
UNIT-III
REGISTER TRANSFER LANGUAGE
AND DESIGN OF CONTROL UNIT

UNIT-III
REGISTER TRANSFER LANGUAGE AND

DESIGN OF CONTROL UNIT
• Register Transfer: Register Transfer Language -

Register Transfer - Bus and Memory Transfers -
Arithmetic Micro operations - Logic Micro
operations - Shift Micro Operations.

• Control Unit: Control Memory - Address
Sequencing – Micro program Example - Design
of Control Unit.

Register Transfer Language
• Digital systems are composed of modules that are constructed from

digital components, such as registers, decoders, arithmetic
elements, and control logic.

• The modules are interconnected with common data and control
paths to form a digital computer system.

• The operations executed on data stored in registers are called
microoperations

• A microoperation is an elementary operation performed on the
information stored in one or more registers.

• Examples are shift, clear and load.

Register Transfer Language

• The internal hardware organization of a digital
computer is best defined by specifying
– The set of registers it contains and their functions.

– The sequence of microoperations performed on
the binary information stored.

– The control that initiates the sequence of
microoperations.

Register Transfer Language

Register Transfer

• Computer Registers are designated by capital
letters to denote its function.

• The register that holds an address for the memory
unit is called as MAR.

• The program counter register that holds the
address of next instruction is called as PC .

• IR is the instruction register and R1 is a processor
register.

Register Transfer

Register Transfer
• The individual flip-flops in an n-bit register are

numbered from 0 to n-1 (from the right position
toward the left position)

• The most common way to represent a register is by a
rectangular box with the name of the register inside,
as in Fig(a).

• The individual bits can be distinguished as in Fig(b).

• The numbering of bits in a 16-bit register can be
marked on top of the box as shown in Fig(c).

Register Transfer
• A 16-bit register is partitioned into two parts in Fig (d).

• Bits 0 through 7 are assigned the symbol L (for low
order byte) and bits 8 through 15 are assigned the
symbol H (for high order byte).

• The name of the 16-bit register is PC. The symbol
PC(O—7) or PC(L) refers to the low-order byte and
PC(8—15) or PC(H) to the high-order byte.

Register Transfer
• Information transfer from one register to another is

described by a replacement operator: R2 ← R1
• This statement denotes a transfer of the content of

register R1 into register R2
• The content of the R1 (source) does not change
• The content of the R2 (destination) will be lost and

replaced by the new data transferred from R1
• If the transfer is to occur only under a predetermined

control condition, designate it by
If (P = 1) then (R2 R1) or P: R2 R1,

where P is a control function that can be either 0 or 1

Register Transfer

• Hardware implementation of a controlled
transfer: P: R2 ← R1

n

Clock

R1

R2
Control
Circuit

LoadP

12

Register Transfer

Basic Symbols for Register Transfers
Symbol Description Examples

Letters &
numerals

Denotes a register MAR, R2

Parenthesis () Denotes a part of a
register

R2(0-7), R2(L)

Arrow ← Denotes transfer of
information

R2 ← R1

Comma , Separates two
microoperations

R2 ← R1, R1 ← R2

Bus and Memory Transfers
• Paths must be provided to transfer information from

one register to another.

• A Common Bus System is a scheme for transferring
information between registers in a multiple-register
configuration.

• A bus is a set of common lines, one for each bit of a
register, through which binary information is transferred
one at a time.

• Control signals determines which register is selected by
the bus during each particular register transfer

COMMON BUS SYSTEM CONFIGURATION

• Constructing a common bus system is done by
a. Using multiplexers
b. Using three state buffers.

Using Multiplexers:
• The multiplexers select the source register

whose binary information is then placed on
the bus.

• Each register has four bits, numbered 0
through 3.

Using Multiplexers
• The bus consists of four 4 x 1 multiplexers

each having four data inputs, 0 through 3, and
two selection inputs, S1 and S0.

• we use labels to show the connections from
the outputs of the registers to the inputs of
the multiplexers.

• For example, output 1 of register A is
connected to input 0 of MUX 1 because this
input is labeled A1.

Using Multiplexers
• The two selection lines S0 and S1 are

connected to the selection inputs of all four
multiplexers.

• The following table shows the register that is
selected by the bus for each of the four
possible binary values of the selection lines.

S1 S0 Register Selected

0 0 A

0 1 B

1 0 C

1 1 D

Using Multiplexers

Using Multiplexers
• The number of multiplexers needed to construct the

bus is equal to n.
• The size of each multiplexer must be k x 1 since it

multiplexes k data lines.
For example:
• A common bus for eight registers of 16 bits each

requires 16 multiplexers, one for each line in the bus.
• So Each multiplexer must have eight data input lines

and three selection lines to multiplex one significant
bit in the eight registers.

Three-state gate
• Three state gate is a digital circuit that exhibits

three states.
• Two of the states are signals equivalent to

logic 1 and 0 as in a conventional gate and the
third state is a high impedance state.

• The high-impedance state behaves like an
open circuit, which means that the output is
disconnected and does not have logic
significance.

Three-state gate

• Three-state gates may perform any
conventional logic, such as AND or NAND.

• However, the one most commonly used in the
design of a bus system is the buffer gate.

• It is distinguished from a normal buffer by
having both a normal input and a control
input.

Three-state gate

Three-state gate

• When the control input is equal to 1, the output is
enabled and the gate behaves like any conventional
buffer, with the output equal to the normal input.

• When the control input is 0, the output is disabled
and the gate goes to a high-impedance state,
regardless of the value in the normal input.

• The high-impedance state of a three-state gate
provides a special feature not available in other
gates.

Three-state gate

Three-state gate
• The outputs of four buffers are connected together

to form a single bus line.
• The control inputs to the buffers determine which of

the four normal inputs will communicate with the
bus line.

• No more than one buffer may be in the active state
at any given time.

• The connected buffers must be controlled so that
only one three-state buffer has access to the bus line
while all other buffers are maintained in a high-
impedance state.

Three-state gate
• One way to ensure that no more than one control

input is active at any given time is to use a decoder,
as shown in the diagram.

• To construct a common bus for four registers of n
bits each using three state buffer, we need n circuit
with four buffer receives one significant bit from the
four registers.

• Each common output produces one of the lines for
the common bus for a total of n lines .

• Only one decoder is necessary to select between the
four registers.

MEMORY TRANSFER

• A memory word will be symbolized by the letter M.
• The particular memory word among the many available

word is selected by the memory address during the
transfer.

• This will be done by enclosing the address in square
brackets following the letter M.

• Consider a memory unit that receives the address from a
register, called the address register, symbolized by AR.

• The data are transferred to another register, called the
data register, symbolized by DR

MEMORY TRANSFER

READ OPERATION:
• The transfer of information from a memory

word to the outside environment.
Read: DR ← M[AR]

• This causes a transfer of information into DR
from the memory word M selected by the
address in AR.

MEMORY TRANSFER

WRITE OPERATION:
• The write operation transfers the content of a

data register to a memory word M selected by
the address.

Write: M[AR] ← DR
• This causes a transfer of information from DR

into the memory word M selected by the
address in AR.

