
UNIT-4 

LOGIC BASED TESTING: 

OVERVIEW OF LOGIC BASED TESTING : 

 "Logic" is one of the most often used words in programmers' vocabularies but one of 

their least used techniques. 

 Logic has been, for several decades, the primary tool of hardware logic designers. 

 Many test methods developed for hardware logic can be adapted to software logic 

testing. Because hardware testing automation is 10 to 15 years ahead of software 

testing automation, hardware testing methods and its associated theory is a fertile 

ground for software testing methods. 

 As programming and test techniques have improved, the bugs have shifted closer to 

the process front end, to requirements and their specifications. These bugs range from 

8% to 30% of the total and because they're first-in and last-out, they're the costliest of 

all. 

 Higher-order logic systems are needed and used for formal specifications. 

 Much of logical analysis can be and is embedded in tools. But these tools incorporate 

methods to simplify, transform, and check specifications, and the methods are to a 

large extent based on boolean algebra. 

KNOWLEDGE BASED SYSTEM: 

o The knowledge-based system (also expert system, or "artificial 

intelligence" system) has become the programming construct of choice for 

many applications that were once considered very difficult. 

o Knowledge-based systems incorporate knowledge from a knowledge 

domain such as medicine, law, or civil engineering into a database. The 

data can then be queried and interacted with to provide solutions to 

problems in that domain. 

o One implementation of knowledge-based systems is to incorporate the 

expert's knowledge into a set of rules. The user can then provide data and 

ask questions based on that data. 

o The user's data is processed through the rule base to yield conclusions 

(tentative or definite) and requests for more data. The processing is done by 

a program called the inference engine. 

o Understanding knowledge-based systems and their validation problems 

requires an understanding of formal logic. 

 Decision tables are extensively used in business data processing; Decision-table 

preprocessors as extensions to COBOL are in common use; boolean algebra is 

embedded in the implementation of these processors. 

 

 



4.1 DECISION TABLES: 

4.1.1 Definitions and notations: 

 The Decision table is a limited - entry decision table. It consists of four areas called 

the condition stub, the condition entry, the action stub, and the action entry. 

 Each column of the table is a rule that specifies the conditions under which the actions 

named in the action stub will take place. 

 The condition stub is a list of names of conditions. 

 A rule specifies whether a condition should or should not be met for the rule to be 

satisfied. "YES" means that the condition must be met, "NO" means that the condition 

must not be met, and "I" means that the condition plays no part in the rule, or it is 

immaterial to that rule. 

 The action stub names the actions the routine will take or initiate if the rule is 

satisfied. If the action entry is "YES", the action will take place; if "NO", the action 

will not take place 

 

Figure 1 : Examples of Decision Table. 

The table in Figure1 can be translated as follows: 

 Action 1 will take place if conditions 1 and 2 are met and if conditions 3 and 4 are not 

met (rule 1) or if conditions 1, 3, and 4 are met (rule 2). 

 "Condition" is another word for predicate. 

 Decision-table uses "condition" and "satisfied" or "met". Let us use "predicate" and 

TRUE / FALSE. 

 Now the above translations become: 

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 

4 are false (rule 1), or if predicates 1, 3, and 4 are true (rule 2). 

2. Action 2 will be taken if the predicates are all false, (rule 3). 



3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule 

4). 

 

 In addition to the stated rules, we also need a Default Rule that specifies the default 

action to be taken when all other rules fail. The default rules for Table in Figure 1 is 

shown in Figure 2 

 

Figure 2 : The default rules of Table in Figure 1 

4.1.2 DECISION-TABLE PROCESSORS: 

o Decision tables can be automatically translated into code and, as such, are a 

higher-order language 

o If the rule is satisfied, the corresponding action takes place 

o Otherwise, rule 2 is tried. This process continues until either a satisfied rule 

results in an action or no rule is satisfied and the default action is taken 

o Decision tables have become a useful tool in the programmers kit, in 

business data processing. 

4.1.3 DECISION-TABLES AS BASIS FOR TEST CASE DESIGN: 

1. The specification is given as a decision table or can be easily converted into 

one. 

2. The order in which the predicates are evaluated does not affect 

interpretation of the rules or the resulting action - i.e., an arbitrary 

permutation of the predicate order will not, or should not, affect which 

action takes place. 

3. The order in which the rules are evaluated does not affect the resulting 

action - i.e., an arbitrary permutation of rules will not, or should not, affect 

which action takes place. 

4. Once a rule is satisfied and an action selected, no other rule need be 

examined. 



5. If several actions can result from satisfying a rule, the order in which the 

actions are executed doesn't matter 

4.1.4 Expansion of Immaterial Cases 

 Immaterial entries (I) cause most decision-table contradictions. 

 If a condition’s truth value is immaterial in a rule, satisfying the rule does not 

depend on the condition. It doesn’t mean that the case is impossible. For example, 

For example  

Rule 1:‖if the persons are male and over 30, then they shall receive a 15% raise‖ 

Rule 2: ―but if the persons are female, then they shall receive a 10% raise‖ 

 

 

Table 3: Exapnsion of Immaterial cases for Rule 2 and 4 for figure 1 

 Table 10.4 is an example of an inconsistent specification in which the expansion of 

two rules yields a contradiction.  

 Rule 2 has been expanded by converting the I entry for condition 2 into a separate 

rule 2.1 for YES and Rule 2.2 for NO and similarly for Rule 4 

 The key to test case design based o n decision tables is to expand immaterial 

entries to generate tests that correspond to all the subrules that result. 

 If some conditions are three-way an immaterial expand to 3 subrules . Similarly an 

immaterial n-way case statement expands to n-sub rules. 

 If no default rules are given then all the cases not covered by explicit rules  

 The specification is complete if and only if n (binary) conditions expand in ton2
n 

sub unique rules 

 The expansion of an inconsistent specification is shown in below diagram 



 
            Table 10.4 The expansion of an inconsistent specification 

4.1.5 Test Case Design  

1. If there are k rules over n binary predicates, there are at least k cases to consider 

and at most 2
n
 cases.  

2. It is not usually possible to change the order in which the predicates are evaluated 

because that order is built into the program,
*
A tolerant implementation would 

allow these fields in any order. 

3. It is not usually possible to change the order in which the rules are evaluated 

because that order is built into the program, but if the implementation allows the 

rule evaluation order to be modified, test different orders for the rules by pairwise 

interchanges.  

4.  Identify the places in the routine where rules are invoked or where the processors 

that evaluate the rules are called. Identify the places where actions are initiated. 

4.1.6 DECISION-TABLES AND STRUCTURE: 

 Decision tables can also be used to examine a program's structure. 

 Figure 3 shows a program segment that consists of a decision tree. 

 These decisions, in various combinations, can lead to actions 1, 2, or 3. 



 

Figure 3 : A Sample Program 

 If the decision appears on a path, put in a YES or NO as appropriate. If the decision 

does not appear on the path, put in an  I, Rule 1 does not contain decision C, therefore 

its entries are: YES, YES, I, YES. 

 The corresponding decision table is shown in Table 6.1 

 
RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6 

CONDITION A 

CONDITION B 

CONDITION C 

CONDITION D 

YES 

YES 

I 

YES 

YES 

NO 

I 

I 

YES 

YES 

I 

NO 

NO 

I 

YES 

I 

NO 

I 

NO 

YES 

NO 

I 

NO 

NO 

ACTION 1 

ACTION 2 

ACTION 3 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

YES 

NO 

NO 

NO 

YES 

Table 6.1 : Decision Table corresponding to Figure 6.4 

Similarly, If we expand the immaterial cases for the above Table 6.1, it results in Table 

6.2 as below: 

 
R 1 RULE 2 R 3 RULE 4 R 5 R 6 

CONDITION A 

CONDITION B 

CONDITION C 

CONDITION D 

YY 

YY 

YN 

YY 

YYYY 

NNNN 

NNYY 

YNNY 

YY 

YY 

YN 

NN 

NNNN 

YYNN 

YYYY 

NYYN 

NN 

NY 

NN 

YY 

NN 

YN 

NN 

NN 

Table 6.2 : Expansion of Table 6.1 



 Sixteen cases are represented in Table 6.1, and no case appears twice. 

 Consequently, the flowgraph appears to be complete and consistent. 

 As a first check, before you look for all sixteen combinations, count the number of Y's 

and N's in each row. They should be equal. We can find the bug that way. 

ANOTHER EXAMPLE - A TROUBLE SOME PROGRAM: 

Consider the following specification whose putative flowgraph is shown in Figure4: 

1. If condition A is met, do process A1 no matter what other actions are taken or 

what other conditions are met. 

2. If condition B is met, do process A2 no matter what other actions are taken or 

what other conditions are met. 

3. If condition C is met, do process A3 no matter what other actions are taken or 

what other conditions are met. 

4. If none of the conditions is met, then do processes A1, A2, and A3. 

5. When more than one process is done, process A1 must be done first, then A2, 

and then A3. The only permissible cases are: (A1), (A2), (A3), (A1,A3), 

(A2,A3) and (A1,A2,A3). 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6.5 : A Troublesome Program 

 The programmer tried to force all three processes to be executed for the  cases 

but forgot that the B and C predicates would be done again, thereby bypassing 

processes A2 and A3. 

 Table 6.3 shows the conversion of this flowgraph into a decision table after expansion.  

 

Table 6.3 : Decision Table for Figure 6.5 

 

 

 

 

 



4.2 PATH EXPRESSIONS: 

GENERAL: 

 Logic-based testing is structural testing when it's applied to structure (e.g., control 

flowgraph of an implementation); it's functional testing when it's applied to a 

specification. 

 In logic-based testing we focus on the truth values of control flow predicates. 

 A predicate is implemented as a process whose outcome is a truth-functional value. 

 For our purpose, logic-based testing is restricted to binary predicates. 

 We start by generating path expressions by path tracing as in Unit V, but this time, our 

purpose is to convert the path expressions into boolean algebra, using the predicates'  

truth values (e.g., A and  
 
A
 
 as weights). 

BOOLEAN ALGEBRA: 

STEPS: 

1. Label each decision with an uppercase letter that represents the truth value 

of the predicate. The YES or TRUE branch is labeled with a letter (say A) 

and the NO or FALSE branch with the same letter overscored (say ). 

2. The truth value of a path is the product of the individual labels. 

Concatenation or products mean "AND". For example, the straight-through 

path of Figure 6.5, which goes via nodes 3, 6, 7, 8, 10, 11, 12, and 2, has a 

truth value of ABC. The path via nodes 3, 6, 7, 9 and 2 has a value of . 

3. If two or more paths merge at a node, the fact is expressed by use of a plus 

sign (+) which means "OR". 



 

Figure 6.5 : A Troublesome Program 

 Using this convention, the truth-functional values for several of the nodes can be expressed in terms of 

segments from previous nodes. Use the node name to identify the point. 

 

 

 There are only two numbers in boolean algebra: zero (0) and one (1). One means "always true" and 

zero means "always false". 

RULES OF BOOLEAN ALGEBRA: 

o Boolean algebra has three operators: X (AND), + (OR) and  (NOT) 

o X : meaning AND. Also called multiplication. A statement such as AB (A 

X B) means "A and B are both true". This symbol is usually left out as in 

ordinary algebra. 

o + : meaning OR. "A + B" means "either A is true or B is true or both". 

o     meaning NOT. Also negation or complementation. This is read as 

either "not A" or "A bar". The entire expression under the bar is negated. 

o The following are the laws of boolean algebra: 



 

 

 In all of the above, a letter can represent a single sentence or an entire boolean algebra 

expression. 

 Individual letters in a boolean algebra expression are called Literals (e.g. A,B) 

 The product of several literals is called a product term (e.g., ABC, DE). 

 An arbitrary boolean expression that has been multiplied out so that it consists of the 

sum of products (e.g., ABC + DEF + GH) is said to be in sum-of-products form. 

 The result of simplifications (using the rules above) is again in the sum of product 

form and each product term in such a simplified version is called a prime implicant. 

For example, ABC + AB + DEF reduces by rule 20 to AB + DEF; that is, AB and 

DEF are prime implicants. 

 The path expressions of Figure 6.5 can now be simplified by applying the rules. 

 The following are the laws of boolean algebra: 

 



 

Similarly, 

 

The deviation from the specification is now clear. The functions should have been: 

 

 

 Loops complicate things because we may have to solve a boolean equation to 

determine what predicate-value combinations lead to where. 

 

 



4.3 KV CHARTS: 

INTRODUCTION: 

o If you had to deal with expressions in four, five, or six variables, you could 

get stuck down in the algebra and make as many errors in designing test 

cases as there are bugs in the routine you're testing. 

o Karnaugh-Veitch chart reduces boolean algebraic manipulations to 

graphical trivia. 

o Beyond six variables these diagrams get cumbersome and may not be 

effective. 

SINGLE VARIABLE:  The Figure 6.6 shows all the boolean functions of a single variable 

and their equivalent representation as a KV chart. 

 

Figure 6.6 : KV Charts for Functions of a Single Variable. 

 

The charts show all possible truth values that the variable A can have. 

 A "1" means the variable’s value is "1" or TRUE. A "0" means that the 

variable's value is 0 or FALSE. 

 The entry in the box (0 or 1) specifies whether the function that the chart 

represents is true or false for that value of the variable. 



 We usually do not explicitly put in 0 entries but specify only the conditions 

under which the function is true. 

 TWO VARIABLES: 
o Figure 6.7 shows eight of the sixteen possible functions of two variables. 

 

 

 

Figure 6.7 : KV Charts for Functions of Two Variables. 

 Each box corresponds to the combination of values of the variables for the row and 

column of that box. 

 A pair may be adjacent either horizontally or vertically but not diagonally. 

 Any variable that changes in either the horizontal or vertical direction does not appear 

in the expression. 

 In the fifth chart, the B variable changes from 0 to 1 going down the column, and 

because the A variable's value for the column is 1, the chart is equivalent to a simple 

A. 

 Figure 6.8 shows the remaining eight functions of two variables. 



 

Figure 6.8 : More Functions of Two Variables. 

 The first chart has two 1's in it, but because they are not adjacent, each must be taken 

separately. 

 They are written using a plus sign. 

 It is clear now why there are sixteen functions of two variables. 

 Each box in the KV chart corresponds to a combination of the variables' values. 

 That combination might or might not be in the function (i.e., the box corresponding to 

that combination might have a 1 or 0 entry). 

 Since n variables lead to 2
n
 combinations of 0 and 1 for the variables, and each such 

combination (box) can be filled or not filled, leading to 2
2n

 ways of doing this. 

 Consequently for one variable there are 2
21

 = 4 functions, 16 functions of 2 variables, 

256 functions of 3 variables, 16,384 functions of 4 variables, and so on. 

 Given two charts over the same variables, arranged the same way, their product is the 

term by term product, their sum is the term by term sum, and the negation of a chart is 

gotten by reversing all the 0 and 1 entries in the chart. 



 

 

THREE VARIABLES: 

 KV charts for three variables are shown below. 

 As before, each box represents an elementary term of three variables with a bar 

appearing or not appearing according to whether the row-column heading for that box 

is 0 or 1. 

 A three-variable chart can have groupings of 1, 2, 4, and 8 boxes. 

A few examples will illustrate the principles: 

 

 



 

 

 

 

 



 

Figure 6.8 : KV Charts for Functions of Three Variables. 

As an example, consider 

 

                             

KV CHARTS  

Four Variables and More 

The same principles hold for four and more variables. A four variable chart 

and several possible adjacencies are shown below.  Adjacencies can now 

consists of 1,2,4,8 and 16 boxes 



     

 

Figure: KV charts for 4 variables 

 A five-variable KV chart is shown below 



 
 For more hard sixth variable chart is there.  

 

Even More Testing Strategies? 

1.  Use one prime implicant per domain. You’ll obviously miss parts of the domain not 

covered by the prime implicant you chose—e.g., for disconnected domains.  

2.  Use the prime implicant with the fewest variables and work down to the prime implicant 

with the greatest number of variables  

3.  Overcome the obvious weaknesses of the above strategy (not all subdomains are covered) 

by using one test per prime implicant. 



4.  Every term in the product form for n variables has at most n literals but, because of 

simplifications made possible by adjacencies, terms may have fewer than n literals, say k. 

Any term with k literals can be expanded into two terms with k + 1 literals  

 

4.4 SPECIFICATIONS 

4.4.1. General 

The procedure for specification validation is straightforward:  

1.  Rewrite the specification using consistent terminology.  

2.  Identify the predicates on which the cases are based. Name them with suitable letters, 

such as A, B, C.  

3.  Rewrite the specification in English that uses only the logical connectives AND, OR, and 

NOT, however stilted it might seem.  

4. Convert the rewritten specification into an equivalent set of boolean expressions 

5.  Identify the default action and cases, if any are specified.  

6.  Enter the boolean expressions in a KV chart and check for consistency. If the 

specifications are consistent, there will be no overlaps, except for cases that result in multiple 

actions. 

 7.  Enter the default cases and check for consistency.  

8.  If all boxes are covered, the specification is complete. 

 9.  If the specification is incomplete or inconsistent, translate the corresponding boxes of the 

KV chart back into English and get a clarification, explanation, or revision.  

10.  If the default cases were not specified explicitly, translate the default cases back into 

English and get a confirmation.  

4.4.2. Finding and Translating the Logic 

The specifications into sentences of the following form:  

―IF predicate THEN action.‖ 

If—based on, based upon, because, but, if, if and when, only if, only when, provided that, 

when, when or if, whenever. 

 Then—applies to, assign, consequently, do, implies that, infers that, initiate, means that, 

shall, should, then, will, would.  



And—all, and, as well as, both, but, in conjunction with, coincidental with, consisting of, 

comprising, either . . . or, furthermore, in addition to, including, jointly, moreover, mutually, 

plus, together with, total, with.  

OR—and, and if . . . then, and/or, alternatively, any of, anyone of, as well as, but, case, 

contrast, depending upon, each, either, either . . . or, except if, conversely, failing that, 

furthermore, in addition to, nor, not only . . . but, although, other than, otherwise, or, or else, 

on the other hand, plus.  

NOT—but, but not, by contrast, besides, contrary, conversely, contrast, except if, excluding, 

excepting, fail, failing, less, neither, never, no, not, other than.  

EXCLUSIVE OR—but, by contrast, conversely, nor, on the other hand, other than, or. 

IMMATERIAL—independent of, irregardless, irrespective, irrelevant, regardless, but not if, 

whether or not.  

4.4.3. Ambiguities and Contradictions 

 Specification is 

 

 Here is the KV chart for this specification (I’ve used the numerals 1, 2, 3, and 4 to 

represent the actions and the default case): 

 

There is an ambiguity  probably related to the default case :    c    is missing  

When the specifier asks about his  ambiguity the end users answers are contradictions. 

It is necessary to resolve those ambiguities by presenting the complete specification in form of 

tables to the end user 

 



4.4 4. Don’t-Care and Impossible Terms 

There are only three things in this universe that certain are impossible:  

1.  Solving a provably unsolvable problem, such as creating a universal program verifier.  

2.  Knowing both the exact position and the exact momentum of a fundamental particle.  

3.  Knowing what happened before the ―big bang‖ that started the universe.  

There are two kinds of so-called impossible conditions:  

  (1) the condition cannot be created or is seemingly contradictory or improbable;  

 (2) the condition results from our insistence on forcing a complex, continuous world into a 

binary, logical mold.  

 Most program illogical conditions are of the latter kind. There are twelve cases for 

something, say, and we represent those cases by 4 bits 

 Our conversion from the continuous world to binary world  

 Taking advantage of impossible conditions is a dangerous practice and should be avoided 

but if you are insisted on doing that sort of the thing we must to do it right so the steps are 

as follows 

1.  Identify all ―impossible‖ and ―illogical‖ cases and confirm them. 

 2.  Document the fact that you intend to take advantage of them.  

3.  Fill out the KV chart with the possible cases and then fill in the impossible cases. Use the 

combined symbol φ, which is to be interpreted as a 0 or 1, depending on which value 

provides the greatest simplification of the logic. These terms are called don’t-care terms, 

because the case is presumed impossible, and we don’t care which value (0 or 1) is used.  

 Here is an example:  

 

 By not taking advantage of the impossible conditions, we get the resulting boolean 

expression 



 

 By taking advantage of the impossible conditions, we get: 

  

 

 The corresponding flowgraphs are shown in below diagram 

 

Fig: Reducing Complexity by Simplifying the Logic. 

 

 

 

 

 

 



4.5 STATE GRAPHS 

 The state graph and its associated state table are useful models for describing software 

behavior.  

 The finite-state machine is a functional testing tool and testable design programming 

tool 

4.5.1 Motivational Overview  

 The finite-state machine is as fundamental to software engineering as boolean algebra. 

 State testing strategies are based on the use of finite-state machine models for software 

structure, software behavior, or specifications of software behavior.  

 Finite-state machines can also be implemented as table-driven software, in which case 

they are a powerful design option. Independent testers are likeliest to use a finite-state 

machine model as a guide to the design of functional tests—especially system tests.  

4.5.2 STATE GRAPHS 

 The word “state” is used in much the same way it’s used in ordinary English, as in ―state 

of the union,‖ or ―state of health.‖  

 The Oxford English  ictionary defines ―state‖ as: ―A combination of circumstances or 

attributes belonging for the time being to a person or thing.‖ 

 States are denoted by nodes  

A below  program that detects the character sequence ―ZCZC‖ can be in the following states: 

 1.  Neither ZCZC nor any part of it has been detected.  

 2.  Z has been detected.  

 3.  ZC has been detected. 

  4.  ZCZ has been detected.  

 5.  ZCZC has been detected 



 

Figure: One-Time ZCZC sequence-Detector state graph 

 A moving automobile whose engine is running can have the following states with respect 

to its transmission:  

 1.  Reverse gear 

 2.  Neutral gear  

 3.  First gear  

 4.  Second gear  

 5.  Third gear  

            6.  Fourth gear 

 A person’s checkbook can have the what states with respect to the bank balance: 

1.Equal  

2.Less than 

3.Greater than 

 A word processing program menu can be in the what states with respect to file 

manipulation 

1.Create document 

2.Save document 

3.Rename document 

4. Copy document 

5. Delete document 

4.5.3 Inputs and Transitions 

 Result of those inputs, the state changes, or is said to have made a transition.  

 Transitions are denoted by links that join the states 

 The input that causes the transitions are marked on the link i.e, the inputs are link 

weights. There is an out link for every input 



 If several inputs in a statecause a transition to the same subsequent state then we can 

abbreviate as‖input1,input2,input3……‖ 

 A finite-state machine is an abstract device that can be represented by a state graph 

having a finite number of states and a finite number of transitions between states. 

 The ZCZC detection example can have the following kinds of inputs: 

1.  Z 

2.  C 

3.  Any character other than Z or C, which we’ll denote by A 

 

 

 

 

Figure 11.1 : One-Time ZCZC sequence-Detector state graph 

The state graph of Figure 11.1 is interpreted as follows:  

1.  If the system is in the ―NONE‖ state, any input other than a Z will keep it in that state.  

2.  If a Z is received, the system transitions to the ―Z‖ state. 

3.  If the system is in the ―Z‖ state and a Z is received, it will remain in the ―Z‖ state. If a C is 

received, it will go to the ―ZC‖ state; if any other character is received, it will go back to the 

―NONE‖ state because the sequence has been broken.  

4.  A Z received in the ―ZC‖ state progresses to the ―ZCZ‖ state, but any other character breaks 

the sequence and causes a return to the ―NONE‖ state.  

5.  A C received in the ―ZCZ‖ state completes the sequence and the system enters the ―ZCZC‖ 

state. A Z breaks the sequence and causes a transition back to the ―Z‖ state; any other character 

causes a return to the ―NONE‖ state.  

6.  The system stays in the ―ZCZC‖ state no matter what is received.  

4.5.4 Outputs  

 An Output
 
can be associated with any link. Outputs are denoted by letters or words and 

are separated from inputs by a slash as follows: ―input/output.‖ 



 

 Figure 11.2  Tape control recovery routine state graph 

 If no errors are detected then Input=OK  and no special action is taken then  

Output=NONE 

 If write error is detected then input=ERROR backspace the tape one block and rewrite the 

block output=REWRITE. 

 If rewrite is successful then Input=OK   

 If there have been two successive rewrites and a third error occurs backspace ten 

centimeters and erase forward then output=ERASE 

 The inputs and actions have been simplified. There are only two kinds of inputs (OK, 

ERROR) and four kinds of outputs (REWRITE, ERASE, NONE, OUT-OF-SERVICE) 

from the figure 11.2 

4.5.5 State Tables 

 It is more convenient to represent the state graph as a table 

 The state table or the state transition table specifies the states, the inputs , the transitions, 

the outputs 

 The following conventions are used to represent the state table 

1.  Each row of the table corresponds to a state.  

2.  Each column corresponds to an input condition.  

3.  The box at the intersection of a row and column specifies the next state (the transition) and 

the output, if any 

 

 

 

 

 



     INPUT 

STATE  OKAY  ERROR  

1  1/NONE  2/REWRITE  

2  1/NONE  4/REWRITE  

3  1/NONE  2/REWRITE  

4  3/NONE  5/ERASE  

5  1/NONE  6/ERASE  

6  1/NONE  7/OUT  

7  . . .  . . .  

   Table: state table for figure 11.2 

 

We did not specify what happens in state 7 because there is no inputs and outputs to that 

state. 

 

4.5.6 Time Versus Sequence 

    

4.5.7 Software Implementation 

4.5.7.1 Implementation and Operation 

 

 The state graph represents the total behavior consisting of the transport ,the 

software, the executive, the status returns, interrupts and so on. 

 There is no simple correspondence between lines of code and states. 

 The state table forms the basis for a widely used implementation shown in the 

PDL program below. 

There are four tables involved: 

 1.  A table or process that encodes the input values into a compact list 

(INPUT_CODE_TABLE).  

 2.  A table that specifies the next state for every combination of state and input 

code (TRANSITION_TABLE).  

Time  Sequence  

1. State graphs don’t represent time  1. State graphs represent sequence.  

2.A transition might take microseconds or 

centuries; a system could be in one state 

for milliseconds and another for eons, or 

the other way around;  

2.The state graph would be the same 

because it has no notion of time  



 3.  A table or case statement that specifies the output or output code, if any, 

associated with every state-input combination (OUTPUT_TABLE).  

4.  A table that stores the present state of every device or process that uses the 

same state table—e.g., one entry per tape transport (DEVICE_TABLE). 

The routine operates as follows, where # means concatenation:  

BEGIN  

PRESENT_STATE := DEVICE_TABLE(DEVICE_NAME)  

ACCEPT INPUT_VALUE  

INPUT_CODE := INPUT_CODE_TABLE(INPUT_VALUE) 

POINTER := INPUT_CODE#PRESENT STATE  

NEW_STATE := TRANSITION_TABLE(POINTER)  

OUTPUT_CODE := OUTPUT_TABLE(POINTER)  

CALL OUTPUT_HANDLER(OUTPUT_CODE)  

DEVICE_TABLE(DEVICE_NAME) := NEW_STATE 

END  

1.  The present state is fetched from memory.  

2.  The present input value is fetched. If it is already numerical, it can be used directly; 

otherwise, it may have to be encoded into a numerical value, say by use of a case statement, a 

table, or some other process. 

3.  The present state and the input code are combined (e.g., concatenated) to yield a pointer 

(row and column) of the transition table and its logical image (the output table).  

4.  The output table, either directly or via a case statement, contains a pointer to the routine to 

be executed (the output) for that state-input combination. The routine is invoked (possibly a 

trivial routine if no output is required). 

5. The same pointer is used to fetch the new state value, which is then stored. 

4.5.7.2. Input Encoding and Input Alphabet 

 The alternative to input encoding is a huge state graph and table because there must be 

one outlink in every state for every possible different input. 

  Input encoding compresses the cases and therefore the state graph.  



 Another advantage of input encoding is that we can run the machine from a mixture of 

otherwise incompatible input events, such as characters, device response codes, 

thermostat settings, or gearshift lever positions.  

 The set of different encoded input values is called the input alphabet.  

 For example in the ZCZC detector if ASCII Characters are included and we are interested 

to the inputs only Z,C,Other 

 The input encoding could be implemented and it contains Other=0, Z=1,C=2. 

 Alternatively we can implement as  

If Input=‖Z ―then go to code 1 

Else if Input=‖C‖ then go to code 2 

Else code=0 

End if 

4.5.7.3.Output Encoding and Output Alphabet 

 There are only a finite number of such distinct actions, which we can encode into a 

convenient output alphabet 

 The word output as used in the context of finite state machine as character from the 

output alphabet 

4.5.7.4. State Codes and State-Symbol Products 

 If there are n state and k different inputs both numbered and the state code and input code 

are S and I then their value is Sk+I or In+s. 

 Finite state machines are used in time-critical applications because they have response 

time 

 A faster implementation  it to use a binary number for input codes and to form the pointer  

by alternating the state and input code. 

 The term state-symbol product is used to mean the value obtained by any scheme used 

to convert the combined state and input code into a pointer to a compact table without 

holes. 

 ―State codes‖ in the context of finite-state machines, we mean the (possibly) hypothetical 

integer used to denote the state and not the actual form of the state code that could result 

from an encoding process.  



4.5.7.5. Application Comments for Designers 

 State-table implementation is advantageous when either the control function is likely to 

change in the future or when the system has many similar, but slightly different, control 

functions. 

 This technique can provide fast response time—one pass through the above program can 

be done in ten to fifteen machine instruction execution times. 

 It is not an effective technique for very small (four states or less) or big (256 states or 

more) state graphs.  

4.5.7.6. Application Comments for Testers 

 Independent testers are not usually concerned with either implementation details or the 

economics of this approach but with how a state-table or state-graph representation of the 

behavior of a program or system can help us to design effective tests.  

 There is an interesting correlation, though: when a finite-state machine model is 

appropriate, so is a finite-state machine implementation.  

 

4. 6 . STATE GRAPHS - GOOD  AND BAD STATE GRAPHS 

4.6.1 General   

Principles of judging a graph as a good and state graph are 

 1.  The total number of states is equal to the product of the possibilities of factors that 

make up the state.  

 2.  For every state and input there is exactly one transition specified to exactly one, 

possibly the same, state.  

 3.  For every transition there is one output action specified. That output could be trivial, 

but at least one output does something sensible.
*
  

 4.  For every state there is a sequence of inputs that will drive the system back to the 

same state.
**

  



 

                            Figure 11.3 shows examples of improper state graphs. 

There are two aspects of state graphs  

1. The states with their transitions and the inputs that  cause them 

2. The outputs associated with the transitions 

 In state testing we may ignore outputs because if the states and transitions are the primary 

interest 

 Two state graphs with identical states, inputs and transitions would have different outputs 

yet from a state-testing point they could be identical. 

4.6.2. State Bugs 

4.6.2.1 Number of States 

 The number of states in a state graph is the number of states we choose to recognize or 

model. 

  In practice, the state is directly or indirectly recorded as a combination of values of 

variables that appear in the data base.  

 Find the number of states as follows:  

1.  Identify all the component factors of the state. 

 2.  Identify all the allowable values for each factor.  



3.  The number of states is the product of the number of allowable values of all the 

factors.  

 

Components Allowable values  

GEAR  R, N, 1, 2, 3, 4  = 6 factors  

DIRECTION  Forward, reverse, 

stopped  

= 3 factors  

ENGINE  Running, stopped  = 2 factors  

TRANSMISSION  Okay, broken  = 2 factors  

ENGINE  Okay, broken  = 2 factors  

 TOTAL = 144 states  

 

 Table: various components of an Auto mobile and its allowable values and states 

In above table it shows various components of an Auto mobile and its allowable values and 

states 

 It is necessary to know the number of states before designing the test cases. There is no 

point in designing tests to check the systems behavior in various states if there is no 

agreement of how many states there are 

 And if there is no agreement of how many states there are, there must be disagreement on 

what the system does in which states  and transitions and the outputs. 

4.6.2.2. Impossible States 

 The states we deal with inside computers are not the stats of the real world but rather a 

numerical representation of real world states, the ―impossible‖ states can occur 

 A robust piece of software will not ignore impossible states but will recognize them and 

invoke an illogical condition handler when they appear to have occurred. 

 

 

 



Components Allowable values  

GEAR  R, N, 1, 2, 3, 4  = 6 factors  

DIRECTION  Forward, reverse, 

stopped  

= 3 factors  

ENGINE  Running, stopped  = 2 factors  

TRANSMISSION  Okay, broken  = 2 factors  

ENGINE  Okay, broken  = 2 factors  

 TOTAL = 144 states  

Table: various components of an Auto mobile and its allowable values and states  

 Actually, broken engine can not run so number of factors or states for engine 

condition and engine operation should be 3 rather than 4 so number of states equals to 

108. 

 Another impossible state is that broken transmission cannot move long so the number 

of states should be reduced 

 State bugs raises due to the discrepancy between the programmers state count and the 

testers state count and this discrepancy is after due to  a difference opinion concerning 

―Impossible states‖. 

4.6.2.3 Equivalent States 

 Two states are equivalent if every sequence of inputs starting from one state produces 

exactly the same sequence of outputs when started from the other state.  

 



If starting from state A, Every possible sequence of inputs produces exactly the same sequence 

of outputs that would occur when starting from the state B. So A and B are equivalent states and 

they can be merged as shown in figure 11.5 

 

Figure 11.6 Equivalent states 

Equivalent states can be recognized by the following procedures:  

1.  The rows corresponding to the two states are identical with respect to input/output/next 

state but the name of the next state could differ. The two states are differentiated only by the 

input that distinguishes between them.  

 This situation is shown in Figure 11.6. Except for the a,b inputs, which distinguish 

between states A and  , the system’s behavior in the two states is identical for every 

input sequence; they can be merged.  

2.  There are two sets of rows which, except for the state names, have identical state graphs 

with respect to transitions and outputs. The two sets can be merged (see Figure 11.7).  



 

In the figure 11.7  

The states are equal i.e, A1=B1 , A2=B2 ,A3=B3 means  

A1,B1 are equivalent states 

A2,B2 are equivalent states 

A3,B3 are equivalent states 

 With respect to input, output only the next state changes so the equivalent states can 

be merged 

 The process can be automated because we are using state graphs as a design tool 

rather than a program design tool. 

 The state graph of two versions(the tester’s and the designer’s) is usually enough to 

expose the similarities and the possibility of merging equivalent states. 

 



 
Figure 11.8 Unmergable procedure 

 Bugs are often the result of the unjustifiable merger of seemingly equivalent 

states. Two states or two sets appear to be equivalent  because the programmer  

has failed to carry  through a proof of equivalence  for every input sequence. 

 From the figure 11.8 The input sequence abbbb produces the output sequence 

uxuyy while the input sequence bbbbb produces the output sequence uxuyu the 

two set of states are not equivalent. 

4.6.3Transition Bugs 

4.6.3.1. Unspecified and Contradictory Transitions 

 Every input –state combination  must have specified transition 

 Exactly one transition must be specified for every combination of input and state. 

 A program can’t have contradictions or ambiguities. Ambiguities are impossible because 

the program will do something (right or wrong) for every input. 

 One of the most common source of contradictions/ambiguities are specifications 

 

4.6.3.2An Example 

 Specifications are one of the most common source of ambiguities and contradictions.  

 The first statement of the specification:  

Rule 1: The program will maintain an error counter, which will be incremented whenever there’s 

an error.  

 



 There are only two input values ―okay‖ and ―error‖. A state table will be easier to work 

and its very easy to spot ambiguities and contradictions.. The state table for the above 

graph is shown below 

                      

                                     Input 

       

                                            

                                     

 

 

 

 

 

 

  

Rule 2: If there is an error, rewrite the block 

                                   Input 

STATE  OKAY  ERROR  

0  0/NONE  1/REWRITE  

1     2/REWRITE  

2     3/REWRITE  

3     4/REWRITE  

4     5/REWRITE  

5     6/REWRITE  

6     7/REWRITE  

7     8/REWRITE  

 

STATE  OKAY  ERROR  

0  0/none  1/  

1     2/  

2     3/  

3     4/  

4     5/  

5     6/  

6     7/  

7     8/  



Rule 3: If there have been three successive errors, erase 10 centimeters of tape and then rewrite 

the block 

                       Input 

STATE  OKAY  ERROR  

0  0/NONE  1/REWRITE  

1     2/REWRITE  

2     3/REWRITE, ERASE, REWRITE  

3     4/REWRITE, ERASE, REWRITE  

4     5/REWRITE, ERASE, REWRITE  

5     6/REWRITE, ERASE, REWRITE  

6     7/REWRITE, ERASE, REWRITE  

7     8/REWRITE, ERASE, REWRITE  

 

 Rule 3, if followed blindly, causes an unnecessary rewrite. It’s a minor bug, so let it go 

for now, but it pays to check such things. There might be an arcane security reason for 

rewriting, erasing, and then rewriting again.  

Rule 4: If there have been three successive erasures and another error occurs, put the unit out of 

service                                                                  Input 

STATE  OKAY  ERROR  

0  0/NONE  1/RW  

1     2/RW  

2     3/ER, RW  

3     4/ER, RW  

4     5/ER, RW  

5     6/OUT  

6        

7        



 

Rule 4 terminates our interest in this state graph so we can dispose of states beyond 6. The 

details of state 6 will not be covered by this specification; presumably there is a way to get back 

to state 0. Also, we can credit the specifier with enough intelligence not to have expected a 

useless rewrite and erase prior to going out of service.  

Rule 5: If the erasure is successful, return to the normal state and clear the counter 

                                                                     Input 

STATE  OKAY  ERROR  

0  0/NONE  1/RW  

1     2/RW  

2     3/RW,ER, RW  

3  0/NONE  4/RW,ER, RW  

4  0/NONE  5/RW,ER, RW  

5  0/NONE  6/OUT  

6        

 

Rule 6: If the rewrite was unsuccessful, increment the error counter, advance the state and try 

another rewrite 

  

 

 

 

 

 



Rule 7: If the rewrite was successful, decrement the error counter and return to the previous state.  

                                                                       Input  

STATE  OKAY  ERROR  

0  0/NONE  1/RW  

1  0/NONE  2/RW  

2  1/NONE  3/RW,ER, RW  

3  0/NONE 

2/NONE  

4/RW,ER, RW  

4  0/NONE 

3/NONE  

5/RW,ER, RW  

5  0/NONE 

4/NONE 

6/OUT  

6        

 

 For example say that we are at state 1. The error counter here is 2.If we have a 

successful (okay) rewrite, the entry for okay at state2 will have error counter decremented by 1 

which is (2-1)/NONE 

4.6.3.3 unreachable state 

 An unreachable state is like unreachable code—a state that no input sequence can reach.  

 An unreachable state is not impossible, just as unreachable code is not impossible. 

There are two possibilities  

1. There is a bug  that is some transitions are missing 

2. The transitions are there but you don’t know about it 

Typically such hidden transitions are caused by software opening at a higher priority level or 

by interrupt processing. 



4.6.3.4 Dead States 

 A dead state, (or set of dead states) is a state that once entered cannot be left.  

 A set of states may appear to be dead because the program has two modes of operation. 

 In the first mode it goes through initialization process that consists of several states 

 Once  initialized it goes strongly connected states of working states, which with in the 

context of the routine which can not be exited 

 The initialization states are unreachable to the working states, and the working states are 

to be dead  to the initialization states 

 The only way to get back from dead state is either system crash or restart. 

4.6.3.4. Output Errors 

 The states, the transitions, and the inputs could be correct, there could be no dead or 

unreachable states, but the output for the transition could be incorrect. 

 The likeliest reason for an incorrect output is an incorrect call to the routine that executes 

the output. This is localized and it is a minor bug 

4.6.3.5. Encoding Bugs 

 The behavior of a finite-state machine is invariant under all encodings. That is, say that 

the states are numbered 1 to n. 

4.7 STATE TESTING 

4.7.1. Impact of Bugs 

 A bug can manifest itself as one or more of the following symptoms 

1.  Wrong number of states.  

2.  Wrong transition for a given state-input combination. 

3.  Wrong output for a given transition. 

4.  Pairs of states or sets of states that are inadvertently made equivalent (factor lost). 

5.  States or sets of states that are split to create inequivalent duplicates. 

6.  States or sets of states that have become dead.  

7. States or sets of states that have become unreachable. 



4.7.2. Principles 

 A path in a state graph, of course is a succession of transitions  caused by sequence of 

inputs 

 The notion of coverage  is identical to that used for flow graphs i.e., each transition  must 

be exercised  

 The starting point of state testing is:  

 1.  Define a set of covering input sequences that get back to the initial state when 

starting from the initial state.  

 2.  For each step in each input sequence, define the expected next state, the 

expected transition, and the expected output code.  

 A set of tests, then, consists of three sets of sequences:  

 1.  Input sequences.  

 2.  Corresponding transitions or next-state names.  

 3.  Output sequences.  

4.7.3. Limitations and Extensions 

1.  Simply identifying the factors that contribute to the state, calculating the total number of 

states, and comparing this number to the designer’s notion catches some bugs.  

2.  Insisting on a justification for all supposedly dead, unreachable, and impossible states and 

transitions catches a few more bugs.  

3. Insisting on an explicit specification of the transition and output for every combination of 

input and state catches many more bugs. 

4.  A set of input sequences that provide coverage of all nodes and links is a mandatory 

minimum requirement.  

5. In executing state tests, it is essential that means be provided (e.g., instrumentation 

software) to record the sequence of states (e.g., transitions) resulting from the input sequence 

and not just the outputs that result from the input sequence. 

4.7.4.What to Model 

1.  Any processing where the output is based on the occurrence of one or more sequences of 

events, such as detection of specified input sequences, sequential format validation, parsing, 

and other situations in which the order of inputs is important. 



 2.  Most protocols between systems, between humans and machines, between components of 

a system (CHOI84, CHUN78, SARI88). 

 3.  Device drivers such as for tapes and discs that have complicated retry and recovery 

procedures if the action depends on the state. 

 4.  Transaction flows where the transactions are such that they can stay in the system 

indefinitely—for example, online users, tasks in a multitasking system.  

5.  High-level control functions within an operating system. Transitions between user states, 

supervisor’s states, and so on. Security handling of records, permission for read/write/modify 

privileges, priority interrupts and transitions between interrupt states and levels, recovery 

issues and the safety state of records and/or processes with respect to recording recovery data  

6.The behavior of the system with respect to resource management and what it will do when 

various levels of resource utilization are reached. Any control function that involves 

responses to thresholds where the system’s action depends not just on the threshold value, 

but also on the direction in which the threshold is crossed. This is a normal approach to 

control functions 

7.  A set of menus and ways that one can go from one to the other. The currently active 

menus are the states, the input alphabet is the choices one can make, and the transitions are 

invocations of the next menu in a menu tree. Many menu-driven software packages suffer 

from dead states—menus from which the only way out is to reboot. 

 8.  Whenever a feature is directly and explicitly implemented as one or more state-transition 

tables.  

4.7.5. Getting the Data 

 State testing, more than most functional test strategies, tends to have a labor-intensive 

data-gathering phase and tends to need many more meetings to resolve issues. 

4.7.6. Tools 

 There are tools to do the same for hardware logic designs. That’s the good news.  

 The bad news is that these systems and languages are proprietary, of the home-brew 

variety, internal, and/or not applicable to the general use of software implementations of 

finite-state machines 

 4.8 TESTABILITY TIPS 

4.8.1. A Balm for Programmers 

 Testability is to test the software  



 The key to testability design is easy: build explicit finite-state machines 

4.8.2. How Big, How Small? 

 There are about eighty possible good and bad three-state machines, 2700 four-state 

machines, 275,000 five-state machines, and close to 100 million six-state machines, most 

of which are bad. 

 You must do finite state machine model and identify how you are implementing every 

part of that model for anything with four or five states 

4.8.3 Switches, Flags, and Unachievable Paths 

 

 

                                  Figure  11.9 program with one switch variable 

 The above figure 11.9a shows one switch or flag. In figure 11.9b we have rewritten 

the routine  to eliminate the flag as soon as the flag value is calculated we branch the 

cost is the cost of converting segment  V into a subroutine and calling it twice. 

 We went from four paths two of which are achievable to two paths, both of which are 

achievable and both of which are needed to achieve branch coverage. 

 



 

                                  Figure 11.10: Three-Switch-Variable Program.  

 In figure 11.10 the figure is complicated there are three switches . We can put the 

decision up front and branch directly, and again we use subroutines to make each path 

explicitly and do with the switches. 

 The advantages of this implementation is that if any of the combinations are not needed 

we clip out that part 

 In figure 11.10c the paths are achievable and all paths are needed for branch cover 

 

                                   Figure 11.11 Switches in a Loop. 

 The above figure is similar to the previous but we have put the switched parts in a 

loop. We now have a very difficult situation. We don’t know which paths are 



achievable and which are not required it depends on the switch settings we must do o 

attempt branch coverage in every possible state. 

4.8.4. Essential and Inessential Finite-State Behavior 

 The simplest essential finite-state machine is a flip-flop. There is no logic that can 

implement it without some kind of feedback. we cannot describe this behavior by a 

decision table or decision tree unless you provide feedback into the table or call it 

recursively. 

4.8.5. Design Guidelines 

1. Start by designing the abstract machine. Verify that it is what you want to do. Do an 

explicit analysis, in the form of a state graph or table, for anything with three states or more. 

 2.  Start with an explicit design—that is, input encoding, output encoding, state code 

assignment, transition table, output table, state storage, and how you intend to form the state-

symbol product. Do this at the PDL level. But be sure to document that explicit design.  

3.  Before you start taking shortcuts, see if it really matters. Neither the time nor the memory 

for the explicit implementation usually matters 

4. Take shortcuts by making things implicit only as you must to make significant reductions 

in time or space and only if you can show that such savings matter in the context of the 

whole system. 

5. After all, doubling the speed of your implementation may mean nothing if all you’ve done 

is shaved 100  microseconds from a 500-millisecond process. The order in which you should 

make things implicit are: output encoding, input encoding, state code, state-symbol product, 

output table, transition table, state storage. That’s the order from least to most dangerous.  

6.  Consider a hierarchical design if you have more than a few dozen states.  

7.  Build, buy, or implement tools and languages that implement finite-state machines as 

software if you’re doing more than a dozen states routinely.  

8.  Build in the means to initialize to any arbitrary state. Build in the transition verification 

instrumentation (the coverage analyzer). These are much easier to do with an explicit 

machine 


