. SHELL SCRIPT COUNTS NUMBER OF LINES
AND WORDS IN A FILE:

$ vi count
echo "Enter the File Name"
read file
echo " Number of Lines in the file are :"
wc -l $file
echo "Number of Words in the File are :"
wc -w $file
echo " Number of Characters in the File are:"
wc -c $file

output:

[mca45@linux ~]$ cat sample
The quick brown fox jumped over the lazy dog.
The dog drifted back to sleep and dreamed of bitting the fox
what a foolish sleepy dog
[mca45@linux ~]$
[mca45@linux ~]$ chmod +x count
[mca45@linux ~]$./count
Enter the File Name
sample
 Number of Lines in the file are :
3 sample
Number of Words in the File are :
26 sample
 Number of Characters in the File are:
133 sample
[mca45@linux ~]$

SITAMS

EXPERIMENT: 19

DISPLAY LIST OF FILES IN DIRECTORY
Page No.

Aim:-

 To write a shell script program that displays the list of all files in the given directory.

Procedure:-

Step1:- read the directory name from the user.

Step2:-List the files under that directory using the ls command ls $path.

19. SHELL SCRIPT THAT DISPLAYS THE LIST OF
ALL FILES IN THE DIRECTORY:

$ vi flindir

echo " Enter the Directory Name"
read path
echo "List of Files under " $path "are:"
ls $path

output:

[mca45@linux ~]$ chmod +x flindir

[mca45@linux ~]$./flindir

 Enter the Directory Name

NewDir

List of Files under NewDir are:

file1 file2

[mca45@linux ~]$

SITAMS

EXPERIMENT: 20

MULTIPLICATION TABLE
Page No

Aim:-

 To write a shell script program to generate multiplication table.

Procedure:-

Step1:-Read the numbers which is required for multiplication table and store in variable ‘n’.

Step2:- In for loop write the Expression for multiplication using.

 “Let command” let k=$n*$s;

Step3:-print n the multiplication table format at iteration.

20. SHELL SCRIPT TO GENERATE A
MULTIPLICATION TABLE:

$ vi mutable

echo "Enter Which table you want"
read n
for i in 1 2 3 4 5 6 7 8 9 10
do
 let k=$n*$i
 echo "$n X $i = $k"
done

output:

[mca45@linux ~]$ chmod +x mutable
[mca45@linux ~]$./mutable
Enter Which table you want
3
3 X 1 = 3
3 X 2 = 6
3 X 3 = 9
3 X 4 = 12
3 X 5 = 15
3 X 6 = 18
3 X 7 = 21
3 X 8 = 24
3 X 9 = 27
3 X 10 = 30
[mca45@linux ~]$

SITAMS

EXPERIMENT: 21

PERFORMING MATHEMATICAL CALCULATIONS
Page No.

Aim:-

 To perform mathematical calculations.

Commands :-

Two most powerful and useful unix tools for performing mathematical calculations.

1. BC command
2. DC command

1.BC command:(basic calculator)

 Bc used both calculator and mini language for writing mathematical programs.
 $bc.// performs specified mathematical calculations operation.
 Bc command does not save any decimal places in result of a calculation.
 We can save the result of calculation with in a variable.
 Bc command can be used to convert numbers from one base to another.

I base || to set input base.
O base || to control outputbase.

 Bc command are also used to define function and that can be used just like built-in-
functions.

2.The DC command:(desk calculator)

 Dc is an older alternative to bc.
 Unlike bc, which uses the more familer infix method.

$dc
20 10+p|| 20and 10 are added and then p tells dc to print result.
Q|| is the instruction to quit the program.

21. PERFORMING MATHEMATICAL
CALCULATIONS:

Basic Calculator

[mca@linux ~]$ bc
32+17
49
Sqrt(49)
7
quit

[mca@linux ~]$ bc
(((1+5) * (3+4))/6)^ 2
49
quit

[mca@linux ~]$ bc –l
scale=6
a(1) * 4
3.141592
quit

[mca@linux ~]$ bc
ibase=2
11010
26
ibase=1010
quit

[mca@linux ~]$ bc
for(i=1;i<=4;i=i+1) i^2
1
4
6
9
16
quit

Desk Calculator

[mca@linux ~]$ dc
32 64 + p
96
q

[mca@linux ~]$ dc
1 5+ 3 4+ * 6/ 2^
49
q

