

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

(AUTONOMOUS)

Dr. Visweswaraiah Road, (Bangalore-Tirupathi Bye-pass Road), Murukambattu, Chittoor – 517127, Andhra Pradesh, India

B.Tech Course Structures and Syllabi Under R20 Regulations

(Applicable for 2021-2022 Regular Students & 2022-2023 Lateral Students)

Department of Computer Science and Engineering (Data Science)

To emerge as a Centre of Excellence for Learning and Research in the domains of engineering, computing, and management.

Institute Mission

IM1:Provide congenial academic ambience with state-of-art of resources for learning and research.

IM2: Ignite the students to acquire self-reliance in the latest technologies.

IM3:Unleash and encourage the innate potential and creativity of students.

IM4:Inculcate confidence to face and experience new challenges.

IM5:Foster enterprising spirit among students.

IM6:Work collaboratively with technical Institutes/ Universities/

Industries of National and International repute

Department Vision

To train students to become competent Data analytic experts and expand their capacity to contribute in the Field of data science by providing solution in Public aspects.

Department Mission

- DM 1: To develop professionals who are skilled in the area of Data analytics.DM 2:To teach quality and value based education and contribute towards the innovation of computing, expert system, Data Science to raise satisfaction level of all stakeholders.
- DM 3: To integrate research into practical, relevant solutions to address business and societal challenges.

Program Educational Objectives (PEOs)

Graduates of Computer Science and Engineering (Data Science) shall

After completion of degree graduate will

PEO1: Formulate, solve and analyze Computer Science and Engineering problems using necessary mathematical, Scientific and engineering fundamentals.

PEO2: Inculcate theoretical and practical knowledge related to Data Science for better prediction and decision making for real world problems.

PEO3: Excel as Software Developer with the focused area of Data Science or continues higher education at a reputed institution in India or abroad.

PEO4: Demonstrate critical thinking, communication, teamwork, leader shipskillsandethicalbehaviournecessarytofunctionproductivelyandprofessionally.

Program Specific Outcomes (PSO's)

After the completion of the Program, The student shall able to,

PSO1: Apply appropriate algorithmic tools and techniques to design and develop computing system for real world problem.

PSO2: Formulate and use appropriate models of data analysis to solve hidden solutions for various problems.

PROGRAMME OUTCOMES (PO's)

On Successful completion, the graduate will be able to,

- PO1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

ACADEMIC REGULATIONS (R-20) FOR B.TECH

(Regular-Full Time)

(Effective for the students admitted into I year from the Academic Year 2020-2021 and IIyear lateral entry from the Academic year 2021-2022 onwards)

Curriculum for Regular and Honors/Minors B.Tech Program of all Branches

1. Eligibility for Admission

Admission of the B.Tech program shall be made subjects to the eligibility qualifications and Specialization prescribed by the University for each Programfrom time to time and also as per the guidelines of Andhra Pradesh State Council of Higher Education (APSCHE).

Admission shall be made either on the basis of Merit / Rank Obtained by the Qualifying candidates in EAMCET/ECET or otherwise specified whichever is relevant.

2. Award of the Degree: A student will be declared eligible for the award of B. Tech. degree if he/she fulfills the following:

- i. For regular entry students, shall pursues a course of study in not less than four and not more than eight academic years.
- ii. For lateral entry students, shall pursue a course of study for not less than three academic years and in not more than six academic years.
- iii. For regular entry students, after eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
- iv. For lateral entry students, after six academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
- v. For regular entry students shall register for 163 credits and must secure all the 163 credits. For lateral entry students shall register for 124 credits and secure all 124 credits
- vi. A student shall be eligible for the award of B.Tech degree with Honors or Minor if he/she earns 20 credits in addition to the 163 credits for Regular entry students
 /124 credits for lateral entry students.
- vii. A student shall be permitted to register either for Honors or for Minor and not for both simultaneously.

3. Structure of the Undergraduate Engineering program:

All subjects / courses offered for the under graduate program in B.Tech. Degree programs are broadly classified as follows.

S.No	Course	Course Catagory	Course Code		
5.110	Classification	Course Category	course code		
		Humanities and Social Science including Management Courses	HSM		
1	Foundation Courses	Basic Science Courses	BSC		
		Engineering Science Courses	ESC		
2	Core Courses	Professional Core Courses	PCC		
3	Professional Elective Courses		PEC		
	Liective Courses	Open Elective Courses	OEC		
4	Employability	Internship, Seminar and Project Work	PROJ		
	Enhancement Courses	Skill Oriented Courses / Skill Advanced Courses	SOC/SAC		
5	Audit Courses	Mandatory Audit Courses	MAC		
6	Minor / Honor Courses	Minor Courses / Honor Courses	MR/HR		

4. Assigning of Credits:

i. 1 Hr. Lecture (L) per week – 1 Cred	k – 1 Credit	1 Hr. Lecture (L) per week	i.
--	--------------	----------------------------	----

- ii. 1 Hr. Tutorial (T) per week 1 Credit
- iii. 1 Hr. Practical (P) per week 0.5 Credits
- iv. 2 Hours Practical (Lab) per week 1 Credit

5. Induction Program for I. B. Tech Program

- i. There shall be mandatory student induction program for fresher's, with a three-week duration before the commencement of first semester.
- Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Department / Branch and Innovations etc., shall be included in the guidelines issued by AICTE.

6. Assessment

- i. The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory as well as for practical subject and project work.
- ii. The audit courses shall be evaluated for a maximum of 30 internal marks.
- iii. For theory and practical subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End Semester Examinations.

 iv. A student has to secure not less than 35% of marks in the end semester examination and minimum 40% of marks in the sum total of Internal Examination and End Semester Examinations marks to earn the credits allotted to each course.

Internal Examination

For theory subjects, during the semester, there shall be two Mid-Term Examinations will be conducted.

Each Mid-Term Examination consists of objective paper for 10 marks and subjective paper for 15 marks with the duration of 1 hour 50 minutes (20 minutes for objective and 90 minutes for subjective paper).

The subjective paper shall contain 3 either-or type questions with equal Weightageof 10 marks and the marks obtained for 3 questions shall be condensed to 15 marks; any fraction shall be rounded off to the next higher mark.

If the student is absent for the any internal examination, no re-exam or make up exam shall be conducted and marks for that examination shall be considered as zero.

First Mid-Term Examination shall be conducted for I & II units of syllabus and second Mid-Term Examinations shall be conducted for III, IV & V units.

However 5 marks are awarded for 5 Assignments (unit-wise).

Final Internal marks shall be arrived at by considering the marks secured by the student in both the Mid-Term examinations with 80% weightage to the better mid exam and 20% to the other

- For Example:
- Marks obtained in First Mid-Term: 25
- Marks obtained in Second Mid-Term: 25
- Internal Marks: (25x0.8) + (25x0.2) = 25
- Final internal marks = Internal Marks + Assignment marks

If the student is absent for any one Mid-Term Examinations, the final internal marks shall be arrived at by considering 80% Weightage to the marks securedbythe student in the appeared examination and zero to the other.

For Example:

- > Marks obtained in First Mid-Term: Absent
- Marks obtained in Second Mid-Term: 25
- Internal Marks: (25x0.8) + (0x0.2) = 20
- > Final internal marks = Internal Marks + Assignment marks

For practical courses there shall be 30 internal marks. 15 marks allotted for Internal Practical Examination to be conducted before the last working day and 15marks for Day-to-Day work in the laboratory shall be evaluated by the concerned

laboratory teacher based on the regularity / record / viva-voce.

In a practical subject consisting of two parts (ex: Engineering Workshop & ITWorkshop), Internal examination shall be evaluated as above for 30 marks in each part and final internal marks shall be arrived by considering the average of marks obtained in two parts.

The evaluation of the practical courses is done based on the rubrics designed forthat curriculum component.

Semester End Examination

End examination of theory courses shall have the following pattern:

- i. There shall be two parts, Part-A and Part-B.
- Part-A shall contain 10 compulsory short answer questions for a total of 20 marks such that each question carries 2 marks. There shall be 2 short answer questions from each unit.
- iii. Part-B Shall be either-or type questions of 10 marks each. Student shall answer any one of it.
- iv. Each of these questions from Part-B shall cover each unit of the syllabus.End examination of practical courses shall have the following pattern:
 - i. End Semester Examination shall be for 70 marks.
 - ii. The end examination shall be conducted by the concerned laboratory teacher and senior expert in the same subject of the department.
 - iii. In a practical subject consisting of two parts (ex: Engineering Workshop & IT Workshop), the End Semester Examination shall be conducted for 35 marks in each part.
 - iv. The evaluation of the practical courses is done based on the rubrics designed for that curriculum component.

Drawing Courses

For the subject having design and/or drawing, such as Engineering Drawing /Graphics.

The distribution shall be 30 marks for internal evaluation (15 marks for Day- to- Day work (unit wise chart work / Assignment) and for another 15 marks thereshall be a two MID Term exams will be conducted) and 70 marks for semester end examinations.

There shall be two Mid-Term examinations in a semester for duration of 2hrs eachfor 15 marks with weightage of 80% to better mid marks and 20% for the other.

The internal subjective paper shall contain 3 either-or type questions with equal Weightage of 10 marks and the marks obtained for 3 questions shall be condensed to 15 marks; any fraction shall be rounded off to the next higher mark and there shall be no objective paper in internal examination.

The sum of Day-to-Day work evaluation / assignments and the internal MID Term test marks will be the final internal marks for the course.

In the end examination pattern for Engineering Drawing / Graphics there shall be 5 questions, either-or type, of 14 marks each.

Mandatory Audit Courses

Courses like Human Values and Ethics, Environmental Sciences, Constitution of India and Design Thinking for Innovation shall be included in the curriculum as non-credit mandatory audit courses.

However, attendance in the audit courses shall be considered while calculating aggregate attendance. A student has to secure 40% of the marks allotted in the internal evaluation for passing the course.

The Internal Marks will be calculated similar to that of Theory course.

In grade sheet the completion of the course indicated as Pass – "P'', and No marks or letter grade shall be allotted, for all non-credit mandatory auditcourses.

Re-exam shall be conducted for failed candidates for every semester at a mutual convenient date of institution.

Professional Elective Courses

Students have to choose Professional Elective Courses PEC-I in V semester, PEC-II in VI semester and PEC-III, PEC-IV, PEC-V in VII semester, from the list of elective courses given.

Registration forms are invited from the students 10 days prior to the last instructional day of the preceding semester for registration process for offering the Professional Elective Courses.

There shall be a limit on the minimum and maximum number of registrations based on class/section strength.

The assessments of Professional Elective Courses are same as regular theory courses.

Open Elective Courses

A student shall opt for any 4 courses from the list given by the institute fromtime to time, complying with the requirement of the prerequisite course(s), if any. $\frac{8}{8}$

Students have to choose Open Elective Courses OEC-I in V semester, OEC-II in VI semester and OEC-III, OEC-IV in VII semester, from the list of elective courses given.

All Open Elective Courses are offered to the students of across all branches in general.

Registration forms are invited from the students 10 days prior to the last instructional day of the preceding semester for registration process for offering the Open Elective Courses.

However, a student shall choose an open Elective from the list in such a manner that he/she has not studied the same course in any form during their Program.

There shall be a limit on the minimum and maximum number of registrations based on class/section strength.

Massive Online Open Courses

MOOC courses under Professional Elective / Open Elective

A student shall be permitted to pursue up to a maximum of two elective courses (Professional Elective Courses or Open Elective Courses) under MOOCs during the Program. Each of the courses must be of minimum 12 weeks in duration for 3 credits. Attendance will not be monitored for MOOC courses.

Student has to pursue and acquire a certificate for a MOOC course only from the organizations / agencies approved by the BoS in order to earn the 3 credits. The Head of the department shall notify the list of such courses at the beginning of the semester.

Mandatory Internships

Students shall undergo two mandatory summer internships for a minimum of four weeks duration at the end of second and third year of the Program.

The internship can be done by the students at Local Industries, Government Organizations, Public Sector Companies, Research Laboratories, Construction agencies, Power Plants and also in software MNCs.

A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the Department Evaluation Committee nominated by the Principal at the end of the semester for the evaluation of summer internship.

The performance of a student in each mandatory summer internships shall be evaluated with a maximum of 100 marks.

The report and the oral presentation shall carry 40% and 60% weightage respectively.

Project work and Internships

In the final semester, the student should undergo Internship / Project Work with well-defined objectives.

Students Project Batch will have maximum of four students comprising the fast and slow learners.

Every student shall be required to undertake a Project Work in the Institution / Internship cum Project Work in Local Industries / Government Organizations / Public Sector Companies / Research Laboratories / Construction agencies / Power Plants and also in software MNCs in consultation with Head of the Department and Department Project Evaluation Committee.

The Department project evaluation committee continuously monitors and evaluates the progress of the Project Work / Internship cum Project Work byconducting three reviews including abstract review during the project period.

During the project review meetings, batch presentation and individual contributions are monitored to assess individual student performance and also team performance.

The evaluation of the project is done based on the rubrics designed for that curriculum component.

At the end of the semester the candidate shall submit an Internship cum Project completion certificate along with project report on the work carried out during the project work at the industry.

A student shall be permitted to submit project report on the work carried out during the project work at the institution/department.

The project work submitted to the department shall be evaluated for 100 marks,out of which 30 marks are for internal evaluation and 70 marks for external viva- voce.

The internal evaluation shall be made by the Department Project Evaluation Committee, on the basis of three reviews given by each students / batch on thetopic of his/her project.

The final viva-voce shall be conducted by a committee consisting of HOD, Project Supervisor and an External Examiner nominated by the Principal at the end of the Semester.

In case a student fails in viva voce he /she shall reappear as and when supplementary examinations are conducted.

The distribution of marks for the Internal assessment and End Semester Examination is given below:

Inte	ernal Assess (30 Marks)		End Semester Examination (70 Marks)				
Review - I	Review - II	Review - III	Supervisor	Internal Examiner	External Examiner		
10	10	10	20	25	25		

Eligibility to appear for Semester End Examinations

A student shall be eligible to appear for Semester End Examinations if he/she acquires a minimum of 75% of attendance in aggregate of all the courses in a semester.

Condonation for shortage of attendance in aggregate up to 10% (65% and aboveand below 75%) in each semester may be granted by the College Academic Committee. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.

Students whose shortage of attendance is not condoned in any semester are not eligible to take their Semester End Examination of that class and their registration shall stand cancelled.

A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester, as applicable. They may seek readmission for that semester when offered next.

A stipulated fee shall be payable towards condonation of shortage of attendance to the college.

Issue of Photocopy of Answer Script

A student can request for the photo copy of answer script of any theory examination within one week after the declaring the results by paying fee.

The examination section shall issue a notification inviting applications for theissue of photocopy of answer script after publishing the results.

The application forms can be obtained from the examination section.

Revaluation

A candidate can apply for revaluation of his / her end examination answer paperin a theory courses.

The examination section shall issue a notification inviting applications for therevaluation after publishing the results.

The application forms can be obtained from the examination section.

A candidate can apply for revaluation of answer scripts in not more than 5courses at a time.

No revaluation for practical courses, comprehensive viva-voce / Examination and project work.

Challenge Valuation

A student can apply for challenge valuation by prescribed fee.

Challenging valuation shall be carried out by an external subject expert.

The challenging valuation should be done strictly as per the scheme of valuationsupplied by the examination section in the presence of Principal.

The examination section shall issue a notification inviting applications for thechallenging valuation after publishing the revaluation results.

The application forms can be obtained from the examination section.

7. Promotion Rules

A student shall be promoted from first year to second year if he fulfills the minimum attendance requirements.

A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to II year IV Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year IV semester.

- i. **One** regular and **three** supplementary examinations of I B.Tech I Semester.
- ii. **One** regular and **two** supplementary examinations of I B.Tech II Semester.
- iii. **One** regular and **one** supplementary examinations of II B.Tech III Semester.
- iv. One regular examination of II B.Tech IV semester.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to III year 6th semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year 6th semester.

i. **One** regular and **five** supplementary examinations of I B.Tech I Semester.

- One regular and four supplementary examinations of I B.Tech II ii. Semester.
- iii. **One** regular and **three** supplementary examinations of II B.Tech III Semester.
- iv. **One** regular and **two** supplementary examinations of II B.Tech IV Semester.
- One regular and one supplementary examinations of III B.Tech V v. Semester.
- vi. One regular examination of III B.Tech VI Semester.

For Lateral entry student promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to III year VI semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year VI semester.

- One regular and three supplementary examinations of II B.Tech III i. Semester.
- One regular and two supplementary examinations of II B.Tech IV ii. Semester.
- One regular and one supplementary examinations of III B.Tech V iii. Semester.
- iv. One regular examination of III B.Tech VI Semester.

8. Extra Curricular Activities

- i. Students shall enroll, on admission, in any one of the personality and character development programs (NSS/YRC etc.,) and undergo training and attend a camp.
- ii. The training shall include classes on hygiene and health awareness and also training in first-aid.
- iii. National Service Scheme (NSS) and Youth Red Cross (YRC) will have social service activities in and around the Institution.
- iv. A student will be required to participate in an activity for an hour in a week during their second and third years.

9. Skill Oriented / Skill Advanced Courses

- i. There shall be 05 Mandatory Skill-Oriented Courses offered during III to VII semesters.
- ii. The list of such courses shall be included in the curriculum structure of each branch of Engineering.

10. Curricular Framework for Honors Program

- i. Under Graduate degree with Honors shall be issued by the Institution to the students who fulfill all the academic eligibility requirements for the B.Tech program and Honors program.
- Students of a Department are eligible to opt for Honors Program offered by the same Department / Discipline, subject to a maximum of two additional courses per semester.
- iii. A student shall be permitted to register for Honors program at the beginning of IV semester provided that the student must have acquired a minimum average of 8.0 SGPA upto the end of II semester without any backlogs. In case of the declaration of the III semester results after the commencement of the IV semester and if a student fails to score the required minimum of 8.0 SGPA, his/herregistration for Honors Program stands cancelled and he/she shall continue with theregular Program.
- iv. Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. In addition to fulfilling all the requisites of a Regular B.Tech . Program, a student shall earn 20 additional credits to be eligible for the award of B.Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160/121 credits).
- v. Of the 20 additional Credits to be acquired, and 16 credits (four courses) shall be earned by undergoing specified courses listed as pools (two courses per pool either theory course or theory with lab component), and each carrying 4 credits. The remaining 4 credits (two courses) must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- vi. The courses offered in each pool (two courses per pool) shall be domain specific courses and advanced courses.
- vii. MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the academic council.
- viii. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course.

- ix. The concerned BoS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses asapproved by the concerned Head of the department in consultation with BoS.
- x. The concerned BoS shall also consider courses listed under professional Elective Courses of the respective B.Tech programs for the requirements of B.Tech (Honors).
 However, a student shall be permitted to choose only those courses thathe/she has not studied in any form during the Program.
- xi. If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into open or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Honors will be shown in the transcript. None of the courses done under the dropped Honors will be shown in the transcript.
- xii. In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of studentseligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additionalcourses completed by them.
- xiii. Honors must be completed simultaneously with a major degree program. Astudent cannot earn Honors after he/she has already earned bachelor's degree.

11. Curricular Framework for Minor Program

- i. Under graduate Degree with Minor Program shall be issued by the Institutionto the students who fulfill all the academic eligibility requirements for the B.Tech program and Minor Program.
- ii. Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Computer Science Engineering under this scheme; he/she will get Major degree ofMechanical Engineering with minor degree of Computer Science Engineering.Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industryrelevant tracks like Data Mining track, IOT track, Machine learning track etc.

- iii. The concerned BOS shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CSE, ECE, EEE, CE, ME etc or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, Virtual Realty, VLSI etc.
- iv. The list of disciplines/branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BoS.
- v. The concerned BoS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- vi. A student shall be permitted to register for Minors program at the beginning of IV semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 8.0 SGPA (Semester Grade point average) upto the end of II semester without any history of backlogs. It is expected that the III semester results may be announced after the commencement of the IV semester. If a student fails to acquire 8.0 SGPA upto III semesters or failed in any of the courses, his registration for Minors program shall stand cancelled. An SGPA of 8.0 has to be maintained in the subsequent semesters without any backlog in order to keep the Minors registration active.
- vii. A student shall earn additional 20 credits in the specified area to be eligible for the award of B.Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160/121 credits).
- viii. Of the 20 additional Credits to be acquired and 16 credits shall be earned by undergoing specified courses listed in course structure and each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeksas recommended by the Board of studies.
- ix. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the BoS.
- x. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Program.
- xi. If a student drops or terminated from the Minor program, they cannot convert the earned credits into open or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(DATA SCIENCE) also choose to omit the mention of the course as for the following: Allthe courses done under the dropped Minors will be shown in the transcript. Noneof the courses done under the dropped Minor will be shown in the transcript.

- xii. In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additionalcourses completed by them.
- xiii. Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he/she has already earned bachelor's degree.

12. Grading

After each subject is evaluated for 100 marks, the marks obtained in each course will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Marks Range	Level	Letter Grade	Grade Point
≥ 90	Outstanding	S	10
80-89	Excellent	A	9
70-79	Very Good	В	8
60-69	Good	С	7
50-59	Fair	D	6
40-49	Satisfactory	E	5
< 40	Fail	F	0
-	Absent	Ab	0

13. Calculation of Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA)

i. The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

$$SGPA = \frac{\sum (C_i X G_i)}{\sum C_i}$$

where, C_i is the number of credits of the ith subject and G_i is the grade point scored by the student in the ith course

ii. The Cumulative Grade Point Average (CGPA) will be computed in the same manner taking into account all the courses undergone by a student over all the semesters of a program, i.e.

$$CGPA = \frac{\sum (C_j X S_j)}{\sum C_j}$$

where S_j' is the SGPA of the jth semester and C_j is the total number of credits in that semester

- iii. Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- iv. While computing the SGPA/CGPA, the subjects in which the student is awarded Zero grade points will also be included.
- v. *Grade Point:* It is a numerical weight allotted to each letter grade on a 10-point scale.
- vi. *Letter Grade:* It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D, E and F.
- vii. As per AICTE regulations, conversion of CGPA into equivalent percentage as follows:
- viii. Equivalent Percentage = $(CGPA 0.50) \times 10$.

14. Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and are eligible for the award of B.Tech. Degree, he/she shall be placed in one of the following:

Class Awarded	CGPA Secured
First Class with Distinction	≥ 7.5
First Class	≥ 6.5 < 7.5
Second Class	≥ 5.5 < 6.5
Pass Class	≥ 4.0 < 5.5

15. With-Holding the Result

If the candidate has any dues not paid to the institution or if any case of indiscipline or malpractice is pending against him, the result of the candidate shallbe withheld and he will not be allowed / promoted into the next higher semester. The issue of awarding degree is liable to be withheld in such cases.

16. Transitory Regulations and Gap - Year

i. Discontinued, detained, or failed candidates are eligible for readmission as and when the semester is offered after fulfillment of academic regulations. Candidates who have been detained for attendance shortage or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for

- ii. admission into the unfinished semester from the date of commencement of class work with the same or equivalent subjects as and when subjects are offered and they will be in the academic regulations into which they get readmitted.
- iii. Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I year/ II year/ III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation.
- iv. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.
- v. Candidates who were permitted with Gap Year shall be eligible for rejoining into the succeeding year of their B.Tech from the date of commencement of class work and they will be in the academic regulations into which the candidate is presently rejoining.

17. Industrial Collaborations

- i. Institution-Industry linkages refer to the interaction between firms and universities or public research centers with the goal of solving technical problems, working on R&D, innovation projects and gathering scientific as well as technological knowledge.
- ii. The Departments are permitted to design any number of Industry oriented minor tracks as the respective BoS feels necessary. In this process the departments can plan to have industrial collaborations in designing the minor tracks and to develop the content and certificate programs.

18. Community Service Project

- i. Community Service Project should be an integral part of the curriculum, as an alternative to the Internships, whenever there is an exigency when students cannot pursue their internships.
- Every student should put in a minimum of 144 hours for the Community Service Project during the summer vacation. Each class/section should be assigned with a mentor.
- iii. Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like - youth, women, house-wives, etc
- iv. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in-charge.

- v. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member. The final evaluation to be reflected in the grade memo of the student. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc. Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college. Award of marks shall be made as per the guidelines of Internship.
- vi. A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- vii. The Community Service Project is a twofold one First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers; rather, it could be another primary source of data.
- viii. Secondly, the student/s could take up a social activity, concerning their domain orsubject area. The different areas, could be like – Agriculture, Health, Marketing and Cooperation Animal Husbandry, Horticulture, Fisheries, Sericulture, Revenue and Survey, Natural Disaster Management, Irrigation, Law & Order, Excise and Prohibition, Mines and Geology, Energy, Internet, Free Electricity, Drinking Water etc.,

19. Transfer Details

i. Student transfers shall be as per the guidelines issued by the Government of Andhra Pradesh from time to time.

20. Preservation of Records

i. The laboratory records, internal test papers and end examination answer booklets shall be preserved for minimum of 2 years from the date of completion of their degree in the institution.

21.Amendments to Regulations

The Academic Council of SITAMS (Autonomous) reserves the right to revise, amend or change the Regulations, Scheme of Examinations, and / or Syllabi or any other policy relevant to the needs of the society or industrial requirements etc., with the recommendations of the concerned Board(s) of Studies.

22.General

- i. The academic regulations should be read as a whole for purpose of any interpretation. Malpractices rules- nature and punishments are appended.
- ii. Where the words "he", "him", "his", occur in the regulations, they also include "she", "her", "hers", respectively.

23. Conduct and Discipline

- i. Students shall conduct themselves within and outside the precincts of the Institute in a manner befitting the students of an Institute of National importance.
- ii. As per the order of the Hon'ble Supreme Court of India, ragging in any form is banned: acts of ragging will be considered as gross indiscipline and will be severely dealt with.
- iii. The following additional acts of omission and /or commission by the students within or outside the precincts of the college shall constitute gross violation of code of conduct and are liable to invoke disciplinary measures
 - a. Ragging
 - b. Lack of courtesy and decorum: indecent behaviour anywhere within or outside the campus.
 - c. Willful damages or stealthy removal of any property /belongings of the Institute / Hostel or of fellow students
 - d. Possession, consumption of distribution of alcoholic drinks or any kind of hallucinogenic drugs
 - e. Mutilation or unauthorized possession of library books
 - f. Hacking in computer systems
 - g. Furnishing false statements to the disciplinary committee, or willfully withholding information relevant to an enquiry
 - h. Organizing or participation in any activity that has potential for driving fellow students along lines of religion caste batch of admission hostel or any other unhealthy criterion.
 - i. Resorting to noisy and unseemly behavior, disturbing studies of students.
 - j. Physical or mental harassment of fresher through physical contact or oral abuse
 - k. Adoption of unfair means in the examination
 - Organizing or participating in any group activity except purely academic and scientific Programmers in company with others in or outside campus without prior permission of the Principal
 - m. Disturbing in drunken state or otherwise an incident in academic or students function or any other public event.

- n. Not obeying traffic rules in campus not following safety practices or causing potential danger to oneself or other persons in any way.
- o. Any other act or gross indiscipline
- iv. Commensurate with the gravity of the offence the punishment may be reprimand fine and expulsion from the hostel debarment from an examination rustication for a specified period or even outright expulsion from the College.
- v. The reprimanding Authority for an offence committed by students in the Hostel and in the Department or the classroom shall be respectively, the managers of the Hostels and the Head of the concerned Department
- vi. In all the cases of offence committed by students in jurisdictions outside the purview the Principal shall be the Authority to reprimand them.
- vii. All Major acts of indiscipline involving punishment other than mere reprimand shall be considered and decided by the Principal Students Disciplinary Committee appointed by the Principal.
- viii. All other cases of Indiscipline of Students like adoption of unfair means in the examinations shall be reported to the Vice-Principal for taking appropriate action and deciding on the punishment to be levied.
- ix. In all the cases of punishment levied on the students for any offence committed the aggrieved party shall have the right to appeal to the Principal who shall constitute appropriate Committees to review the case.

NATURE OF MALPRACTICES/ IMPROPER CONDUCT PUNISHMENT	PUNISHMENT
1. (a) possesses or keeps access in	Expulsion from the examination hall and
examination hall, any paper, note	cancellation of the performance in that
book, programmable calculators, cell	subject Only.
phones, pager, palm computers or any	
other form of material concerned with or	
related to the subject of the examination	
(theory/ practical) in which he/she is	
appearing but has not made use of	
(material shall include any marks on the	
body of the candidate which can be used as	
an aid in the subject of the examination)	
Expulsion from the examination hall and	
cancellation of the performance in that	
subject only.	

(Au DEPARTMENT OF COMPU	CHNOLOGY AND MANAGEMENT STUDIES utonomous) TER SCIENCE AND ENGINEERING TA SCIENCE)
1. (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons inside or outside the exam hall in respect of any matter. Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he/she will be handedover to the police and a case is registered against him/her.	Expulsion from the examinations hall and cancellation of the performance in that subject only of all the candidates involved in case of an outsider He / She will be handed over to the police and a case is registered against him/her.
2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examinations hall and cancellation of the performance in that subject and all other subjects the candidates has already appeared including practical examinations and projects workand shall not be permitted to appear for the reaming examinations of the subjects of that semester/Year. The Hall Ticket of the candidate will be cancelled and retained by the CE.
3. Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practical's and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all university examinations. The continuation of the courseby the candidateis subject to the academic regulations in connection with forfeiture of seat.

4. Smuggles in the answer book or additional sheet or takes out or arranges to send out the question paper or answer book or additional sheet, during or after the examination.	If the imposter is an outsider, he/shewill be handed over to the police and a case is registered against him/her. Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all university examinations. The continuation of the course by the candidateis subject to the academic regulations in connection with forfeiture of seat.
5. Uses objectionable, abusive oroffensive language in the answer paper orin letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6. Refuses to obey the orders of the Chief - Superintendent / Assistant- Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any personon duty in or outside the examination hall or causes any injury to his person or to any of his relatives whether by offensive wordsspoken or written or by signs or by visible representation or assaults the officer-in- charge, or any person on duty inside oroutside the examination hall or any of his relatives, or indulges in any other act of misconduct or mischief which results in	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates are also debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7. Leaves the exam hall taking away answer script or intentionally tears off the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shallnot be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all the external examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8. Possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

9. Belongs to college, who is not a candidate for the particular examination or any person not connected with the college but indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the college will be expelled from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the college will be handed over to police and, a Police case will be registered against them.
10. Comes in a drunken state to the examination hall.	Expulsion from the examination hall and cancellation of the performance.
11. Copying is detected on the basis of internal evidence, such as, during valuation or during special scrutiny	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that Semester / year examinations.
12. If any malpractice is detected which is not correported to the Principal for further action to award suitable punishment.	overed in the above clauses 1 to 11 shall be

Note: Failing to read the regulation is not considered as an excuse

B. Tech - R20 - COURSE STRUCTURE AND SYLLABI for 2020 Batch

Semester I (First Year)

S.No	Course		Scheme of Instructions Hours per Week				Scheme of Examination Maximum Marks		
5.110	Code	Course Title	L	т	Р	с	I	E	Tot al
1	20BSC111	Algebra and Calculus	2	1	0	3	30	70	100
2	20BSC112	Applied Chemistry	3	0	0	3	30	70	100
3	20BSC113	Applied Physics	3	0	0	3	30	70	100
4	20ESC111	Engineering Graphics	1	0	4	3	30	70	100
5	20CSE111	C and Data Structures	2	1	0	3	30	70	100
6	20BSC114	Engineering Chemistry Lab	0	0	2	1	30	70	100
7	20BSC115	Engineering Physics Lab	0	0	2	1	30	70	100
8	20CSE112	C and Data Structures Lab	0	0	3	1.5	30	70	100
9	20ESC112	Engineering Workshop & IT Workshop	0	0	2	1	30	70	100
Contact hours per week		11	2	13	-	-	-	-	
Total hours per week 26									
Total	Total credits (5 Theory + 3 Labs)			19			-	-	-
Total	Marks						270	630	900

Semester II (First Year)

S.No	Course Code	Course Title	-	Scheme of Instructions Hours per Week				Scheme of Examination Maximum Marks		
			L	т	Р	с	I	E	Tot al	
1	20HSM111	Communicative English for Engineers	3	0	0	3	30	70	100	
2	20BSC121	Differential Equations and Transform Techniques	2	1	0	3	30	70	100	
3	20ECE111	Electronics Devices and Circuits	2	1	0	3	30	70	100	
4	20ESC113	Basic Electrical Engineering	2	1	0	3	30	70	100	
5	20ESC115	Programming with Python	2	1	0	3	30	70	100	
6	20HSM112	Communicative English Language Lab	0	0	3	1.5	30	70	100	
7	20ESC117	Fundamentals of Electrical and Electronics Engineering Lab	0	0	3	1.5	30	70	100	
8	20ESC118	Programming with Python Lab	0	0	3	1.5	30	70	100	
Contact hours per week		11	4	9	-	-	-	-		
Total hours per week				24				-	-	
Total credits (5 Theory + 4 Labs)			19.5			19.5				
Total Marks							240	560	800	

Semester III (Second Year)

S.No	Course Code	Course Title	Scheme of Instructions Hours per Week				Scheme of Examination Maximum Marks			
			L	Т	Ρ	С	Ι	E	Total	
1	20BSC233	Mathematical Foundations of Computer Science	2	1	0	3	30	70	100	
2	20ESC237	Digital Logic Design and Microprocessor	2	1	0	3	30	70	100	
3	20HSM241	Principles of Management	3	0	0	3	30	70	100	
4	20CSE232	Design and Analysis of Algorithms	3	0	0	3	30	70	100	
5	20CSE233	Programming with JAVA	2	1	0	3	30	70	100	
6	20CSD231	Advanced Python Programming for Data Science (SOC)	0	1	2	2	30	70	100	
7	20ESC238	Digital Logic Design and Microprocessor Lab	0	0	3	1.5	30	70	100	
8	20CSE235	Design and Analysis of Algorithms Lab	0	0	3	1.5	30	70	100	
9	20CSE236	Programming with JAVA Lab	0	0	3	1.5	30	70	100	
Conta	act Hours per v	veek	13	3	11	-	-	-	-	
Total	Hours per wee	ek		27		-	-	-	-	
Total credits						21.5	-	-	-	
Total	Marks		270 630 9						900	

Semester IV (Second Year)

S. No	Course Code	Course Title	Scheme of Instructions Hours per Week				Scheme of Examination Maximum Marks			
			L	Т	Ρ	С	I	E	Total	
1	20BSC231	Numerical Methods and Probability Theory	3	1	0	4	30	70	100	
2	20CSE231	Computer Organization and Architecture	3	0	0	3	30	70	100	
3	20CSE241	Database Management Systems	3	0	0	3	30	70	100	
4	20CSE242	Operating Systems	3	0	0	3	30	70	100	
5	20CSE243	Software Engineering and Design	3	0	0	3	30	70	100	
6	20CSE244	Data Analytics using R (SOC)	0	1	2	2	30	70	100	
7	20CSE245	Database Management Systems Lab	0	0	3	1.5	30	70	100	
8	20CSE246	Operating Systems Lab	0	0	3	1.5	30	70	100	
9	20CSE247	Software Engineering and Case Tools Lab	0	0	3	1.5	30	70	100	
10	20MAC231	Environmental Sciences	2	0	0	0	Р			
11		Internship during summer vacation	-	-	-	-	-	-	-	
Conta	act Hours per v	veek	18	1	11	-	-	-	-	
Total	Hours per wee	ek		30		-	-	-	-	
Total	Total credits						-	-	-	
Total	Marks		270 630					900		

Semester V (Third Year)

S.No	Course Code	Course Title		Inst Ho	eme o ructior urs per Veek	าร	Scheme of Examination Maximum Marks			
			L	Т	Р	C	I	E	Total	
1	20CSD351	Artificial Intelligence and Machine Learning	3	0	0	3	30	70	100	
2	20CSE351	Data Warehousing and Mining	2	1	0	3	30	70	100	
3	20CSD352	Advanced Data Analytics	2	1	0	3	30	70	100	
4	20CSD353	Professional Elective Course-1	3	0	0	3	30	70	100	
5	OE-I	Open Elective Course-1	3	0	0	3	30	70	100	
6	20CSE355	Web Application Development (SOC)	0	1	2	2	30	70	100	
7	20CSD354	Artificial Intelligence and Machine Learning Lab	0	0	3	1.5	30	70	100	
8	20CSE356	Data Warehousing and Mining Lab	0	0	3	1.5	30	70	100	
9	20MAC351	Constitution of India	2	0	0	0	Р	-	-	
10	20CSD355	Industry Internship/Community Service Project-Evaluation	0	0	0	1.5	-	-	100	
Cont	act Hours per we	eek	15	3	8	-	-	-	-	
Total	Hours per week			26	1	-	-	-	-	
Total	credits					21.5	-	-	-	
Total	Marks						240	560	900	
1		Honors/Minor Courses*	3	1	-	4	30	70	100	

Semester VI (Third Year)

S.No	Course Code	Course Title		Inst Ho	ieme o ructior urs per Veek	าร	s Examina Maximu Marks		
			L	Т	Р	C	I	E	Total
1	20CSE361	Big Data Analytics	2	1	0	3	30	70	100
2	20CSD361	Data Visualization	2	1	0	3	30	70	100
3	20CSE363	Computer Networks	2	1	0	3	30	70	100
4	20CSE364	Professional Elective Course-2	3	0	0	3	30	70	100
5	OE-II	Open Elective Course-2	3	3 0 0			30	70	100
6	20HSM231	Soft Skills (SOC)	0	1	2	2	30	70	100
7	20CSE365	Big Data Analytics Lab	0	0	3	1.5	30	70	100
8	20CSD362	Data Visualization Lab	0	0	3	1.5	30	70	100
9	20CSD363	Project Skills Lab	0	0	3	1.5	30	70	100
10	20MAC352	Design Thinking for Innovation	2	0	0	-	Р	-	-
11	-	Industrial/Research Internship duringSummer Vacation	-	-	-	-	-	-	-
Cont	act Hours per we	ek	14	4	11	-	-	-	-
Total	Hours per week			29)	-	-	-	-
Total	credits					21.5	-	-	-
Total	Marks						270	630	900
1		Honors/Minor Courses*	3	1	-	4	30	70	100

Semester VII (Fourth Year)

S.No	Course Code	Course Title	Instructions Ex				Scheme of Examination aximum Marks		
			L	Т	Р	C	Ι	E	Total
1	20HSM471	Humanities and Social Science Elective	3	0	0	3	30	70	100
2	20HSM472	Universal Human Values and Ethics	3	0	0	3	30	70	100
3	20CSD471	Professional Elective Course-3	3 0 0		0	3	30	70	100
4	20CSD472	Professional Elective Course-4	3	0	0	3	30	70	100
5	20CSE473	Professional Elective Course-5	3	0	0	3	30	70	100
6	OE-III	Open Elective Course-3	3	0	0	3	30	70	100
7	OE-IV	Open Elective Course-4	3	0	0	3	30	70	100
8	20CSD473	NOSQL Using MongoDB (SAC)	0	1	2	2	30	70	100
9	20CSD474	Industrial/Research Internship Evaluation	0	0	0	2	-	-	100
Cont	act Hours per we	ek	21	1	2	-	-	-	-
Total	Hours per week		24				-	-	-
Total	credits					25	-	-	-
Tota	Marks						240	560	900
1		Honors/Minor Courses*	3	1	-	4	30	70	100

Semester VIII(Fourth Year)

S.No	Course Code			Inst	eme o ructior per We	IS	Scheme of Examination Maximum Marks			
			L T P				I	E	Total	
1	20CSD481	Project Work	0	0	0	12	30	70	100	
Cont	act Hours per we	eek	0	0	0	12	-	-	-	
Total	Hours per week			-		-	-	-	-	
Total	credits						-	-	-	
Total	Marks		·				30	70	100	

*EligibleandinterestedstudentscanregistereitherforHonorsorforaMinorinIVSemester onwards, as per the regulation guidelines.

Professional Elective Course-1 (Semester V)

S.No	Course Code	Course Title		Scheme of Instructions Hours per Week				icheme amina amum	tion
			L	Т	Р	C	I	E	Total
1	20CSD353A	Advanced Databases	3	-	-	3	30	70	100
2	20CSD353B	Automata and Compiler Design	3	-	-	3	30	70	100
3	20CSD353C	Predictive Analytics	3	-	-	3	30	70	100
4	MOOC	Massive Open Elective Course	-	-	-	3	-	-	-

Professional Elective Course-2 (Semester VI)

S.No	Course Code	Course Title		Inst	eme of ruction per We	S	Ex	icheme amina amina	tion
			L	Т	Р	С	I	E	Total
1	20CSE354B	Cloud Computing	3	-	-	3	30	70	100
2	20CSE364A	Computer Graphics and Animation	3	-	-	3	30	70	100
3	20CSE364B	Internet of Things	3	-	-	3	30	70	100
4	MOOC	Massive Open Elective Course	-	-	-	3	-	-	-

Professional Elective Course-3 (Semester VII)

S.No	Course Code	Course Title	Scheme of Instructions Hours per Week				Ex	icheme kamina kimum	tion
			L	Т	Ρ	С	I	E	Total
1	20CSD471A	Mining Massive Dataset	3	-	-	3	30	70	100
2	20CSD471B	Process Mining	3	-	-	3	30	70	100
3	20CSD471C	User Interface Design	3	-	-	3	30	70	100
4	MOOC	Massive Open Elective Course	-	-	I	3	-	-	-

Professional Elective Course-4 (Semester VII)

S.No	Course Code	Course Title	Scheme of Instructions Hours per Week				Ex	icheme camina kimum	tion
			L	Т	Р	С	I	E	Total
1	20CSD472A	Artificial Neural Networks	3	-	-	3	30	70	100
2	20CSD472B	Bayesian Data Analysis	3	-	-	3	30	70	100
3	20CSD472C	Data and Internet Security	3	-	-	3	30	70	100
4	MOOC	Massive Open Elective Course	-	-	-	3	-	-	-

Professional Elective Course-5 (Semester VII)

S.No	Course Code	Course Title	Scheme of Instructions Hours per Week				Ex	icheme camina cimum	tion
			L	Т	Р	С	I	E	Total
1	20CSE471A	Deep Learning	3	-	-	3	30	70	100
2	20CSD473A	Video Analytics	3	-	-	3	30	70	100
3	20CSE473C	Virtual Reality and Augmented Reality	3	-	-	3	30	70	100
4	MOOC	Massive Open Elective Course	-	-	-	3	-	-	-

S.No	Course Code	Course Title	Offered Department		Inst Ho	ieme ructi urs p Neek	ons er		Exam Maxi	me of ination mum irks
				L	Т	Ρ	С	Ι	Е	Total
1	200CIV351	Air Pollution and Control	CIV	3	-	-	3	30	70	100
2	200ECE351	Automotive Electronics	ECE	3	-	-	3	30	70	100
3	200EEE351	Renewable Energy Sources	EEE	3	-	-	3	30	70	100
4	200MEC351	Industrial Robotics	MEC	3	-	-	3	30	70	100
5	200HSM351	Graph Theory with Applications	S&H	3	-	-	3	30	70	100

Open Elective Course-1 (Semester V)

Open Elective Course-2 (Semester VI)

S.No	Course Code	Course Title	Offered Department		Inst Ho	ieme ructi urs p Neek	ons er	Scheme of Examination Maximum Marks			
				L	1	Ρ	С	Ι	E	Total	
1	200HSM361	LASER and Fiber Optics	S&H	3	-	-	3	30	70	100	
2	200CIV361	Building Technology	CIV	3	-	-	3	30	70	100	
3	200EEE361	Power Plant Engineering	EEE	3	-	-	3	30	70	100	
4	200MEC361	3D Printing Concepts	MEC	3	-	-	3	30	70	100	
5	200ECE361	Communication Networks	ECE	3	-	-	3	30	70	100	

Open Elective Course-3 (Semester VII)

S.No	Course Code	Course Title	Offered Department		Ins Ho	heme tructio burs p Week	ons er		Exam Max	me of ination imum arks
				L	Т	Ρ	С	Ι	E	Total
1	200HSM471	Nano Science and Technology	S&H	3	-	-	3	30	70	100
2	200CIV471	Disaster Mitigation and Management	CIV	3	-	-	3	30	70	100
3	200EEE471	PLC and Applications	EEE	3	-	-	3	30	70	100
4	200MEC471	Product Design and Innovation	MEC	3	-	-	3	30	70	100
5	200ECE471	Medical Electronics	ECE	3	-	-	3	30	70	100

Open Elective Course-4 (Semester VII)

S.No	Course Code	Offered Department		Insi Ho	neme tructi ours p Week	ons er	Scheme of Examination Maximum Marks			
				L	1	Ρ	С	Ι	E	Total
1	200HSM472	Total Quality Management	S&H	3	-	-	3	30	70	100
2	200CIV472	Industrial Waste Treatment and Disposal	CIV	3	-	-	3	30	70	100
3	200EEE472	Electric Vehicle Technology	EEE	3	-	-	3	30	70	100
4	200MEC472	Solar Energy Technology	MEC	3	-	-	3	30	70	100
5	200ECE472	Pattern Recognition	ECE	3	-	-	3	30	70	100

Humanities and Social Science Elective Course(Semester VII)

S.No	Course Code	CourseTitle	ŀ	Inst	eme of ruction per We	S	Scheme of Examination Maximum Marks			
			L	Т	Р	С	I	E	Total	
1	20HSM471A	Industrial Engineering and Psychology	3	-	-	3	30	70	100	
2	20HSM471B	Intellectual Property Rights and Patents	3	-	-	3	30	70	100	
3	20HSM471C	Managing Innovation and Entrepreneurship	3	-	-	3	30	70	100	

Mandatory Audit Course – Vth Semester

S.No	Course Code	Course Title	1	nstr	eme of uctions er We	S	Scheme of Examination Maximum Marks			
			L	Т	P/D	С	I	E	Total	
1	20MAC351	Constitution of India	2	-	-	-	-	-	-	

Mandatory Audit Course – VIth Semester

S.No	Course Code	Course Title		Instr	eme of uction per We	s	Scheme of Examination Maximum Marks				
				Т	P/D	С	I	E	Total		
1	20MAC352	Design Thinking for Innovation	2	-	-	-	-	-	-		

SUMMARY OF CREDIT ALLOCATION

	Subject			Credi	ts As Pe	er Seme	ester			Total	Percentage-
S.NO	Subject Area	I	II	III	IV	V	VI	VII	VIII	Credits	wise Credit Distribution
1.	нѕмс	-	4.5	3	-	-	-	6	-	13.5	8.28
2.	BSC	11	3	3	4	-	-	-	-	21	12.88
3.	ESC	4	9	4.5	-	-	-	-	-	17.5	10.73
4.	PCC	4.5	3	9	16.5	12	12	-	-	57	34.96
5.	SOC/SAC	-	-	2	2	2	2	2	-	10	6.13
6.	PEC	-	-	-	-	3	3	9	-	15	9.20
7.	OEC	-	-	-	-	3	3	6	-	12	7.36
8	PROJ	-	-	-	-	1.5	1.5	2	12	17	10.42
9 MAC											
	Total	19.5	19.5	21.5	22.5	21.5	21.5	25	12	163	100

Note: HSMC- Humanities and Social Science including Management Courses; BSC-Basic Science Courses; ESC-Engineering Science Courses; PCC-Professional Core Courses; PEC - Professional Elective Courses; OEC - Open Elective Courses; SOC/SAC -Skill Oriented Courses / Skill Advanced Courses; PROJ

-Internship, Seminar and Project Work; MAC -Mandatory Audit Courses; MNRC/HNRC – Minor Courses/Honor Courses

I B.Tech. – I Semester

20BSC111	ALGEBRA AND CALCULUS	L	Т	Ρ	С
	(Common to All Branches)	2	1	0	3

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To familiarize the students with the theory of matrices.
- 2. To explain the series expansion using means value theorem and basic concepts of partial derivatives and its applications
- 3. To learn the methods of evaluation of double and triple integrals
- 4. To explain the concept of vector differentiation
- 5. To explain the concept of vector integration

UNIT 1: MATRICES

Rank - Echelon form and Normal form - Solution of linear system of homogeneous and non- homogeneous equations - Direct method: Gauss elimination method - Eigen values and Eigen vectors of a matrix and properties (without proofs) - Cayley-Hamilton theorem (without proof): Inverse and powersof a matrix. – Diagonalization of a matrix using similarity transformation only.

UNIT – 2: DIFFERENTIAL CALCULUS AND ITS APPLICATIONS

Rolle's Theorem, Lagrange's Theorem(without proof) - Taylor's and Maclaurin's series for single variable (simple examples) - Functions of several variables - Jacobian – Taylor's and Maclaurin's series for two variables - Maxima and minima of functions of two variables - Lagrangian method of undetermined multipliers with three variables only.

UNIT -3: MULTIPLE INTEGRALS

Double and triple integrals: Evaluation of Double integrals (Cartesian and polar coordinates), Change of order of integration (Cartesian form only), Change of variables: double integration from Cartesian to polar coordinates, Evaluation of Triple integrals (Cartesian coordinates).

UNIT -4: VECTOR DIFFERENTIAL CALCULUS

Introduction to Vector Differentiation, Scalar and Vector point functions - Gradient of a Scalar function, directional derivative, Divergence of a Vector function, Solenoidal vector, Curl of a Vector function, Irrotational vector, Laplacian operator.

UNIT -5: VECTOR INTEGRAL CALCULUS

Line Integral - Potential function - Surface and volume integrals - Green's, Stoke's and Gauss divergence theorem (without proofs) - Verification of Green's, Stoke's and Gauss divergence theorems.

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On	successful completion of the course, students will be able to	POs related to COs
C01	To solve system of homogenous and non-homogenous linear equations, find the Eigen values and Eigen vectors of a matrix and identify special properties of a matrix.	P01,P02,P03
CO2	Illustrate series expansion of functions using mean value theorems, Interpret partial derivatives as a function of several variables, Apply Jacobean concept to deal with the problems in change of variables, Evaluate maxima and minima of functions.	P01,P02,P03
CO3	To evaluate double and triple integrals of functions of several variables	P01,P02,P03
CO4	To illustrate the physical interpretation of gradient, divergence and curl and apply operator del to scalar and vector point functions.	P01,P02,P03
CO5	To find line, surface, volume integrals and the work done in moving a particle along the path over a force field and apply Green's, Gauss divergence and Stokes theorem in evaluation of line, surface and volume integrals.	P01,P02,P03

TEXT BOOKS:

- 1. T.K.V. Iyengar, B.Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad, "Engineering Mathematics–I", S. Chand and Company Ltd, New Delhi.
- 2. T.K.V. Iyengar, B.Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad ."Mathematical Methods", S. Chand and Company Ltd, New Delhi.
- 3. Dr. B. S. Grewa,"Higher Engineering Mathematics", Khanna Publishers, Delhi, , 44/e, 2017

REFERENCE BOOKS:

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill Publishers, New Delhi.
- 2. N.P.Bali ,"A Text Book of Engineering Mathematics", Laxmi publications (P)Ltd, Delhi.
- 3. Dr. M. K. Venkata Ramana ,"Higher Engineering Mathematics", National Pub, Madras
- 4. E.Rukmangadachari, E.Keshava Reddy, "Engineering Mathematics-I", Pearson Educations, Chennai.

REFERENCE WEBSITE:

- 1. <u>https://nptel.ac.in/courses/110/105/111105111/</u>
- 2. <u>https://www.youtube.com/watch?v=8D3WViAyJvc</u>
- 3. <u>https://www.youtube.com/watch?v=fKzDtjq0ks4</u>
- 4. <u>https://www.youtube.com/watch?v=wMd4YRyBmjA</u>
- 5. <u>https://www.youtube.com/watch?v=ArkDa6d5h9I</u>
- 6. <u>https://www.youtube.com/watch?v=KqItZSst2sU</u>
- https://www.youtube.com/watch?v=-I3HUeHi1Ys
- 8. https://www.youtube.com/watch?v=SZCsFS9izfQ
- 9. https://www.youtube.com/watch?v=ma1QmE1SH3I

CO-PO MAPPING:

СО-РО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-
CO *	3	3	2	-	-	-	-	-	-	-	-	-

I B.Tech. – I Semester

20BSC112

APPLIED CHEMISTRY L T P C (Common to ECE, EEE, CSE, CSM, CAI & CSD) 3 0 0 3

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To learn different purification methods and analyse the impurities present in water.
- 2. To develop skill to describe the mechanism and control of corrosion.
- 3. To train the students on the fundamentals and applications of polymers.
- 4. To understand and apply the concepts of electrochemistry effectively.
- 5. To introduce basic principles of spectroscopy and chromatography

UNIT -1: WATER AND WATER FOR INDUSTRIAL PURPOSE

Water: Sources of water - Types of Impurities in Water - Hardness of water - Temporary and permanent hardness - Estimation of hardness by EDTA Method and numerical problems - Analysis of water - Dissolved oxygen - Disadvantages of hard water - Methods of treatment of water for domestic purpose - Sterilization - Chlorination , Ozonisation.

Water for industrial purpose: Water for steam making - Boiler troubles - Priming and foaming , Boiler corrosion , Scales and sludge ,Caustic embrittlement - Water treatment - Internal treatment - Colloidal , Phosphate ,Calgon , Carbonate and Sodium aluminate conditioning of water - External treatment - Ion - exchange process - Demineralization of brackish water - Reverse osmosis.

UNIT - 2: SCIENCE OF CORROSION

Definition - Types of corrosion - Dry corrosion(Direct chemical attack) - Wet corrosion - Theories of corrosion and mechanism - Electro chemical theory of corrosion - Galvanic corrosion - Concentration cell corrosion -Oxygen absorption type - Factors influencing the corrosion - Control of corrosion - Cathodic protection -Sacrificial anode and impressed current cathodic protection method.

UNIT -3: POLYMERS

Polymerization reactions - Basic concepts - Types of polymerization - Addition polymerization with mechanism - condensation polymerization - Plastics - Thermosetting and thermoplastics - Composition, Properties and Engineering applications of teflon, bakelite, nylon and rubber - Processing of natural rubber and compounding .Elastomers: Buna S - Buna N - Polyurethane Rubber and Silicone Rubber.

UNIT - 4: ELECTRO CHEMISTRY AND APPLICATIONS

Electrodes-concepts-Reference electrodes- (Standard hydrogen electrode and calomel electrode)-Nernst equation. Electro Chemistry: Conductance - Equivalent conductance - Molar conductance - Effect of dilution-Conduct metric titrations (Acid –Base titrations) - Conductivity Measurements. Photo voltaic cells - working and applications- Fuel cells-Introduction - Hydrogen oxygen fuel cell and methanol fuel cell

UNIT - 5: FUNDAMENTAL ASPECTS OF INSTUMENTAL METHODS

Chromatography:- Principle and methods of thin layer chromatography-separation of liquid of Paper chromatography. Electromagnetic spectrum-Absorption of radiation-Beer-Lamberts law-UV-Visible and IR spectroscopy-principle and instrumentation

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the will be able to,	POs related to Cos
CO1	To understand the fundamentals of water technology and develop analytical skills in determining the hardness of water and to acquire awareness to societal issues on quality of water.	PO1, PO2,PO6
CO2	Acquire the knowledge in corrosion phenomenon and develop skills in the design of methods for control of corrosion	P01, P02
CO3	Acquire knowledge on polymeric materials and to prepare polymeric material for environmental safety and society need.	P01, P02,P06
CO4	Understand and apply the concept of electrochemistry and analyse the standard Electrodes and different types of fuels cells	P01, P02
CO5	Demonstrate the basic knowledge of instrumental methods and their applications in the structural analysis of materials	P01, P02,P03

TEXT BOOKS:

- 1. Prof. K. N. Jayaveera, Dr. G. V. Subba Reddy and Dr. C. Ramachandraiah, "Chemistry for Engineers", Tata McGraw Hill Publishers, New Delhi, 4/e, 2009.
- 2. Jain and Jain, "Text book of Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi.15/e, 2008
- 3. Text book of Engineering Chemistry, 18/e, 2008, S. S. Dara, S. Chand & Co, New Delhi.

REFERENCE BOOKS:

- 1. Dr. K. B. Chandrasekhar, Dr. U.N. Dash, Dr. Sujatha Mishra, Scitech Publications(India) Pvt. Ltd, Hyderabad, "Engineering Chemistry, 5/e, 2009.
- 2. B.Viswanath, M. Aulice Scibioh, "Fuel Cells Principles and Applications", Universities press, Hyderabad, 4/e, 2008.
- 3. Skoog and West, "Principles of Instrumental analysis",6/e Thomson,2007.
- 4. Glasston & Lewis, Dhanptharai Publishers, Physical Chemistry, New Delhi, 12/e, 2009.
- 5. JC Kuriacose and J. Rajaram ,"Engineering Chemistry (Vol.1&2)", Tata McGraw Hill Publishers, New Delhi, 5/e, 2004, ,

REFERENCE WEBSITE:

1.https://www.youtube.com/watch?v=zVZ9c6EXfTA

2.https://nptel.ac.in/courses/113/104/113104082/

3.https://nptel.ac.in/courses/104/105/104105039/

4.https://nptel.ac.in/courses/104/106/104106132/

5.https://www.digimat.in/nptel/courses/video/103108100/L01.html

O-PO MAPPING:													
СО-РО	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	P010	P011	P012	
C01	2	2	-	-	-	2	-	-	-	-	-	-	
CO2	2	2	-	-	-	-	-	-	-	-	-	-	
CO3	2	2	-	-	-	2	-	-	-	-	-	-	
CO4	2	2	-	-	-	-	-	-	-	-	-	-	
CO5	2	2	2	-	-	-	-	-	-	-	-	-	
CO *	2	2	2	-	-	2	-	-	-	-	-	-	

I B.Tech. – I Semester

С

3

(7)

(9)

(9)

(10)

20BSC113APPLIED PHYSICSL T P(Common to ECE, EEE, CSE, CSM, CAI & CSD)3 0 0

PRE-REQUISITES: NII

COURSE EDUCATIONAL OBJECTIVES:

- 1. To identify the importance and applications Wave Optics in various Streams of Engineering
- 2. To understand the working principle and applications of Lasers and Optical fibers.
- 3. To elucidate the importance, properties and applications of Magnetic materials and Dielectrics
- 4. To use ideas with mathematical solutions to Quantum mechanics and its applications in Various atomic phenomena
- 5. To provide knowledge about semiconductors and Nanomaterials.

UNIT-1: WAVE OPTICS

Interference- Principle of superposition – Interference of light – Conditions for sustained interference - Interference in thin films (Reflection Geometry) – Colors in thin films – Newton's Rings – Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit – Grating spectrum.

UNIT-2: LASERS & FIBER OPTICS

Lasers-Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics-Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Applications.

UNIT-3: DIELECTRIC MATERIALS & MAGNETIC MATERIALS

Dielectric Materials-Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials-Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and Permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia,para & Ferro-Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hardmagnetic materials.

UNIT -4: QUANTUM MECHANICS, FREE ELECTRON AND BAND THEORY OF SOLIDES (10)

Quantum Mechanics- Dual nature of matter – Schrodinger's time independent and dependent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well

Free Electron Theory-Classical free electron theory (Merits and demerits only) – Quantum free electron theory – Equation for electrical conductivity based on quantum free electron theory – Fermi- Dirac distribution – Density of states – Fermi energy.

Band theory of Solids- Bloch's Theorem (Qualitative) - Kronig-Penney model (Qualitative)

– E vs K diagram – Classification of crystalline solids – Effective mass of electron – m* vs K diagram – Concept of hole.

UNIT -5: SEMICONDUCTOR PHYSICS & NANOMATERIALS

Introduction- Intrinsic and extrinsic semiconductor (Qualitative Analysis) – Carrier transport in Semiconductors - Drift & Diffusion –Einstein Equation – Direct and indirect band Gap Semiconductors-Hall Effect and its applications

NANOMATERIALS –Types of Nanomaterials (One dimensional, Two dimensional and Three-dimensional Nanomaterials) - Significance of Nanoscale - surface to, volume ratio –Quantum Confinement effect-

Synthesis of Nanomaterials - Ball milling Method - Chemical vapour deposition methods –Optical, thermal, mechanical and electrical properties of Nanomaterials - Applications of Nanomaterials.

TOTAL HOURS: 45

COURSE OUTCOME:

On su to	ccessful completion of the course the students will be able	POs related to COs
CO1	Identify the importance and applications Wave Optics in various Streams of Engineering	P01, P02
CO2	Understand the working principle and applications of Lasers and Optical fibers	P01,P02
СО3	To elucidate the importance, properties and applications of Magnetic materials and dielectrics	P01, P02
CO4	Use ideas with mathematical solutions to Quantum mechanics and its applications in various atomic phenomena	P01,P02,
CO5	Provide knowledge about semiconductors and Nanomaterials	P01,P02,P012

TEXT BOOKS:

- 1. Palanisamy ,"Engineering Physics", Palanisamy, Scitech Publications
- 2. K.Thyagarajan ,"Engineering Physics", McGraw Hill Publications
- 3. Maninaidu,"Engineering Physics", Pearson Publications

REFERENCE BOOKS:

- 1. Kittel ,"Solid State Physics", Wiley Publications
- 2. Gaur and Gupta , "Engineering Physics", Dhanpatrai Publications

REFERENCE WEBSITE:

- 1. https://www.youtube.com/watch?v=PEXSH8dB-Uk
- 2. https://www.youtube.com/watch?v=YvrwVK9ZqQY
- 3. https://www.digimat.in/nptel/courses/video/115107095/L01.html
- 4. https://www.youtube.com/watch?v=6QUFuZpCgGw
- 5. https://www.youtube.com/watch?v=etjZmdmrjSU
- 6. https://nptel.ac.in/courses/115/105/115105122/
- 7. https://nptel.ac.in/courses/108/108/108108122/
- 8. https://nptel.ac.in/courses/118/104/118104008/

СО-РО	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
СОЗ	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	2
CO *	3	2	-	-	-	-	-	-	-	-	-	2

I B.Tech. – I Semester

ENGINEERING GRAPHICS	L	т	P/D	С
(Common to all branches)	1	0	4	3

PRE-REQUISITES: Nil

20ESC111

COURSE EDUCATIONAL OBJECTIVES:

- 1. To expose them to existing national standards related to technical drawings and develop knowledge of basic engineering curves.
- 2. To develop drawing skills for communication of concepts, ideas and design of projections of points, lines and planes.
- 3. To develop geometrical shapes and multiple views of projections of solids and sections of solids.
- 4. To develop drawing skills for communication of concepts, ideas and design the development of surfaces of objects and isometric views.
- 5. To develop geometrical shapes and multiple views of orthographic projections of solids and perspective views.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of drawings in engineering applications - Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets - Lettering, numbering and dimensioning – Basic geometrical constructions – Scales.

UNIT – 1: ENGINEERING CURVES

Engineering Curves: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method and rectangular hyperbola – Construction of cycloid, epi cycloid and hypo cycloid – Involutes of square, circle, pentagon and hexagon – Drawing of tangents and normal to the above curves

UNIT - 2: PROJECTION OF POINTS, LINES AND PLANE SURFACES

Projection of Points: Principles of orthographic projection – First angle and third angle projections – Projection of points. **Projection of Lines:** Projection of straight lines (only first angle projections) inclined to one and both the principal planes – Determination of true lengths, true inclinations by rotating line and trapezoidal method and traces. **Projection of Planes:** Planes (polygonal and circular surfaces) inclined to both the principal planes by change of position method.

UNIT – 3: PROJECTION OF SOLIDS AND SECTION OF SOLIDS

Projection of Solids: Projection of simple solids like prisms, pyramids, cylinder and cone, when the axis is inclined to one principal plane. **Section of Solids:** Sectioning of right regular solids like prisms, pyramids, cylinder and cone, solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other plane – Obtaining true shape of section.

UNIT – 4: DEVELOPMENT OF SURFACES AND ISOMETRIC PROJECTIONS (12)

Development of Surfaces: Development of lateral surfaces of simple and sectioned solids like prisms, pyramids, cylinder and cone. **Isometric Projection:** Principles of isometric projection – Isometric scale – Isometric views of simple solids and truncated solids like prisms, pyramids, cylinder and cone – Combination of two solid objects in simple vertical positions.

UNIT – 5: ORTHOGRAPHIC PROJECTIONS AND PERSPECTIVE PROJECTIONS (1)

Orthographic Projections: Visualization principles – Plane of projections – Representation of three dimensional objects – Layout of views – Sketching of multiple views from pictorial views of objects. **Perspective Projection:** Perspective projection of simple solids like prisms and pyramids by visual ray method.

Total Hours: 60

(3)

(9)

(12)

(12)

COURSE OUTCOMES:

ON SU ABLE	JCCESSFUL COMPLETION OF THE COURSE, STUDENTS WILL BE TO	POS RELATED TO COS
CO1	Construct the Engineering curves and generate tangent and normal for those curves.	P01,P02,P03,P10
CO2	Draw the projection of points, lines and plane surfaces.	P01,P02,P03, P10
CO3	Draw the projection of solids, sections of solids like prisms, pyramids, cylinder and cone.	P01,P02,P03, P10
CO4	Draw the isometric projections and views and also develop the development of surfaces.	P01,P02,P03, P10
CO5	Draw the orthographic and perspective projections of solids.	P01,P02,P03, P10

TEXT BOOKS:

- ^{1.} N.D. Bhatt and V. M. Panchal , "Engineering Drawing" , Charotar Publishing House, 50th edition, , 2010.
- K.V.Natrajan , "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai. 2009.

REFERENCES BOOKS:

- 1. K.V.Natrajan , "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Luzzader, Warren.J and Duff,John M, "Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production", Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 3. K.Venugopal and V.Prabhu Raja ,"Engineering Graphics", New Age International (P) Limited. 2008.
- 4. M.B.Shah and B.C.Rana , "Engineering Drawing", Pearson Education, 2/e, 2009.
- 5. Basant Agarwal and C.M.Agarwal ,"Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, , 2008,

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/112/102/112102304/
- 2. https://nptel.ac.in/courses/112/105/112105294/
- 3. https://nptel.ac.in/courses/112/103/112103019/
- 4. https://nptel.ac.in/courses/112/104/112104172/

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO1	3	2	2	-	-	-	-	-	-	1	-	-
CO2	3	3	3	-	-	-	-	-	-	1	-	-
CO3	3	3	3	-	-	-	-	-	-	1	-	-
CO4	3	3	3	-	-	-	-	-	-	2	-	-
CO5	3	3	3	-	-	-	-	-	-	2	-	-
CO *	3	2.8	2.8	-	-	-	-	-	-	1.4	-	-

I B.Tech. – I Semester

20CSE111

C & DATA STRUCTURES LT Ρ (Common to ECE, EEE, CSE, CSM, CAI & CSD) 2 1 0 3

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge on algorithm, flowchart for a given problem and introducing the C programming basics.
- 2. To impart adequate knowledge on conditional and iterative statements for problem solving.
- 3. To familiarize with the pointers, structures and union.
- 4. To understand basic data structures.
- 5. To familiarize with several sub-quadratic sorting and searching algorithms.

UNIT -1: INTRODUCTION TO C

Overview of Computers: Computer Software- Algorithm-Flowchart-Software Development Method. **C Programming Basics:** Introduction to "C" Programming – Characteristics of C – Structure of a "C" program - Tokens - Constants- Variables - Data Types - Operators and their types-Expressions - Operator Precedence and Associativity.

UNIT -2: CONTROL STATEMENTS AND FUNCTIONS

Conditionals: If-Else- Constructs - Loop Structures/Iterative Statements - While Loop - For Loop -Break Statement - Arrays: Initialization-Declaration - One-Dimensional Arrays-Two-Dimensional Arrays-Function Call and Returning Values - Parameter Passing - Local and Global- Scope - RecursiveFunctions.

UNIT -3: POINTERS, STRUCTURES AND UNIONS

Pointers: Definition–Initialization–Pointers Arithmetic–Pointers and Arrays.

Structures and Union: Introduction - Need for Structure Data type - Structure Definition - Structure Declaration - Accessing Structure Members - Structure within a Structure - Copying and Comparing Structure Variables - Structures and Arrays - Union.

UNIT-4: INTRODUCTION TO DATA STRUCTURES

Overview and importance of algorithms and data structures, Definition- Abstract Data Type, -Classification of Data Structures - Linear and Non Linear-List ADT -Single Linked List - Applications. Dynamic Memory Allocation and Deallocation

UNIT-5: SORTING AND SEARCHING TECHNIQUES

Sorting Techniques: Insertion sort - Selection sort - Bubble sort - Ouick sort - Merge sort. **Searching Techniques:** Linear search - Binary Search

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Understand the problem solving basics.	PO1, PO2
CO2	Identify and develop programs using control structures like selection control and iterative control statements.	PO1, PO2, PO3
CO3	Apply and Demonstrate knowledge on pointers, structure and union.	PO1,PO2, PO3, PO4
CO4	Categorize the basic data Structures and its applications	PO1, PO2,PO5
CO5	Illustrate different sorting and searching techniques to solve real- world problems	PO1, PO3, PO4

(9)

(9)

(9)

С

(9)

(9)

TOTAL HOURS: 45

TEXT BOOKS:

- 1. PradipDey, and Manas Ghosh, "Programming in C", Oxford University Pres, 2018.
- 2. D. Samanta, "Classic Data Structure", Eastern Economy Edition, 2014
- 3. YashavantKanetkar, "Let us C", 15th Edition, BPB Publications, 2016.

REFERENCE BOOKS:

- 1. J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, "Programming in C and Data Structures", Pearson Education, Chennai, 2010.
- 2. Reema Thareja, "Data Structures Using C", Oxford University Press, 2014.
- 3. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 2010 (Reprint).

REFERENCE WEBSITES:

- 1. https://onlinecourses.swayam2.ac.in/cec22_cs11
- 2. https://onlinecourses.nptel.ac.in/noc22_cs40
- 3. https://www.geeksforgeeks.org.

CO- PO	P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	-	-	2	-	-	-	-	-	-	-
CO5	3	-	2	2	-	-	-	-	-	-	-	-
со*	3	3	2	2	2	-	-	-	-	-	-	-

I B.Tech. – I Semester

20BSC114	ENGINEERING CHEMISTRY LABORATORY	L	т	Ρ	С
	(Common to ECE, EEE, CSE, CSM, CAI & CSD)	0	0	2	1

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide solid foundation in chemistry laboratory to solve engineering problems.
- 2. To apply the theoretical principles and perform experiments on hardness of water
- 3. To apply the theoretical principles and perform experiments dissolved oxygen, alkalinity, and acidity.
- 4. To Illustrates the properties of analytical equipments like red wood, Viscometer and conductometry

LIST OF EXPERIMENTS:

- 1. Preparation of Standard EDTA solution and Estimation of Hardness of Water
- 2. Preparation of Standard EDTA and Estimation of Copper
- 3. Estimation of dissolved oxygen in given water sample
- 4. Estimation of alkalinity of water
- 5. Estimation of Acidity of water sample.
- 6. Preparation of Standard Potassium Dichromate and Estimation of Ferrous Iron
- 7. Preparation of Standard Potassium Dichromate and Estimation of Copper by Iodometry
- 8. Determination of strength of the given Hydrochloric acid against standard sodium hydroxide Solution by Conductometric titration
- 9. Conduct metric titration of BaCl₂ Vs Na₂SO₄ (Precipitation Titration).
- 10. Determination of viscosity of the given oils through Redwood viscometer

COURSE OUTCOMES:

On su to	ccessful completion of the course the students will be able	POs related to COs
CO1	Prepare standard solutions	P01,P03
CO2	Acquire knowledge about volumetric analysis of estimation copper by EDTA and by Iodometry	P01,P02,P03
СОЗ	Acquire analytical skills in estimation of hardness of water, Alkanility and Acidity of water, dissolved oxygen in water and estimation of iron through laboratory methods	P01,P02,P03,P06, P012
CO4	Acquire skills to use instrumental techniques for the determination of electrical conductance of electrolytes and viscosity of lubricants	PO1,PO2,PO3
C05	Provide solutions for environmental issues through determination of quality of water	P01,P02,P03,P06, P07
CO6	Communicate verbally and in written form pertaining to results of the Experiments	P01,P02,P08,P09,
C07	Learns to perform experiments involving chemistry in future years.	PO1,PO2,PO8,PO9, PO10
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO1,PO2,PO8,PO9,P O10
CO9	Continue updating their skill related to chemistry laboratory.	PO1,PO2,PO8, PO9,PO10

СО-РО	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	P010	PO11	P012
C01	2	-	2	-	-	-	-	-	-	-	-	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-
CO3	2	2	2	-	-	2	-	-	-	-	-	2
CO4	2	2	2	-	-	-	-	-	-	-	-	-
C05	2	2	2	-	-	2	2	-	-	-	-	-
CO6	2	2	-	-	-	-	-	2	2	-	-	-
C07	2	2	-	-	-	-	-	2	2	2	-	-
C08	2	2	-	-	-	-	-	2	2	2	-	-
CO9	2	2	-	-	-	-	-	2	2	2	-	-
CO*	3	2	2	-	-	2	2	-	-	-	-	2

I B.Tech. – I Semester

20BSC115	ENGINEERING PHYSICS LABORATORY	L	т	Ρ	С
	(Common to ECE, EEE, CSE, CSM)	0	0	2	1

PRE-REQUISITES: Nil COURSE EDUCATIONAL OBJECTIVES:

- 1. To understands the concepts of interference, diffraction and their applications.
- 2. To understand the role of optical fiber parameters in communication.
- 3. Recognize the importance of energy gap in the study of conductivity
- 4. To Illustrates the properties of Magnetic and their applications
- 5. To understand and evaluate the properties of materials and sounds

S. NO.	NAME OF THE EXPERIMENT										
1	Diffraction grating - Measurement of wavelength of given Laser.										
2	To determine the frequency of AC using Sonometer										
3	Determination of magnetic field along the axis of a current carrying circular coil -										
	Stewart Gees method										
4	Determination of numerical aperture and acceptance angle of an optical fiber										
5	Determination of particle size using a laser source										
6	Parallel fringes – Determination of thickness of thin object using wedge method										
7	Newton's rings – Determination of radius of curvature of given plano convex lens										
8	B-H curve – Determination of hysteresis loss for a given magnetic material										
9	Determination of Energy band gap of semiconductor										
10	To find the rigidity modulus of the material using torsional pendulum										

TEXT BOOKS:

- 1. Palanisamy ,"Engineering Physics", Palanisamy, Scitech Publications
- 2. K.Thyagarajan ,"Engineering Physics", McGraw Hill Publications
- 3. Maninaidu,"Engineering Physics", Pearson Publications

Course Outcomes:

On o	completion of the laboratory course the student will be able to	POs related to COs
C01	Demonstrate Knowledge on measurement of various physical quantities using optical methods and fundamentals of magnetic fields	P01
CO2	Identify different physical properties of materials like band gap, magnetic field intensity etc, for engineering and technological applications	PO2
CO3	Provide valid conclusions on phenomena Interference and Diffraction	PO4
C04	Follow the ethical principles in implementing the programs	PO8
CO5	Do experiments effectively as an individual and as a team member in a group.	PO9
CO6	Communicate verbally and in written form, the understanding about the experiments.	PO10
C07	Continue updating their skill related to loops, pointers and files implementing programs in future.	P012

СО-РО	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
C01	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	3	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	3	-	-	-	-
CO5	-	-	-	-	-	-	-	-	3	-	-	-
CO6	-	-	-	-	-	-	-	-	-	3	-	-
C07	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	-	3	-	-	-	3	3	3	-	3

I B.Tech. – I Semester

20CSE112

C & DATA STRUCTURE LAB (Common to CSE, ECE, EEE, CSM, CAI & CSD)

т Ρ С L 0 0 3 1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge on flowchart and algorithm to the given problem
- 2. To exercise conditional and iterative statements to Write C programs
- 3. To develop the skill of C programs using arrays, strings and functions.
- 4. To understand C programs using pointers and allocate memory using dynamic memory management functions.
- 5. To familiarize with sorting and searching techniques.

EXERCISES:

- 1. a. Write a C Program to Calculate the Simple Interest.
 - b. Write a C Program to Convert the Temperature Unit from Fahrenheit to Celsius using the Formula C = (F-32)/1.8.
 - C. Assume that any Month is of 30 Days. Now you are given Total Days. Write a C Program to find out the exact Number of Years - Months & Days.
- 2. a. Write a Program that Prints the Given 3 Integers in Ascending Order using if else.

b. Write a Program to Calculate Commission for the Input Value of Sales Amount. Commission is calculated as per the Following Rules:

- i) Commission is NIL for Sales Amount Rs. 5000.
- ii) Commission is 2% for Sales when Sales Amount is >Rs, 5000and <= Rs, 10000.
- iii) Commission is 5% for Sales Amount >Rs. 10000.
- c. Write a C Program to find the Roots of Quadratic Equation.
- 3. a. Write a Program, which takes two integer Operands and one Operator from the User, Performs the Operation and then Prints the Result. (Consider the Operators +,-,*,/,%, use switch Statement)
 - b. A Character is entered through Keyboard. Write a Program to determine whether the Character Entered is a Capital Letter, a Small Case Letter, a Digit or a Special Symbol. The Following Table shows the Range of ASCII values for various Characters.

Characters	ASCII values
A - Z	65 - 90
a - z	97- 122
0 - 9	48 - 57
Special Symbo	ls 0 - 47, 58 - 64, 91- 96, 123 – 127.

- 4. a. Write a C Program to find the Sum of Individual Digits of a Positive Integer.
 - b. A Fibonacci sequence is defined as follows: the First and Second terms in the Sequence are 0 and 1. Subsequent terms are found by adding the Preceding two terms in the Sequence. Write a C Program to Generate the first n terms of the Sequence.
- 5. a. i) A Perfect Number is a Number that is the Sum of all its Divisors Except Itself. Six is the Perfect Number. The only Numbers that Divide 6 evenly are 1, 2, 3 and 6 (i.e., 1+2+3=6).
 - ii) An Abundant Number is one that is Less than the Sum of its Divisors (Ex: 12 < 1+2+3+4+6).
 - iii) A Deficient number is one that is Greater than the Sum of its Divisors (Ex: 9 > 1+3). Write a Program to Classify N Integers (Read N from keyboard) each as Perfect, Abundant or Deficient.
 - b. An Armstrong Number is a Number that is the Sum of the Cubes of its Individual Digits. Write a C Program to Print Armstrong Numbers below 1000.

- 6. a. Write a C Program to generate all the Prime Numbers between 1 And N, Where N is a Value Supplied by the User.
 - b. Write a C Program to Calculate the Following Sum: Sum = $1 x^2/2! + x^4/4! x^6/6! + x^8/8! x^{10/10!}$
- 7. a. Write a C Program to find both the Largest and Smallest Number in a List of Integers using Arrays.b. Write a C Program to Perform the Following:
 - i) Addition of Two Matrices. ii) Multiplication of Two Matrices.
- 8. a. Write C Programs that use both Recursive and Non-Recursive Functions to find the Factorial of a given Integer.
 - b. Write C Programs that use both Recursive and Non-Recursive Functions to find the GCD (Greatest Common Divisor) of two given integers.
 - c. Write C Program to solve Towers of Hanoi Problem using recursive function.
- 9. a. Write C Programs for Swap/Exchange values of two Integer variables using Call by Reference.
 - b. Write a C Program using Pointers to Read in an Array of Integers and Print its Elements in Reverse Order.
- 10. Write a C Program using Dynamic Memory Allocation.
- 11. You are supposed to generate a Result Table which Consists of Student Id Student Name Marks of three Subject and Total Marks. Write a Program which takes Input for Five Students and Displays Result Table. Also Display Student Information Separately Who Got the Highest Total? Use Structures to do it.
- 12. Write C programs to perform the following searching operations for a Key value in a given list of integers: i) Linear search ii) Binary search
- 13. Write a C program that implements the following sorting methods to sort a given list of integers in ascending order i) Bubble sort ii) Selection sort iii) Insertion sort
- 14. Write a C Program that Implements the Following Sorting Methods to Sort a Given List of Integers in Ascending Order i) Quick sort ii) Merge sort

COURSE OUTCOMES:

After to:	the successful completion of this course, the students able	POs related to COs
CO1	Design the algorithm and flowchart for the given problem.	PO1, PO2,PO3
CO2	Develop the programs on control statements and arrays.	PO1, PO2, PO3
CO3	Analyze the concepts on functions	PO1, PO2
CO4	Solve the memory access problems by using pointers and design the programs on structures and unions.	PO1, PO2, PO4
CO5	Analyze the dynamic memory allocation and deallocation.	P01, P02
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	P010
CO9	Continue updating their skill related to loops, pointers and files implementing programs in future.	P012

REFERENCE BOOKS:

- 1. PradipDey and Manas Ghosh, "Programming in C", Oxford University Press, 2018.
- 2. D. Samanta, "Classic Data Structure", Eastern Economy Edition, 2014.
- 3. Yashavant Kanetkar, "Let us C", 15th Edition, BPB Publications, 2016.
- 4. J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, "Programming in C and Data Structures", Pearson Education, Chennai, 2010.

REFERENCE WEBSITES:

- 1. <u>https://onlinecourses.swayam2.ac.in/cec22_cs11</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_cs40</u>
- 3. <u>https://www.geeksforgeeks.org</u>.

CO-PO	PO	PO	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
	1	2										
CO1	3	3	3	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-
CO4	3	3	-	3	-	-	-	-	-	-	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
C08	-	-	-	-	-	-	-	-	-	3	-	
CO9												3
CO *	3	3	3	3	-	-	-	3	3	3		3

A.

I B.Tech. – I Semester

20ESC112	ENGINEERING WORKSHOP AND IT WORKSHOP	L	ТΙ	P/D	С
	(Common to all branches)	0	0	2	1

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide exposure to the students with hands on experience on various basic engineering practices in civil, mechanical and electrical engineering.
- 2. To include training on PC Hardware, Internet & World Wide Web and Productivity Tools including Word, Excel and Power Point.

TRADES FOR EXERCISES:

ENGINEERING WORKSHOP

- 1. **Carpentry:** Two exercises from: Middle T lap joint Dove tail lap joint Mortise and tenon joint from out of 300 x 50 x 35 mm soft wood stock.
- 2. Sheet Metal: Two exercise from: Square tray Open scoop Frustum of pyramid from out of 22 or 20 gauge G.I. sheet.
- 3. Fitting: Two exercises from: Square joint V joint Dove tail joint from out of 50 x 50 x 5 mm M.S. flat piece.
- 4. **House Wiring:** Two exercise from: Two lamps controlled by one switch in series and parallel One lamp controlled by 2 two way switches (stair case) Wiring for fluorescent lamp.
- 5. **Plumbing:** Two exercise from: Basic pipe connections Mixed pipe material connection Pipe connections with different joining components.
- 6. **Machining:** Exercise on drilling and tapping.

TRADES FOR DEMONSTRATION:

- **a.** Lathe machine.
- **b.** Grinding machine.
- c. Arc and gas welding.

COURSE OUTCOMES (ENGINEERING WORKSHOP):

	On successful completion of the course, students will be able to	POs related to COs
C01	Demonstrate the knowledge on different tools used in carpentry, fitting, sheet metal, house wiring and plumbing sections and also basic machining process	P01
CO2	Analyze the basic pipeline connection using different joints	PO2
СОЗ	Design and develop simple components by using different materials includes wood, GI sheet and MS plates	PO3
CO4	Apply basic electrical engineering tools on the house wiring practice	PO5
CO5	Follow the ethical principles in while doing the exercises.	PO8
CO6	Do the exercises effectively as an individual and as a team member in a Group	PO9
C07	Communicate verbally among team members and in written form, the understanding about the trade exercises.	PO10
CO8	Continue updating their skill related to trades.	PO12

TEXT BOOKS:

	1. Lab manual provided by the department.											
CO-	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	-	-	-	-	-	-
CO3	-	-	2	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	2	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	3	-	-	-	-
CO6	-	-	-	-	-	-	-	-	3	-	-	-
C07	-	-	-	-	-	-	-	-	-	3	-	-
CO8	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	2	2	-	2	-	-	3	3	3	-	3

B. <u>IT WORKSHOP</u> PC HARDWARE

- 1. Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.
- 2. Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video shall be given as part of the course content.
- 3. Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.
- 4. Every student should install Linux on the computer. This computer should have windowsinstalled. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva
- 5. **Hardware Troubleshooting:** Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva
- 6. **Software Troubleshooting:** Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

LATEX AND WORD

- 7. Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS)tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.
- 8. Using LaTeX and Word to create project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

EXCEL

- Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel Accessing, overview of toolbars, saving excel files, Using help and resources.
- 10. Creating a Scheduler Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text.

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES. AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) LATEX AND MS/EOUIVALENT (FOSS) TOOL POWER POINT

11. Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this Exercise includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and PowerPoint. Students will be given model power point presentation which needs to be replicated (exactly how it's asked).

12. Second Exercise helps students in making their presentations interactive. Topic covered during this Exercise includes: Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts

INTERNET& WORLD WIDE WEB

13. **Internet & World Wide Web -Orientation & Connectivity Boot Camp:** Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access thewebsites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers.

14. **Search Engines & Netiquette:** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated by the student to the satisfaction of the instructors. Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computers to be safe on the internet. They need to first install an antivirus software, configure their personal firewall and windows update on their computer.

On t	he successful completion of this course, the student should be able to,	POs related to COs
CO1	Acquire knowledge on computer system such as system unit, input devices, and output devices connected to the computer.	PO1
CO2	Demonstrate the booting process that includes switching on the system, execution of POST routine, then bootstrap loader, and loading of the operating system, and getting it ready for use.	P02
CO3	Demonstrate the working of the internet that include the use of protocols, domains, IP addresses, URLs, web browsers, web servers, mail-servers, etc.	PO3
CO4	Familiarize with parts of MS Office, To create and save a document, To set page settings, create headers and footers, To use various formatting features such as bold face, italicize, underline, subscript, superscript, line spacing, etc.	P05
CO5	Follow the ethical principles in implementing the programs	PO8
CO6	Do experiments effectively as an individual and as a team member in a group.	PO9
C07	Communicate verbally and in written form, the understanding about the experiments and	PO10
CO8	Continue updating their skill related to MS Office, Internet and Computer in future.	P012

COURSE OUTCOMES (IT WORKSHOP):

REFERENCE BOOKS:

1. Vikas Gupta,"Comdex Information Technology course tool kit", WILEY Dream tech, New Delhi,

2003.

- 2. Cheryl A Schmidt, "The Complete Computer upgrade and repair book", WILEY Dream Tech, New Delhi, 3/e, 2008.
- 3. Introduction to Information Technology,ITL Education Solutions limited, Pearson Education, New Delhi, ,2008
- 4. Kate J. Chase , "PC Hardware and A+ Handbook", Microsoft press, 2004.
- 5. Leslie Lamport, Addison Wesley, LaTeX Companion, New Delhi, 2/e, 2002
- 6. David Anfinson and Ken Quamme ,"IT Essentials PC Hardware and Software Companion Guide", CISCO Press, Pearson Education, New Delhi, 3/e, 2008.
- 7. Patrick Regan ,"IT Essentials PC Hardware and Software Labs and Study Guide", CISCO Press, Pearson Education, New Delhi, 3/e, 2008, ,
- 8. S.J.Bigelow , "Troubleshooting, Maintaining and Repairing PCs", TMH, New Delhi, 5/e, 2008.

<u>CO-PO MAPPING:</u>

СО-РО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
C05	-	-	-	-	3	-	-	-	-	-	-	-
C06	-	-	-	-	-	-	-	3	-	-	-	-
CO7	-	-	-	-	-	-	-	-	3	-	-	-
C08	-	-	-	-	-	-	-	-	-	3	-	-
C09	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

I B.Tech. – II Semester

20HSM111	COMMUNICATIVE ENGLISH FOR ENGINEERS	L	т	Ρ	С
	(Common to All Branches)	3	0	0	3

PRE-REQUISITES: Nil

EDUCATIONAL OBJECTIVES:

- 1. To Provide Knowledge on developing Vocabulary and communicating in a verbal manner.
- 2. To understand in using of technology for societal aspects.
- 3. To recognize the importance on constructing Entrepreneurship Skills.
- 4. To Execute Contextual knowledge to recognize the need of ability to engage in independent and life-long learning in the broadest context of technological change.
- 5. To support and identify the earlier Medical Life Sciences used in India

UNIT-1: COMMUNICATION SKILLS FOR PROFESSIONALS

Listening: Identifying the topic, specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions; introducing oneself and others.

Reading: Skimming to get the main idea of a text, scanning to look for specific information.

Reading for writing: Beginnings and endings of paragraphs

Grammar and Vocabulary: Articles and prepositions and word formation. Content words and function words.

UNIT-2: TECHNOLOGY WITH A HUMAN FACE A LECTURE BY E.F.SCHUMACHER (9)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts.

Speaking: Discussion in pairs/small groups on specific topics.

Reading:. Identifying sequence of ideas recognizing verbal techniques.

Writing: Paragraph writing (specific topics) using suitable cohesive devices; mecahanics of writings. Grammar and Vocabulary: Word formation (Derivtion, Borrowing-coinage-compounding) Tenses.

UNIT-3: AZIM PREMJI-AN ENTREPRENEUR

Listening: Identifying the topic, specific pieces of information by listening to short audio texts. Speaking: Discussing daily routine activities.

Reading: Phrasal verbs often used in daily conversations.

Writing: Beginnings and endings of paragraphs

Grammar and Vocabulary: Letter writing (official) - voice of verbs

UNIT -4: REFLECTIONS OF FUTURE THE YEAR –BY THEODORE J.GORDON

Listening: Identifying the topic, specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions; introducing oneself and others.

Reading: Skimming to get the main idea of a text, scanning to look for specific information.

Reading for writing: Beginnings and endings of paragraphs

Grammar and Vocabulary: Direct and Indirect speech-Email writing.

UNIT -5: Y.SUBBA ROW

Listening: Identifying the topic, specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions; introducing oneself and others.

Reading: Skimming to get the main idea of a text, scanning to look for specific information. Reading for writing: Beginnings and endings of paragraphs introducing the topic summarizing the main idea and providing a transition to the next paragraph.

Grammar and Vocabulary: Subject verb agreement- Report writing.

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On suc	ccessful completion of the course, student will be able to	POs related to COs
C01	Understand the concepts on developing vocabulary and communicating in a verbal manner.	P01
CO2	Understand and develop knowledge on the use of Technology for social aspects.	PO5
CO3	Understand Acquiring skills to become an able Entrepreneur	P02
CO4	Understand contextual knowledge to recognize the need of ability to engage in independent and life-long learning in the broadest context of technological change.	P06
CO5	Understand the importance of Medical advancement and its uses on Human life in India	PO4

TEXT BOOKS:

- 1. V.N.Sudheer, S.Riyaz Ahammed, N.R Tulasi Prasad, N.Lakshmi Sailaja,"Functinal English 1" The Department of English of SITAMS ,1/e. 2016
- 2. V.N.Sudheer, S.Riyaz Ahammed, N.R Tulasi Prasad, N.Lakshmi Sailaja,"Functinal English 2" The Department of English of SITAMS ,1/e. 2016

REFERENCE BOOKS:

- 1. K.Srinivasa Krishna , B.Kuberudu , "Business communication and softskills", Excel Books ,1/e 2008.
- 2. K.R. Lakshminarayana , "English for Technical communication" , Scitech Publishers, 2/e, 2009
- 3. R.K. Bansal ,J.B. Harrison, "Spoken English", Orient Longman, Mumbai, 2/e,2009
- 4. Raymond Murphy ,Murphys English Grammar, Raymond Murphy Publishers , 2/e, 2006 Cambridge English Dictionary for advanced Learners.
- 5. Inspiring Lives by Dr. Jandhyala Ravindranath, Dr. M. Sarath Babu

REFERENCE BOOKS:

- 1. www.english club.com
- 2. www.easyworldofenglish.com
- 3. <u>www.languageguide.org/english/</u>
- 4. <u>www.bbc.co.uk/learningenglish</u>
- 5. <u>www.eslpod.com/index.html</u>
- 6. <u>www.myenglishpages.com</u>

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	3	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	-	-	-	-	-	-
CO5	-	-	-	3	-	-	-	-	-	-	-	-
CO *	3	3	-	3	3	3						

I B.Tech. - II Semester

20BSC121 DIFFERENTIAL EQUATIONS AND TRANSFORMATION LTPC TECHNIQUES

(COMMON TO ALL BRANCHES) 2103

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- To learn the methods of solving the ordinary differential equations of first & higher order 1: and applications of first order ordinary differential equations.
- To learn partial differential equations and how they can serve as models for physical
- processes and also master the technique of separation of variables to solve partial 2: differential equation.
- To learn the concepts of Laplace Transforms and inverse Laplace Transforms and to 3:
- explore the solving initial value problems by using Laplace transform method.
- 4: To develop skill to design Sine and Cosine waves with the help of Fourier series 5: To learn the concepts of Fourier transform and inverse Fourier Transform.

UNIT -1: ORDINARY DIFFERENTIAL EQUATIONS

Differential Equations of First Order and First Degree: Formation – Linear and Bernoulli's equations - Applications to L-R and C-R circuit's problems.

Linear Differential Equations of Higher Order: Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type eax, Sin ax, Cos ax, polynomials in x, $e^{ax}v(x) \otimes x^m v(x)$ - Method of variation of parameters.

UNIT -2: PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions -Solution of first order linear (Lagrange's) equation and Non-Linear (standard forms) equations - Solution of PDE by the Method of separation of variables.

UNIT -3: LAPLACE TRANSFORMS

Definition of Laplace transform, Laplace transform of standard functions - Laplace Transform of Unit step function, Dirac's delta function and Periodic function – Properties of Laplace Transforms(without proof): Linear property, First shifting theorem, Change of Scale Property, Second shifting theorem, Multiplication & Division by t, Transform of Derivatives & Integrals - Inverse transform - Convolution theorem(without proof) - Application: Solution of ordinary differential equations of first and second order with constant coefficients.

UNIT -4: FOURIER SERIES

(9) Determination of Fourier coefficients, Euler's formulae, Dirichlet's conditions - Fourier series of periodic functions, even and odd functions - Fourier series in an arbitrary interval - Half-range Fourier sine and cosine expansions.

UNIT -5: FOURIER TRANSFORM

Fourier integral theorem (without proof) - Fourier sine and cosine integrals - Fourier transform -Fourier sine and cosine transforms - Properties - Inverse transforms - Finite Fourier transforms.

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

Ο	n successful completion of the course, students will be able to	POs related to Cos
C01	To identify whether the given differential equation of first order is linear or Bernoulli and to solve the higher order linear differential equations with constant coefficients.	P01,P02,P03
CO2	Apply a range of techniques to find solutions of standard PDE's and outline the basic properties of standard PDE's	P01,P02,P03
СОЗ	To understand the concepts of Laplace transform and elementary functions, general functions using its properties and special functions.	P01,P02,P03
CO4	To understand finding Fourier series expression of the given function.	P01,P02,P03
CO5	Understand Fourier transforms and properties of Fourier transforms	PO1,PO2,PO3

TEXT BOOKS:

- 1. K.V. Iyengar, B.Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad,"Engineering Mathematics– I", T, S. Chand and Company Ltd, New Delhi.
- 2. T.K.V. Iyengar, B.Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad,"Mathematical Methods", S. Chand and Company Ltd, New Delhi.
- 3. Dr. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, Delhi, 44/e, 2017.

REFERENCE BOOKS:

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill Publishers, New Delhi.
- 2. Dr. M. K. Venkata Ramana, "Higher Engineering Mathematics", National Pub & Co, Madras.
- 3. N.P.Bali , "A Text Book of Engineering Mathematics", Laxmi publications (P)Ltd, New Delhi.
- 4. E.Rukmangadachari, E.Keshava Reddy, "Engineering Mathematics-II", Pearson Educations, Chennai.

REFERENCE WEBSITE:

https://nptel.ac.in/courses/111/106/111106100/ https://www.youtube.com/watch?v=OBhZvyhc8JQ&t=982s https://nptel.ac.in/courses/111/106/111106100/ https://www.youtube.com/watch?v=3zCdNO2xp3s https://www.youtube.com/watch?v=XU5hUrh6-18&t=948s https://nptel.ac.in/courses/111/106/111106139/ https://www.youtube.com/watch?v=LGxE_yZYigI https://www.youtube.com/watch?v=6spPyJH6dkQ https://www.youtube.com/watch?v=GFKggEkKtLM

CO- PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	P012
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-
CO *	3	3	2	-	-	-	-	-	-	-	-	-

I B.Tech. – II Semester

ELECTRONIC DEVICES AND CIRCUITS

PRE-REQUISITES: Nil

20ECE111

Course Educational Objectives:

- **1.** To study the basic concepts and characteristics of the PN Junction diodes.
- 2. To understand and analyze the working principle of Rectifier & Filter circuits and their application
- 3. To study and analyze the working principle and characteristics of BJT
- **4.** To study and analyze the working principle and characteristics of FET
- **5.** To understand the working principle and characteristics of special devices.

UNIT-1: Junction Diode Characteristics

Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance and its application, Zener diode - V-I Characteristics.

UNIT-2: Rectifiers and Filters

Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter, Capacitor filter, comparison of various filter circuits in terms of ripple factors, Zener diode regulator.

UNIT-3: BJT Transistor Characteristics:

Junction transistor, transistor current components, transistor configurations, Characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, punch through/ reach through.

UNIT-4: FET Transistor Characteristics:

Construction and principle of operation and characteristics of JFET & MOSFET (Enhancement & Depletion mode). Biasing of FET, FET act as voltage variable resistor, comparison of BJT and FET

UNIT-5: Special Semiconductor Devices

Principle of operation, characteristics and applications of - Varactor diode, Tunnel diode, Uni Junction Transistors, Silicon Controlled Rectifier, Scottky diode, LED, Photo transistor.

Course Outcomes

On su	On successful completion of the course, students will be able to						
CO1	Demonstrate concepts and Analyze the characteristics of the PN Junction diodes.	PO1, PO2					
CO2	Design and Analyze of Rectifiers & Filters circuits and its application.	PO1,PO2,PO3					
CO3	Design and investigate the working of BJT transistor and its configurations and characteristics	PO1,PO2,PO3, PO4					
CO4	Design and analyze the working of FET, MOSFET and special diodes.	PO1, PO2,PO3,PO4					
CO5	Demonstrate knowledge on special devices and analyze their VI characteristic.	PO1, PO2					

(9)

(9)

(9)

(9)

(9)

Total hours: 45

Т С L Ρ 3 Ω 0 3

TEXT BOOKS:

- 1. J. Millman, C. Halkias, Tata Mc-Graw Hill, "Electronic Devices and Circuits", 2e
- 2. Jacob Millman, C. Halkies, C.D.Parikh, "Integrated Electronics", Tata Mc-Graw Hill, 2009.

REFERENCES BOOKS:

- 1. K. Satya Prasad , "Electronic Devices and Circuits", VGS Book Links.
- 2. Salivahanan, Kumar, Vallavaraj, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 2e.
- 3. David Bell ,"Electronic Devices and Circuits" ,Oxford Press.

REFERENCE WEBSITES:

- 1. https://nptel.ac.in/courses/117/103/117103063
- 2. <u>https://nptel.ac.in/courses/108/101/108101091</u>
- 3. <u>http://www.vidyarthiplus.in/2011/11/electronic-device-and-circuits-edc.html</u>
- 4. https://www.allaboutcircuits.com/video-lectures

CO-PO Mapping

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-
CO*	3	2.8	2	2	-	-	-	-	-	-	-	-

I B.Tech - II Semester

20ESC113

BASIC ELECTRICAL ENGINEERING (Common to CSE, CSM, CAI & CSD)

PRE-REQUISITES: Nil Course Educational Objectives:

On successful completion of the course, students will be able to

- 1 Impart knowledge on fundamentals of electrical circuits
- 2 Analyzing different factors of various periodic waveforms
- 3 Introduce phenomenon of DC Machines.
- 4 Understand construction and operation of A.C. machines
- Impart knowledge on basic principles of electrical measuring instruments 5

UNIT-1: INTRODUCTIONTO ELECTRICAL ENGINEERING:

Ohm's Law, Basic Circuit Components, Kirchhoff's laws, Simple Problems. Types of Sources, Series, Parallel Circuits, Star-Delta Transformation, Network Theorems-Superposition and reciprocity, Thevenin's and Norton's Theorems and Maximum Power Transfer Theorem.

UNIT-2: SINGLE PHASE AC CIRCUITS

R.M.S, Average values and form factor for different periodic waveforms - phase and phase difference of sinusoidal alternating quantities - steady state analysis of R, L and C (in series, parallel and series parallel combinations) with sinusoidal excitation - concept of reactance, impedance, susceptance and admittance - Power triangle, power factor

UNIT-3: DC MACHINES

Principle of Operation of DC Generators, Types of DC Generators, EMF Equation in DC Generator, OCC of a DC Shunt Generator. Principle of Operation of DC Motors, Types of DC Motors, Torque Equation, Losses and Efficiency, Calculation in DC Motors, Swinburne's Test and Brake Test, Speed control of DC Shunt motor.

UNIT-4: AC MACHINES

Principles of Operation of Transformer, Constructional Details, Losses and Efficiency, Regulation of Transformer, O.C and S.C Tests - Principles of Operation of Three Phase Induction motor

UNIT-5: MEASURING INSTRUMENTS:

Introduction, Classification of Instruments, Operating Principles, Essential Features of Measuring Instruments, Moving Coil and Moving Iron Instruments, Dynamometer Wattmeter and Energy meter **Total hours: 45**

Course Outcomes:

On successful completion of the course the student could be ,

	Course Outcomes	POs related to COs
CO1	Understood the concept of electrical circuits	PO1, PO2, PO3,PSO12
CO2	Investigated the different AC circuits	PO1, PO2, PO3,PSO12
CO3	Analysed the operation of DC Machines.	PO1, PO2, PO3,PSO12
CO4	Analysed the operation of DC Machines.	PO1, PO2, PO3,PO12
CO5	Understand and evaluate the calibration of different electrical measuring instruments.	PO1, PO2, PO3,PO12

(9)

(9)

(9)

(9)

(9)

т Ρ С

0 3

L

2 1

TEXT BOOKS:

- 1. M.S.Naidu and S Kamakshaiah, "Basic Electrical Engineering".
- 2. T.KNagasarkar and M.S Sukhija,"Basic Electrical Engineering"
- 3. Allan H. Robbins, Wilhelm C. Miller, "Circuit Analysis Theory and Practice", Cengage Learning India, 2013.

REFERENCE BOOKS:

- 1. DP Kothari and IJ Nagrath , "Theory and Problems of BEE".
- 2. V.K Mehtha, "Principle of Electrical Engineering", S Chand Publications.
- 3. Joseph A. Edminister, MahmoodNahri, "Electric circuits", Schaum's series, McGraw-Hill, New Delhi, 2010.
- 4. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", McGraw Hill, 2015.

REFERENCE WEBSITES:

1. https://nptel.ac.in/courses/108/105/108105053/

CO-PO Mapping:

CO/PO	PO1	PO2	PO3	P04	P05	P06	PO7	PO8	PO9	PO10	P011	P012
CO1	3	2	2	-	-	-	-	-	-	-	-	2
CO2	3	3	2	-	-	-	-	-	-	-	-	2
CO3	3	2	2	-	-	-	-	-	-	-	-	2
CO4	3	3	2	-	-	-	-	-	-	-	-	2
CO5	3	3	2	-	-	-	-	-	-	-	-	2
CO *	3	2.6	2									2

I B.Tech. – II Semester

20ESC115PROGRAMMING WITH PYTHONLTPC(Common to All Branches)2103

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

1: To impart the basics of python and its IDEs.

2: To understand the basic data structure in python.

3: To familiarize with python GUI and files.

4: To develop broad understanding of various object-oriented concepts in python.

5: To introduce the python libraries for solving real-time problems.

UNIT 1: BASICS OF PYTHON

Python programming language:About Python- Introduction to various IDEs- IDLE- PyCharm, Spyder-Sublime text- Jupyter Notebook.

Literals: Numeric literals - String literals- Variables and Identifiers: Variable assignment and keyboard input – Identifiers - keywords and other predefined identifiers.

Control Structures: Sequential control- Selection control- Iterative control statements.

UNIT 2: LISTS, DICTIONARIES AND SETS

Lists: List structures - Common list operations - List traversal - Lists in Python - Python list type –Tuples - sequences - Nested lists - Iterating over lists in python.

Dictionaries and Sets: Dictionary types in Python - Set data type- Strings and its operations.

UNIT 3: FUNCTIONS AND TEXT FILES

Functions: Function declaration- Category of Functions- Parameter Passing -Keyword Arguments in Python - Default Arguments in Python - Variable Scope, Lambda function. **Files:** Fundamentals – opening, reading and writing text files, .csv and .xlsx files.

UNIT 4: OBJECT-ORIENTED CONCEPTS USED IN PYTHON

Features of object-oriented programming-Fundamental concepts- Class- Encapsulation- Inheritance-Polymorphism. Object references - Turtle graphics - creating a Turtle Graphics Window - the "Default" Turtle - Fundamental Turtle Attributes and Behavior - Additional Turtle Attributes - Creating Multiple Turtles.

UNIT 5: INTRODUCTION TO PYTHON LIBRARIES

Python Libraries- Introduction to Libraries- Creating and Exploring Packages-Numpy, SciPy, matplotlib, Pandas, Scikit-learn- seaborn.

Total hours: 45

COURSE OUTCOMES:

On sı to,	accessful completion of the course the student will be able	POs related to COs
CO1	Identify and apply the appropriate control statements for solving problems.	P01, P02, P05
CO2	Demonstrate knowledge of basic data structures and functions.	PO1, PO3, PO4
CO3	Analyse and apply the appropriate file handling mechanism.	PO1, PO2, PO5
CO4	Identify and implement the suitable object-oriented concepts.	PO1, PO2, PO5
CO5	Evaluate the real-world problems using python packages.	P01, P04, P05

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus", Wiley India Edition, 2016.
- 2. John V. Guttag., "Introduction to computation and programming using python: with applications to understanding data", PHI Publisher, 2016.
- 3. John Hunt, "A Beginners Guide to Python 3 Programming", Springer Publisheers, 2020.

REFERENCE BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", SecondEdition,Shroff/O'ReillyPublishers,(<u>http://greenteapress.com/wp/thinkpython/</u>), 2016
- 2. Charles Severance, "Python for everybody: exploring data in Python 3", Creative Commons Attribution-Non Commercial Share Alike 3.0 Unported License, 2016.

REFERENCE WEBSITES:

- 1. <u>https://onlinecourses.swayam2.ac.in/aic20_sp33</u>
- 2. https://onlinecourses.nptel.ac.in/noc22_cs32
- 3. <u>https://spoken-tutorial.org</u>
- 3. <u>https://www.w3schools.com/python</u>.
- 4. <u>https://www.geeksforgeeks.org</u>.

CO- PO	P01	РО 2	РО 3	P04	РО 5	P06	РО 7	P08	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	-	-	2	-	-	-	-	-	-	-
CO2	3	-	3	2	-	-	-	-	-	-	-	-
CO3	3	3	-	-	2	-	-	-	-	-	-	-
CO4	3	3	-	-	2	-	-	-	-	-	-	-
CO5	3	-	-	2	2	-	-	-	-	-	-	-
CO *	3	2	3	2	2							

I B.Tech. – II Semester

20HSM112	COMMUNICATIVE ENGLISH LANGUAGE LAB	L	Т	Ρ	С
	(Common to All Branches)	0	0	3	1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide Knowledge on developing Soft Skills and its techniques.
- 2. To understand Knowledge on the use of technology for giving Presentations.
- 3. To apply gained information in Preparing Resume.
- 4. To analyze the use of body language while participating in Group Discussions.
- 5. To execute the complete knowledge on facing Job Interviews.

LIST OF TOPICS:

- 1. Introduction and importance of Soft Skills
- 2. Attributes of Soft Skills
- 3. Categories of Soft Skills- (Social, Thinking, Negotiating)
- 4. Exhibiting, Identifying, and Improving your Soft Skills
- 4. Acquiring Soft Skills (Train yourself)
- 5. Soft Skills practicing tips
- 6. Power Point presentation on Scientific/Technical Topics.
- 7. Designing a Resume
- 8. Resume Styles
- 9. Preparing Model Resumes
- 10. Group Discussion
- 11. Group Discussion strategies
- 12. Mock GDs.
- 13. Job Interviews
- 14. Interview Techniques
- 15. Model Interview questions Mock Interview

COURSE OUTCOMES:

At the	e end of the course, students will able to	POs related to COs
CO1	Remembering the concepts on developing Soft Skills and its techniques. (Topics from 1 to 5)	P01
CO2	Understand and Develop Knowledge on the use of technology in giving presentations. (Topic No:6)	P05
CO3	Apply one's skills in Preparing a Resume before applying for a job.(Topic 7 to 9)	P06
CO4	Analyze and execute body language while participating in Group Discussions. (Topics 10 to 12)	PO2
CO5	Evaluate by weighing one's communicative skills in facing Job Interviews through Mock Interviews. (Topics 13 to 15)	P010

SOFT WARE SUGGESTED: Walden -Hyderabad.

REFERENCES:

- 1. Dr.K.Alex,"Soft Skills- Know yourself and know the world", S. Chand Publications, New Delhi, 2010
- 2. T.Vijayakumar, K.Durga Bhavani, English in Action 1st Edition, 2019, Mac millan Publications, Guntur.
- 3. Rout ledge, "Bailey Stephen Academic Writing A Hand book for international students", 2014.
- 4. Chase, Becky Tarver," Pathways: Listening, Speaking and Critical Thinking. Heinley ELT", 2e/ 2018.
- 5. Hewings, Martin, "Cambridge Academic English (B2)". CUP, 2012

СО-РО	P01	PO 2	PO3	P04	P05	P06	P07	PO8	PO9	PO10	P011	P012
C01	3	-		-	-	-	-	-	-	-	-	-
CO2	-	-		-	3	-	-	-	-	-	-	-
CO3	-	-	-	-	-	3	-	-	-	-	-	-
CO4	-	3	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	3	-	-
CO *	3	3	-	-	3	3	-	-	-	3	-	-

I B.Tech - II Semester

20ESC117 FUNDAMENTALS OF ELECTRICAL & ELECTRONICS L T P C ENGINEERING LAB

(Common to CSM & CSE) 0 0

0 0 2 1

PRE-REQUISITES: Nil

Course Objectives:

On successful completion of the course, students will be able

- 1. To gain practical experience on fundamental electric laws.
- 2. To gain practical experience on verification of theorems.
- 3. To evaluate the performance characteristics of DC shunt generator.
- 4. To evaluate the performance characteristics of DC shunt motor.
- 5. To evaluate the Characteristics of diode, rectifiers and filters.

PART -A

Any SIX of the Following

- 1. Verification of KCL and KVL
- 2. Verification of Superposition Theorem and Reciprocity Theorem.
- 3. Verification of Thevinin's and Norton's Theorem.
- 4. Verification of Maximum Power Transfer Theorem.
- 5. Magnetization Characteristics of D.C Shunt Generator.
- 6. Swinburne's Test of DC Shunt Machine.
- 7. Brake Test on DC Shunt Motor & Determination of Performance Characteristics.
- 8. OC & SC Tests on Single-Phase Transformer to find the Efficiency.

PART -B

- Any SIX of the Following
 - 1. Volt-Ampere Characteristics of P-N Junction Diode and Zener Diode.
 - 2. Rectifiers-Without Filter.
 - 3. Rectifiers-With Filter.
 - 4. BJT Characteristics (CE&CB Configuration).
 - 5. Transistor as a Switch.
 - 6. FETCharacteristics.
 - 7. UJT Characteristics.
 - 8. SCR Characteristics.

Course outcomes:

	At the end of the course, students will able to	
	Course Outcomes	POs related to COs
CO1	Understand the fundamental electrical laws in engineering applications.	P01
CO2	Verify different network theorems practically.	PO2
CO3	Design electrical circuits for measuring complicated electrical parameters.	P03
CO4	Investigate AC Machines like Induction Motor and Transformer for solving complex problems.	P04
CO5	Evaluate the Characteristics of D.C Shunt Generator and DC Motor through experimentation.	P04
CO6	Follow the ethical principles in implementing the experiments.	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	P010
CO9	Continue updating their skill related to electrical circuits	PO12

REFERENCE WEBSITE

1. https://nptel.ac.in/courses/117/106/117106108/

CO-PO Mapping:

CO-PO	PO	PO	PO3	P04	PO5	P06	P07	P08	PO9	PO10	PO11	P012
	1	2										
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	3	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	
CO9												3
CO *	3	3	3	3	-	-	-	3	3	3		3

I B.Tech - II Semester

20ESC118	PROGRAMMING WITH PYTHON LAB	L	т	Ρ	С
	(Common to All Branches)	0	0	3	1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1: To understand the basic IDEs in python.
- 2: To gain expertise for problem solving using control structures in python
- 3: To develop the python programs using functions.
- 4: To solve various engineering problems using different data structures.
- 5: To gain knowledge on python libraries.

RECOMMENDED SYSTEMS/SOFTWARE REQUIREMENTS:

- For Windows: IDLE/ Spyder python development environment.
- For Linux: Default python version installed/ higher version.

LIST OF TASKS:

TASK-1: BASICS

- a) Develop a simple python scripts to illustrate numeric literals and string literals.
- b) Write a Python Program to Convert Kilometres to Miles

TASK-2: LOOPS

- a) Write a python Program to Make a Simple Calculator
- b) Write a python program that reads a rating from the user and indicates whether the performance was unacceptable, acceptable or meritorious. The amount of the employee's raise should also be reported. Your program should display an appropriate error message if an invalid rating is entered. (The amount of an employee's raise is \$2400.00 multiplied by their rating).

Rating	Meaning
0.0	Unacceptable performance
0.4	Acceptable performance
0.6 or more	Meritorious performance

TASK-3: LOOPS

a) Write a program containing a pair of nested while loop that displays the integer values 1–100. Ten numbers per row - with the columns aligned as shown below

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

91 92 93 94 95 96 97 98 99 100

b) Display the integer values 1-100 as given in question 3a) using only one while loop.

TASK-4: DICTIONARIES

a) Write a Python script to generate all the possible spellings of the last four digits of any given phone number – use Dictionaries.

TASK-5: STRINGS

a) Write a program to figure out if the register number format is correct or not using a Python code. (Hint: sample register number format- 20751A0500). Use string methods to solve the above problem.

TASK-6: FUNCTIONS

a) Write a function that generates a random password. The password should have a random length of between 7 and 10 characters. Each character should be randomly selected from positions 33 to 126 in the ASCII table. Your function will not take any parameters. It will return the randomly generated password as its only result. Display the randomly generated password in your file's main program. Your main program should only run when your solution has not been imported into another file.

TASK-7: PATTERN PRINTING

a) Write a python program to print half pyramid pattern with star (asterisk)

- *
 * *
- * * * * * * *
- * * * * *

b) Write a python program to print the characters/alphabets in right-angled triangle pattern. A

B C D E F G H I J K L M NO P Q R S T U V W X Y Z [\

TASK-8: TURTLE

a) Write a python program to draw the basic shapes using turtle (Hint: Square, circle, triangle).

TASK-9: FILES

- a) Write a python script to create a simple text file. Write the contents into the created file and read the contents from the file and display the same on to the console screen.
- b) Write a python script to Create and write on excel file using xlsxwriter module.
- c) Write a python script to write the contents into a csv file.

TASK 10: FILE HANDLING

Write a python program to perform the following tasks:

- a) Copy the contents of one file into another file.
- b) Count number of lines in a file.
- c) Count number of characters in a file.
- d) Count number of words in a file.

TASK 11: INHERITANCE

a) Write a python program to illustrate the inheritance concept.

TASK-12: MATH LIBRARIES

- a) Write a python program to calculate area of a circle. Use the pi constant in the math module in your calculations. (Area of the circle = πr^2)
- b) Write a python program to calculate Volume of a sphere. Use the pi constant in the math module in your calculations. (Volume of a sphere = $4 \pi r^3$).

TASK-13: PANDAS

a) Write a Pandas program to create a line plot of the historical stock prices of a company between two specific dates.

TASK-14: PANDAS

a) Write a Pandas program to create a bar plot of the trading volume of a company stock between two specific dates.

COURSE OUTCOMES:

	uccessful completion of this course the students should ble to:	POs related to COs						
CO1	Learn various problem solving approaches and ability to identify an appropriate approach to solve the problem	PO1, PO2, PO PO5						
CO2	Implement conditionals and loops to design the python programming	PO1, PO2, PO PO5						
CO3	Implement lists, set, tuples and dictionaries to develop python program.	PO1, PO2, PO PO5						
CO4	Able to modulate the given problem using structural approach of programming	PO1, PO5	PO2,	PO3,				
CO5	Build Python Programs using packages to solve real-time problems.	PO1, PO2, PO3, PO4,PO5						
CO6	Follow the ethical principles in implementing the programs	PO8						
C07	Do experiments effectively as an individual and as a team member in a group.	PO9						
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO10						
CO9	Continue updating their skill related to lists, tuples and dictionaries implementing programs in future.	P012						

REFERENCE BOOKS:

- 1. John V. Guttag., "Introduction to computation and programming using python: with applications to understanding data", PHI Publisher, 2016.
- 2. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus", Wiley India Edition, 2016.
- 3. John Hunt, "A Beginners Guide to Python 3 Programming", Springer Publisheers, 2020.

REFERENCE WEBSITES:

- 1. <u>https://onlinecourses.swayam2.ac.in/aic20_sp33</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_cs32</u>
- 3. <u>https://spoken-tutorial.org</u>
- 4. <u>https://www.w3schools.com/python</u>.
- 5. <u>https://www.geeksforgeeks.org</u>.

CO-PO Mapping:

CO-PO	PO	PO	PO	PO4	P05	PO6	PO7	PO8	PO9	PO1	P01	P01
	1	2	3							0	1	2
CO1	3	3	3	-	2	-	-	-	-	-	-	-
CO2	3	3	3	-	2	-	-	-	-	-	-	-
CO3	3	3	3	-	2	-	-	-	-	-	-	-
CO4	3	3	3	-	2	-	-	-	-	-	-	-
CO5	3	3	3	3	2	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
CO7	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	2	-	-	3	3	3		3

II B.Tech - III Semester

20BSC233 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE LTPC

(Common to CSE, CSM, CAI, CSD)

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To gain the knowledge on connectives and relate the laws of logic to find the disjunctive normal form and conjunctive normal form of compound proposition.
- 2. To learn the various concepts related to predicate logic.
- 3. To perform the operations associated with sets, functions, and relations and study the basic Properties of lattices.
- 4. To understand the concept of groups, Abelian groups and group homomorphism and isomorphism.
- 5. To study the fundamentals of graphs, sub graphs, planar graphs, Hamiltonian graphs, Euler graphs, Spanning trees and graph traversals.

UNIT 1: MATHEMATICAL LOGIC

Mathematical logic: Statements and Notations - Connectives(Negation, Conjunction, Disjunction, Conditional and Biconditional) - Statements Formulas and Truth Tables - Well-Formed Formulas, Tautologies - Equivalence of Formulas - Duality Law - Tautological Implications - Normal Forms(DNF, CNF, PDNF, PCNF) - Theory of Inference for Statement Calculus: Validity using Truth tables - Rules of Inference - Consistency of Premises and Indirect Method of Proof.

UNIT 2: PREDICATE CALCULUS

Predicates - open statements-Quantifiers- Variables- Free and Bound Variables -Truth value of a quantified statements- Two rules of Inference-Logical equivalence- Rules for negation of a quantified statements- Theory of Inference for Predicate Calculus - statements with more than one variable.

UNIT 3: RELATIONS & FUNCTIONS

Relations: Properties of Binary Relations, Equivalence Relations - Compatibility and Partial Ordering Relations - Hasse Diagram - Lattices (Basic Concepts) - Functions: Inverse function - Composition of Functions - Recursive Functions - Pigeon Hole Principles and its Applications.

UNIT 4: ALGEBRAIC STRUCTURES

Algebraic Systems - Examples and General Properties - Semi Groups - Monoids - Groups and Subgroups - Homomorphism and Isomorphism

UNIT 5: GRAPH THEORY

Basic Terminology - Multi Graphs - Weighted Graphs - Digraphs and Relations - Representations of Graphs (Incidence Matrix, Adjacency Matrix) - Operations on Graphs - Isomorphism and Sub Graphs. Paths and Circuits - Graph Traversals(DFS, BFS) - Eulerian Paths and Circuits - Hamiltonian Paths and Circuits - Planar Graph - Graph Coloring - Spanning Trees - Minimum Spanning Trees -Kruskal's Algorithm - Prim's Algorithm.

Total Hours: 45

(9)

(9)

2103

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
	Understand the validity of statements using connectives,	PO1, PO2, PO3
CO1	tautologies, equivalence, implications and solve the problems	
	using normal forms.	
CO2	Solve the problems using statement calculus, predicate calculus and analyze the equivalence of quantified statements.	PO1, PO2, PO3
	Identify and describe various types of relations (Compatibility,	PO1, PO2,
CO3	Partial ordering and Equivalence relations) and analyze the	PO3,PO4
	functions concepts and distinguish different types of functions.	
CO4	Understand the concept of groups, Abelian groups and analyze	PO1,PO2
04	whether the given set satisfies the properties of group or not.	
	Design network applications using Prim's and Kruskal's	PO1, PO2,
CO5	Algorithms and Demonstrate different traversal methods for graphs.	PO3,PO4
	graphs.	<u> </u>

TEXT BOOKS:

- 1. J.P. Tremblay and R. Manohar, "Discrete Mathematical Structures with Applications to Computer Science", 27/e, Tata McGraw Hill Publishers, 2006, New Delhi.
- 2. C.L. Liu, D.P. Mohapatra, "Elements of Discrete Mathematics A Computer Oriented Approach", 3/e, Tata McGraw Hill Publishers, 2008, New Delhi.
- 3. D.S. Chandrasekharaiah, "Mathematical Foundations of Computer Science", 3/e, Prism Books Pvt. Ltd., 2001.Bangalore

REFERENCES:

- 1. Ralph. P. Grimaldi, "Discrete and Combinational Mathematics An Applied introduction", 5/e, Pearson Education, 2008, New Delhi.
- 2. Kenneth H. Rosen, "Discrete Mathematics and its applications",6/e, Tata McGraw Hill Publishers, New Delhi.
- 3. Mott, Kandel, Banker, "Discrete Mathematics for Computer Scientists & Mathematicians", 2/e, Prentice Hall India, 2007, New Delhi.
- 4. Lipschutz, Lipson, Schaum's outlines, "Discrete Mathematics",2/e, Tata McGraw Hill Publishers, 2006, New Delhi.
- 5. Gary Haggard, John Schlipf, Sue Whitesides, "Discrete Mathematics for Computer Science", 4/e, Thomson Publications, 2008, New Delhi.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/108/106108227/
- 2. https://nptel.ac.in/courses/106/103/106103205/

J,	<u>)-PO MA</u>	NIA	j:										
	CO- PO	P01	PO2	PO3	P04	P05	P06	P07	PO8	PO9	PO10	PO11	PO12
ſ	CO1	3	3	3		-	-	-	-	-	-	-	-
ſ	CO2	3	3	3		-	-	-	-	-	-	-	-
Ī	CO3	3	3	2	3	-	-	-	-	-	-	-	-
ſ	CO4	2	3			-	-	-	-	-	-	-	-
Ī	CO5	3	3	3	3	-	-	-	-	-	-	-	-
Ī	CO *	2.8	3	2.75	3	-	-	-	-	-	-	-	-

II B.Tech - III Semester

20ESC237 DIGITAL LOGIC DESIGN AND MICROPROCESSOR LTPC

(Common to CSE, CSM, CAI, CSD)

PRE-REOUISITES: Nil

2103

COURSE EDUCATIONAL OBJECTIVES:

- 1. To Provide Knowledge On number systems, coding and basic logic functions.
- 2. To develop skill to minimize switching functions in effective way using K-MAP
- To develop skill to design combinational logic circuits. 3.
- 4. To provide knowledge on architecture of 8086 microprocessor.
- 5. To develop the skill on programming of 8086 and 8051 microcontroller

UNIT-1: **NUMBER SYSTEMS & CODES**

Review of Number Systems- Binary Arithmetic-Subtraction with r and (r-1)'s Complements-Weighted & Non Weighted Codes- Error Detection and Error Correction Codes- Hamming Code, Introduction to ASCII code - Basic Logic Operations of (NOT, OR, AND), Universal Gates - EX-OR & EX-NOR Gates.

UNIT-2: MINIMIZATION OF LOGIC FUNCTIONS

Boolean Algebra : Boolean Theorems- Complement and Dual of Logical Expressions- Minimization of Logic Functions using Demorgan's Theorems. Standard SOP and POS, Minimal SOP and POS Realization, Minimization of Switching Functions using K-Map upto 5 variables.

UNIT -3: COMBINATIONAL & SEQUENTIAL LOGIC CIRCUITS

Design of Half Adder - Full Adder - Half Subtractor- Full Subtractor- 4-Bit Binary Adder-4-Bit Adder Subtractor- BCD Adder- Magnitude Comparator - Decoder- Encoder- Multiplexer - De Multiplexer. Basic Latches & Flip Flops-SR, D, JK, T - Design of Shift Registers-Universal Shift Register, Design of Synchronous and Asynchronous Counters.

UNIT-4: INTRODUCTION TO 8086 MICROPROCESSOR

8085 Overview, 8086 Internal Architecture- Register Organization, Memory Segmentation, Flag Register, Pin Configuration, Minimum and Maximum Mode Signals, Interrupts in 8086.

UNIT-5: 8086 INSTRUCTION SET & 8051 MICROCONTROLLER

Instruction set of 8086, Assembler directives, Simple programs involving arithmetic, logical, branch instructions, Overview of 8051 microcontroller, Architecture, I/O ports and Memory organization, addressing modes and instruction set of 8051(Brief details only), Simple Programs

Total Hours: 45

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
C01	Demonstrate knowledge on types and conversion of number systems, Error Detection and Error Correction arithmetic and logical operations of different radix and applying boolean algebra for switching functions reduction.	P01, P02
CO2	Identify the most efficient grouping to minimize the switching functions using k-map.	P01,P02
CO3	Design the combinational logic circuits and realize for given specifications.	P01,P02,P03
CO4	Understand the knowledge 8086 microprocessor and its architecture	P01,P02,P03
CO5	Analyze the instruction set of 8086 and 8051 microcontroller architecture and instruction set.	P01,P02,P03,P04

TEXT BOOKS:

- 1. Morris Mano, "Digital Design", Prentice Hall of India, 3/e, 2006.
- 2. Thomas L.Floyd, "Digital Fundamentals", Pearson/Prentice Hall, 10/e, 2008.
- 3. A.K.Ray and K.M.Bhurchandi, "Advanced microprocessor and Peripherals", Tata Mc-Graw Hill, 2/e, 2000.
- 4. Kenneth.J.Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010

REFERENCES:

- 1. Charles H.Roth, "Fundamentals of Logic Design", Thomas Publications, 5/e, 2004.
- 2. Zvi Kohavi, "Switching and Finite Automata Theory", Tata McGraw Hill, 2/e, 1978.
- 3. Ronald J. Tocci, Neal S. Widmer, "Digital Systems Principles and Applications", 8/e, Pearson Education, 2002.
- 4. Douglas V. Hall, "Micro Processors & Interfacing", Tata McGraw Hill, 2/e, 2007.
- 5. Walter A, Triebel, Avtar Singh, "The 8088 and 8086 microprocessors", Prentice Hall of India, 1/e, 2003.

REFERENCE WEBSITE:

1. https://www.csie.ntu.edu.tw/~pjcheng/course/asm2008/asm_ch2_dl.pdf

- 2. https://nptel.ac.in/courses/117/105/117105080/
- 3. https://nptel.ac.in/courses/108/103/108103157/

CO-	PO1	PO2	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	P011	PO12
PO												
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	2	3	2	-	-	-	-	-	-	-	-
CO *	3	2.6	2.3	2	-	-	-	-	-	-	-	-

II B.Tech. - III Semester

PRINCIPLES OF MANAGEMENT

PRE-REQUISITES: Nil

20HSM241

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the concepts of total quality management, and Contributions of TQM
- 2. To learn TQM principles and impact of 5s, Kaizen, PDSA cycles in continuous process improvement.
- 3. To study the basic need of quality control and process control in an organization
- 4. To learn the traditional and modern TQM tools and techniques
- 5. To study the quality standard, requirements and elements in Quality management system

UNIT -1: INTRODUCTION TO MANAGEMENT

Definition of management – Science or Art – Manager Vs Entrepreneur – Types of managers – Managerial roles and skills – Levels of management – Functions of management – Principles of management and Scientific Management and its approaches – Corporate Social Responsibilities – Organization culture and Environment.

UNIT -2: PLANNING AND DECISION MAKING

Planning: Nature and purpose of planning – Planning process – Types of planning –Objectives – Setting objectives – Policies – Planning premises – Strategic Management – Planning Tools and Techniques **Decision Making**: Importance of decision making – – Decision making steps and process.

UNIT -3: ORGANIZING AND DIRECTING

Organizing: Nature and purpose – Formal and informal organization – Organization chart and structure – Line and staff authority – Departmentalization – Delegation of authority – Centralization and decentralization – Job Design – HR planning, recruitment, selection, training and development, performance management, career planning and management. **Directing:** Principles of directing – Process of communication – Barrier in communication – Effectivecommunication.

UNIT -4: CONTROLLING AND CO-ORDINATING

System and process of controlling – Budgetary and non-budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

UNIT -5: MODERN CONCEPTS OF MANAGEMENT

Concept, features, merits and demerits of SWOT Analysis, Business Process Re-engineering, Supply Chain Management – Concepts, functions importance of marketing – Competitive analysis and advantages of E-marketing.

Total Hours: 45

(9) charl

(9)

(9)

(9)

(9)

L T P C 3 - - 3

COURSE OUTCOMES:

On suc	cessful completion of the course, students will be able to	POs
CO1	Understand the concepts of management, roles to be adopted by manager, functions of manager and inculcating the social responsibility towards different stake holders.	P01, P011
CO2	Demonstrate knowledge with regard to planning, planning process and the process of making effective decisions.	P01, P011
CO3	Demonstrate knowledge about organizational environment, the process of staffing and the application of directive principles.	P01, P011
CO4	Demonstrate knowledge about controlling and Co-ordinating	P01, P011
CO5	Demonstrate knowledge about modern concepts in management.	P01, P011

TEXT BOOKS:

- 1. Total Quality Management, Besterfield Dale H, Besterfield Carol, Besterfield Glen H, Besterfield Mary, Urdhwareshe Hemant and Urdhwareshe Rashmi, 5/e, 2018, Pearson Education, New Delhi.
- 2. Principles of Management, "M. Govindarajan and S. Natarajan", Prentice Hall of India Pvt. Ltd.

REFERENCE BOOKS:

- 1. Management, "Stephen P. Robbins and Mary Coulter", Prentice Hall of India, 8/e,
- 2. Principles of Management, "Charles W.L Hill, Steven L McShane", 2007, McGraw Hill
- 3. Education, Special Indian Edition.
- 4. Management-A Competency Based Approach, "Hellriegel, Slocum and Jackson", Thomson South Western, 10/e, 2007.
- 5. Management A global and Entrepreneurial Perspective, "Harold Koontz, Heinz Weihrich and Mark V Cannice", Tata McGraw Hill, 12/e, 2007.
- 6. Essentials of Management, "Andrew J. Dubrin", Thomson South western. 7/e, 2007.

REFERENCE WEBSITE:

1. <u>https://nptel.ac.in/courses/110/105/110105146/</u>

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO.1	З										2	
CO.2	3										2	
CO.3	3										2	
CO.4	3										2	
CO.5	3										2	
CO *	3										2	

II B.Tech - III Semester

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE, CSD)

PRE-REQUISITES: Nil

20CSE232

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the knowledge of time complexity and space complexity.
- 2. To design searching and sorting algorithms using Divide and Conquer strategies.
- 3. To understand Dynamic programming approach in problem solving.
- 4. To gain knowledge of Greedy and back tracing design technique for problem solving.
- 5. To understand the branch and bound algorithms for solving the complex problems and classify decision problems.

UNIT 1: INTRODUCTION

Algorithm - Pseudo Code for Expressing Algorithms - Performance Analysis- Space Complexity -Time Complexity- Asymptotic Notation - Big Oh Notation - Omega Notation - Theta Notation and -Little Oh Notation. - Recurrences method, Recursion-tree method, Substitution Master method.

UNIT 2: DISJOINT SETS, DIVIDE AND CONQUER

Disjoint Sets: Disjoint Set Operations - Union and find Algorithms Divide and Conquer: General Method - Applications-Binary Search - Quick Sort - Merge Sort-Strassen's Matrix Multiplication.

UNIT 3: DYNAMIC PROGRAMMING

General Method -Applications-Matrix Chain Multiplication - Optimal Binary Search Trees - 0/1 Knapsack Problem - All Pairs Shortest Path Problem - Travelling Sales Person Problem - Reliability Design Problem.

UNIT 4: GREEDY METHOD AND BACKTRACKING

Greedy Method: General Method - Applications- Job Sequencing with Deadlines - KnapsackProblem - Minimum Cost Spanning Trees - Single Source Shortest Path Problem - Backtracking: General Method - Applications-N-Queens Problem - Sum of Subsets Problem - Graph Coloring - Hamiltonian Cycles.

UNIT 5: BRANCH AND BOUND, NP-HARD AND NP-COMPLETE PROBLEMS

Branch And Bound: General Method - Applications - Travelling Sales Person Problem - 0/1 Knapsack Problem- LC Branch and Bound Solution - FIFO Branch and Bound Solution. NP Hard and NP-Complete Problems: Basic Concepts - Non deterministic algorithms - NP - Hard and NP Complete Classes - Cook's Theorem.

Total Hours: 45

(9)

(9)

(9)

(9)

(9)

LTPC 3003

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
601	To gain knowledge of time complexity, space complexity and	PO1, PO2
CO1	recurrence methods.	
CO2	To design searching and sorting algorithms along with divide and conquer method and disjoint sets.	PO1, PO2, PO3, PO5
СО3	To apply Dynamic Programming design technique for problem solving.	PO1, PO3
CO4	To apply Greedy and back tracing design technique for problem solving	PO1, PO2, PO3, PO4
CO5	To understand the branch and bound algorithms for solving the complex problems	PO1, PO2

TEXT BOOKS:

- 1. Ellis Horowitz ,SatrajSahni and Rajasekharam, "Fundamentals of Computer Algorithms", Galgotia publications pvt.Ltd , 2/e , Universities press, 2008.
- 2. M.T.Goodrich and R.Tomassia , "Algorithm Design, Foundations, Analysis and Internet examples", Johnwiley and sons, 1/e, 2002.

REFERENCES:

- 1. Introduction to Algorithms, T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein, 2/e, Prentice Hall Inc. Pvt. Ltd./ Pearson Education, 2005.
- 2. R.C.T.Lee, S.S.Tseng, R.C.Chang and T.Tsai, "Introduction to Design and Analysis of Algorithms A strategic approach", 1/e, McGraw Hill, 2005.
- Allen Weiss, "Data structures and Algorithm Analysis in C++", 2/e, Pearson education, 2006.
- 4. Aho, Ullman and Hopcroft, "Design and Analysis of algorithms", 8/e, Pearson education , 2005.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://nptel.ac.in/courses/106/101/106101059/

СО- РО	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2	2	-	-	-	-	-	-	-	-
CO3	3	2	2	2	-	-	-	-	-	-	-	-
CO4	3	2	2	2	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-
CO *	2.8	2	2	2	-	-	-	-	-	-	-	-

COURSE EDUCATIONAL OBJECTIVES: 1. To study the syntax, semantics and features of Java Programming Language.

- 2. To understand the principles of inheritance and interfaces.
- 3. To develop Java application programs using exceptions and exploring packages.
- 4. To apply multithreading on problem solving and understand File handling.
- 5. To create GUI applications & perform event handling.

PRE-REQUISITES: A course on Advanced Data Structures

UNIT 1: BASICS OF JAVA

History of Java - Java Buzzwords - Overview of Java - Data Types - Variables - Arrays - Operators - Control Statements – Introducing Classes & Objects - Constructors - Methods – Access Control this Keyword - Garbage Collection - Overloading Methods and Constructors - Parameter Passing -Recursion – Reading input-Command Line Arguments – Buffer Reader – Scanner.

UNIT 2: STRING HANDLING, INHERITANCE AND INTERFACES

String Handling: Constructors, length(), Special String Operations, Character Extraction, String Comparison – equals(), equalsIgnoreCase(), startsWith(), endsWith(), Deep Vs Shallow comparisons, String Buffer – constructors, length(), capacity(), reverse() and replace() - Inheritance-Basics of Inheritance-Using super-Creating a multilevel hierarchy-Method overriding-Dynamic method dispatch - Using abstract classes -Using final - Interfaces- Differences between Classes and Interfaces - Defining an Interface – Implementing Interface - Applying Interfaces - Variables in Interfaces and Extending Interfaces.

UNIT 3: PACKAGES AND EXCEPTION HANDLING

Packages-Defining - Creating and Accessing a Package - Understanding CLASSPATH – Importing Packages - Exception Handling- Introduction – Exception Types – Uncaught Exception – Using Try and Catch – Multiple Catch clauses – Nested Try Statements – Throw – Throws – Finally – Built-in Exceptions – Creating Own Exception Subclass – Checked andUnchecked Exceptions.

UNIT 4: MULTITHREADING AND FILE HANDLING

Multithreading -Differences between Multithreading and Multiprocessing - Thread Life Cycle - Creating Threads - Synchronizing Threads-Inter Thread Communication – wait(), notify(), notifyall() - File Handling: Reading and writing files.

UNIT 5: EVENT HANDLING AND SWINGS

Event Handling and AWT - Delegation Event Model - Event Classes - Sources of Events - Event Listeners - Handling Mouse and Keyboard Events - Adapter Classes - Inner Classes - The AWT Class Hierarchy - Layout Managers - Swings - Limitations of AWT - Components - Containers -Exploring Swing - JApplet - JFrame and JComponent - JLabel and Imageicon -JTextfield - JButton - JCheck Box - JRadioButton - JCombobox - JTabbedpane - JScrollpane - JTable.

Total Hours: 45

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES - Chittoor AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

II B.Tech - III Semester

PROGRAMMING WITH JAVA L T P C (Common to CSE, CSM, CAI, CSD) 2 1 0 3

20CSE233

(9)

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Understand the basics of java programming	PO1, PO2, PO3, PO4, PO5
CO2	Develop Java programs with the concepts of inheritance and interfaces	PO1, PO2, PO3, PO4, PO5
СОЗ	Build Java applications using exceptions and packages	PO1, PO2, PO3, PO4, PO5
CO4	Applying multithreading concepts in problem solving and understand reading and writing of files	PO1, PO2, PO3, PO5
CO5	Develop the interactive Java programs using event handling and swings	PO1, PO2, PO3, PO5

TEXT BOOKS:

- 1. Herbert schildt, "Java; The complete reference", 7thedition, TMH.
- 2. Ivor Horton's, "Beginning Java2 JDK", 5th edition, WILEY Dream Tech.

REFERENCES:

- 1. J.Nino and F.A. Hosch, "An Introduction to programming and OO design using Java", Johnwiley& sons.
- 2. T. Budd, "An Introduction to OOP", 2ndedition, Pearson education.
- 3. Y. Daniel Liang, "Introduction to Java programming", 6th edition, Pearson education.
- 4. R.A. Johnson, "An introduction to Java programming and object oriented application development, Thomson.
- 5. Cay.S.Horstmann and Gary Cornell, "Core Java 2, Fundamentals", Vol 1, 7th Edition, Pearson Education.

REFERENCE WEBSITE:

1. https://nptel.ac.in/courses/106/105/106105191/

CO- PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO1	3	3	3	2	2	-	-	-	-	-	-	-
CO2	3	3	3	3	3	-	-	-	-	-	-	-
CO3	3	3	2	3	3	-	-	-	-	-	-	-
CO4	3	3	2	-	3	-	-	-	-	-	-	-
CO5	3	3	2	-	3	-	-	-	-	-	-	-
CO *	3	3	2.4	2.6	2.8	I	-	I	I	-	-	-

II B. Tech - III Semester

20CSD231 ADVANCED PYTHON PROGRAMMING FOR DATA SCIENCE L T P C

PRE-REQUISITES: A course on Python Programming.

COURSE EDUCATIONAL OBJECTIVES:

- 1. The main objective of the course is to provide students learn, understand, and practice data analytics using python, which include the study of modern computing big data technologies and scaling up machine learning techniques focusing on industry applications. Mainly the course objectives are conceptualization and summarization of data concepts of Python, its syntax, practice it. The main packages for data science: NumPy, Pandas, Matplotlib.
- **2.** To gather knowledge and should be able to write short scripts to import, prepare and analyse data.

UNIT-1: THE ROLE OF PYTHON IN DATA SCIENCE

Introduction- Creating the Data Science Pipeline, Understanding Python's Role in Data Science, Learning to Use Python Fast, Setting Up Python for Data Science, Reviewing Basic Python. **Tasks:**

- 1. Write a python program to demonstrate else if ladder.
- 2. Write a python program to add N natural numbers using while loop.
- 3. Write a python program to sum all the numbers in the given list using for loop.

UNIT 2: The NumPy Library

The Basics of NumPy Arrays-Computation on NumPy Arrays: Universal Functions-Aggregations: Min, Max, and Everything in Between- Creating an array- Mathematical operations- Squaring an array - Indexing and slicing - Shape manipulation.

Tasks:

- 1. Write a program to perform a basic arithmetic operation like addition, subtraction, N multiplication, division etc. on two arrays using NumPy.
- 2. i) Multiplication of two Matrices in Single line using NumPy in Python ii) Transpose a matrix in Single line using NumPy in Python
- 3. Write a program to perform a Aggregations operations on arrays using NumPy.
- 4. Write a NumPy program to test element-wise for N*N of a given array
- 5. Write a NumPy program to get the dates of yesterday, today and tomorrow

UNIT 3: The Pandas Library

Introduction to pandas Data Structures - Inserting and exporting data (CSV, XLS) - Handling Missing Data, Hierarchical Indexing-Combining Datasets: Concat and Append, Combining Datasets: Merge and Join-Aggregation and Grouping. **Tasks:**

- 1. Write a Pandas program to replace missing white spaces in a given string with the least frequent character.
- 2. Write a Pandas program to Sort a given DataFrame by two or more columns.
- 3. Import and export data from CSV and Excel files to find and replacing the missing values.

(9)

(9)

0 1 2 2

(9)

UNIT 4: Data Visualization

(9)

Starting with a Graph, Setting the Axis, Ticks, Grids, Defining the Line Appearance, Using Labels, Annotations, and Legends, Choosing the Right Graph, Creating Advanced Scatterplots, Plotting Timeseries, Plotting Geographical Data, Visualizing Graphs

Tasks:

- 1. Write a program to create basic plots that shows the relationship between the experience and salary of the people as two numeric features in a data set using matplotlib (Scatter, histogram, box plot...)
- 2. Write a program to create Multiple Subplots.

UNIT 5: Wrangling Data

(9)

Playing with Scikit-learn, Performing the Hashing Trick, Considering Timing and Performance, Running in Parallel, Counting for Categorical Data, Understanding Correlation, Modifying Data Distributions, Reducing Dimensionality, Clustering, Detecting Outliers in Data **Tasks:**

- 1. Write a Python program to get the number of observations, missing values and nan values.
- Write a Python program using Scikit-learn to split the iris dataset into 70% train data and 30% test data. Out of total 150 records, the training set will contain 120 records and the test set contains 30 of those records. Print both datasets.
- 3. Write a python program to detect the outliers in data.

TEXT BOOK(S):

1. Python for Data Science for Dummies, 2ed, Luca Massaron John Paul Mueller

REFERENCE BOOK:

- 1. Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython, WesMcKinney
- 2. Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Pearson; 2 edition (January 26, 2003), ISBN 978-0201648652
- 3. Big Data: Principles and best practices of scalable real-time data systems, 1st Edition, Nathan Marz, James Warren, ISBN 978-1617290343

CO-PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	1	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	1	-	3	3	3	-	3

II B.Tech - III Semester

20ESC238 DIGITAL LOGIC DESIGN AND MICROPROCESSORS LAB L T P C

(Common to CSE, CSM, CAI, CSD)

0 0 3 1.5

PRE-REQUISITES: A course on Design and Analysis of Algorithms

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide practical knowledge on functions of digital ICs.
- 2. To analyze Boolean functions and verify logic gates.
- 3. To develop skill to understand arithmetic operations, concepts of Multiplexers.
- 4. To understand the basics of 8086 and 8051 microcontroller
- 5. To understand the Assembly language programming of 8086 and 8051.

LIST OF EXPERIMENTS:

Note: Minimum of 12 (8+4) experiments shall be conducted from both the sections given below:

DIGITAL ICS (MINIMUM '8' EXPERIMENTS):

- 1. Verify truth table of all the basic gates using IC-74XX.
- 2. Construct and verify the Universal gates.
- 3. Implement a given Boolean function of POS form and verify its function using logic gates.
- 4. Implement a given Boolean function of SOP form and verify its function using logic gates.
- 5. Verify the Demorgan's theorem using logic gates.
- 6. Construct and prove the complement and dual of logic functions using basic gates.
- 7. Verify the functions of Half adder and Full adder using CMOS logic gates.
- 8. Verify the functions of Half Subtractor and Full Subtractor using CMOS logic gates.
- Construct and check the outputs using multiplexer IC-74XX151 and Demultiplexer IC-74XX155.
- 10. Construct and verify the functions of a D FLIP-FLOP using IC-74XX74, shift register.

MICROPROCESSORS (MINIMUM '4' EXPERIMENTS):

- 1. Addition of two 16 bit numbers using 8086 Processor
- 2. Rotate operations using 8086 processor
- 3. Shift operations using 8086 processor
- 4. Conversion of Packed BCD to Unpacked BCD using 8086 processor
- 5. BCD to ASCII conversion using 8086 processor
- 6. ASCII operations using 8086 processor.

EQUIPMENTS AND COMPONENTS REQUIRED:

- 74xx series of logic gate ICs
- Digital ICs: 74XX74, 74XX95, 74XX138, 74XX148, 74XX151, 74XX155, 74XX138, 74XX138
- 5 Volt DC Power supply
- Digital multimeter/LEDs
- 8086 Microprocessor kits.

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Comprehend the operations of digital logic gates	PO1
CO2	Analyze the functioning performance of digital ICs	PO2
СО3	Gain the practical knowledge to design the circuits using digital integrated chips and Microprocessor.	PO3
CO4	Conduct investigation for analyzing the digital integrated circuits and microprocessor performance in various applications	PO4
CO5	Follow ethical principles in analyzing and design the circuits	PO8
CO6	Do experiments effectively as an individual and as a member in a group.	PO9
C07	Communicate verbally and in written form, the understandings about the circuits.	PO10
CO8	Continue updating their skill and apply during their life time.	P012

REFERENCE BOOKS:

- 1. Morris Mano, "Digital Design", Prentice Hall of India, 3/e, 2006.
- 2. Thomas L.Floyd, "Digital Fundamentals", Pearson/Prentice Hall, 10/e, 2008.
- 3. A.K.Ray and K.M.Bhurchandi, "Advanced microprocessor and Peripherals", Tata Mc-Graw Hill, 2/e, 2000.
- 4. Kenneth.J.Ayala, The 8051 microcontroller, 3rd edition, Cengage Learning, 2010

СО-РО	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	3	-	-	-	-
CO6	-	-	-	-	-	-	-	-	3	-	-	-
C07	-	-	-	-	-	-	-	-	-	3	-	-
CO8	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

II B.Tech - III Semester

20CSE235	DESIGN AND ANALYSIS OF ALGORITHMS LAB	LTPC

(Common to CSE, CSD)

0 0 3 1.5

PRE-REOUISITES: A course on Design and Analysis of Algorithms

COURSE EDUCATIONAL OBJECTIVES:

- 1. To analyze the performance of Merge sort and guick sort algorithms using divide and conquer technique.
- 2. To develop algorithms to solve knapsack problem using greedy and dynamic programming methods.
- 3. To devise solutions for finding minimum cost spanning tree by using kruskal's and prim's algorithms.
- 4. To solve different shortest path problems by applying Dijkstra's algorithms.
- 5. To Implement algorithms to solve real world problems using Dynamic Programming and backtracking methods.

List of Experiments:

- 1. Sort a given set of elements using the quick sort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the 1st to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 2. Implement merge sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
- 3. Write a program to implement knapsack problem using greedy method.
- 4. Write a program to find minimum cost spanning tree using Kruskal's Algorithm.
- 5. Write a program to find minimum cost spanning tree using Prim's Algorithm.
- 6. Write a program to find shortest paths to other vertices using Dijkstra's algorithm from a given vertex in a weighted connected graph.
- 7. Write a program to implement 0/1 Knapsack problem using Dynamic Programming method.
- 8. Write a program to implement Travelling Sales Person problem using Dynamic programming method.
- 9. Write a program to implement backtracking algorithm for the N-queens problem.
- 10. Write a program to find a subset of a given set $S = \{SI, S2, \dots, Sn\}$ of n positive integers whose SUM is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d =9, there are two solutions $\{1,2,6\}$ and $\{1,8\}$. Display a suitable message, if the given problem instance doesn't have a solution.
- 11. Implement any scheme to find the optimal solution for the Traveling Sales Person problem and then solve the same problem instance using any approximation algorithm and determine the error in the approximation.
- 12. Write a program to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using backtracking principle.
- 13. Implement N Queen's problem using Backtracking.

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Acquire the Knowledge on structure and model of the sorting techniques.	PO1
CO2	Analyze the Time and space complexity.	PO2
СО3	Design solutions for user requirements using software functionality.	PO3

CO4	Investigate on different dynamic programming in developing TSP	PO4
CO5	Develop the the N-queens problem using backtracking algorithm	PO5, PO6
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
C08	Communicate verbally and in written form, the understanding about the experiments.	PO10
CO9	Continue updating their skill related to object oriented concepts and implementing programs in future.	PO12

REFERENCE BOOKS:

- 1. Levitin A, "Introduction to the Design And Analysis of Algorithms", Pearson Education, 2008.
- 2. Goodrich M.T., R Tomassia, "Algorithm Design foundations Analysis and Internet Examples", John Wileyn and Sons, 2006.
- 3. Base Sara, Allen Van Gelder ," Computer Algorithms Introduction to Design and Analysis", Pearson, 3 rd Edition, 1999.

REFERENCE WEBSITE:

- 1. http://www.facweb.iitkgp.ernet.in/~sourav/daa.html
- 2. http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html
- 3. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms

СО-РО	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	1	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	1	-	3	3	3	-	3

II B.Tech - III Semester

PROGRAMMING WITH JAVA LAB

(Common to CSE, CSM, CAI, CSD)

L T P C 0 0 3 1.5

PRE-REQUISITES: A course on Advanced Data Structures using c++

COURSE EDUCATIONAL OBJECTIVES:

- 1. To gain knowledge on object oriented programming concepts.
- 2. To develop the Java programs by using the concepts of inheritance and packages.
- 3. To design the variety of technologies and on different platforms.
- 4. To understand the concepts of event handling in Java platform.
- 5. To design the application using object oriented programming concepts.

List of Experiments:

- 1. Write a Java program
 - a. To demonstrate the use of different data types in java
 - b. To demonstrate the use of different types operators in java
 - c. To demonstrate the scope and life time of variables.
- 2. Write a Java program
 - a. To demonstrate the use of classes, objects and methods
 - b. To demonstrate the use of constructors
- 3. Write a Java program
 - a. To demonstrate the concept of method overloading
 - b. To demonstrate the concept of constructor overloading (use this keyword)
- 4. Write a Java programs to read and write different types of data using
 - a. Command line arguments
 - b. Scanner class
- 5. a. Write a Java Program that Uses both Recursive and Non Recursive Functions to Print the Nth Fibonacci number.

a. Write a Java Program that Prompts the User for an Integer and then Prints out all Prime Numbers up to that Integer.

- 6. a. Write a Java Program that Checks whether a Given String is a Palindrome or Not. Ex: MADAM is a Palindrome
 - b. Write a Java Program for Sorting a Given List of Names in Ascending Order.
- 7. a. Write a Java Program for Multilevel Inheritance.
- b. Write java program to create a super class called Figure that receives the dimensions of two dimensional objects. It also defines a method called area that computes the area of an object. The program derives two subclasses from Figure. The first is Rectangle and second is Triangle. Each of the sub class overridden area() so that it returns the area of a rectangle anda triangle respectively.
- 8. a. Write a Java Program to create an abstract class Named Shape that contains an Empty Method namednumberOfSides().Provide three classes Named Trapezoid, Triangle andHexagon such that each one of the classes extends the class Shape. Each one of the classes Contains only the Method numberOfSides () that Shows the Number of Sides in the Given Geometrical Figures.

b. Write a Java Program Which includes class, abstract class and interface.

c. Write a Java Program for Creation of User Defined Package and Accessing the Members Present in Package.

9. a. Write a Java Program for Checked and Unchecked Exceptions.

b. Write a program that reads two numbers from the user to perform integer division into Num1 and Num2 variables. The division of Num1 and Num2 is displayed if they are integers. If Num1 or Num2 were not an integer, the program would throw a NumberFormatException.If Num2 were Zero, the program would throw an ArithmeticException.

c. Use inheritance to create an exception super class called ExceptionA and exception sub class ExceptionB and ExceptionC, where ExceptionB inherits from ExceptionA andExceptionCinherits from ExceptionB. Write a java program to demonstrate that the catch block for type ExceptionA catches exception of type ExceptionB and ExceptionC.

10. a. Write a Java Program that creates three threads. First Thread displays "Good Morning" every one second, the Second Thread displays "Hello" every two seconds and the third threaddisplays "Welcome" every three seconds.

b. Write a Java Program that Correctly Implements Producer Consumer Problem using the Concept of Inter Thread Communication.

- 11. a. Write a java program that prints the contents of a given file. (use command line) b. Write a java program that copy one file in to another file. (use command line)
- 12. Develop an Applet that Receives an Integer in one Text Field, and Computes its Factorial Value and Returns it in Another Text Field, When The Button Named "Compute" is Clicked.
- 13. Write a java program that handles all mouse and key events and shows the event name at the center of the window when mouse event is fired (Use Adapter classes).
- 14. Write a Java Program that works as a Simple Calculator. Use a Grid Layout to Arrange Buttons for the Digits and for the +, -,*, % Operations. Add a Text Field to Display the Result.(Use SWINGS)

On su	ccessful completion of the course the student will be	POs related to COs
C01	Acquire the Knowledge on structure and model of the Java programming language.	PO1
CO2	Analyze the complex examples using java programming language.	PO2
СО3	Design solutions for user requirements using software functionality.	PO3
CO4	Investigate on event handling concepts in developing the object oriented programming	PO4
CO5	Develop the data base connectivity to the Java application	PO5
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO10
CO9	Continue updating their skill related to object oriented concepts and implementing programs in future.	PO12

COURSE OUTCOMES:

REFERENCE BOOKS:

- 1. H.M.Dietel and P.J.Dietel, "Java How to Program", 6th edition, Pearson Education/PHI
- 2. Y.Daniel Liang, "Introduction to Java programming" 6thedition, Pearson Education
- 3. Cay Horstmann, "Big Java", 2ndedition, Wiley Student Edition, Wiley India Private Limited.

REFERENCE WEBSITE:

1. https://nptel.ac.in/courses/106/105/106105191/

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	_	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

II B.Tech - IV Semester

20BSC231 NUMERICAL METHODS AND PROBABILITY THEORY L T P C

(Common to CSE, CSM, CAI, CSD)

3104

PRE-REQUISITES: A Course on Algebra & Calculus, Differential equations & Transform Techniques

COURSE EDUCATIONAL OBJECTIVES:

- 1. To develop skill to analyze appropriate method to find the root of the Algebraic and Transcendental Equations and to develop skill to apply the concept of interpolation for the Prediction of required values
- 2. To learn the method of evaluation of numerical integration and to solve ordinary differential equations numerically using numerical methods
- 3. To develop skill to analyze the discrete and continuous data
- 4. To develop skill to analyze the discrete and continuous data using appropriate Statistical Distributions like Binomial, Poisson, Normal etc., and To inculcate skill to investigate different applications of statistical distributions and the corresponding conclusions required for the analysis of sample data.
- 5. To develop skill in testing of hypotheses and Tests of significance for small and large samples

UNIT 1: SOLUTION OF ALGEBRAIC, TRANSCENDENTAL EQUATIONS & INTERPOLATION

(9) Solution of Algebraic and Transcendental Equations: Introduction - The Bisection method - The method of False position - The Iteration method - Newton-Raphson method (Single Variable). Interpolation: Introduction - Finite differences - Forward differences, Backward differences -Newton's forward, Newton's backward - Lagrange's method of interpolation.

UNIT 2: NUMERICALINTEGRATION AND NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS (9)

Numerical integration: Trapezoidal rule - Simpson's 1/3 Rule - Simpson's 3/8 Rule. Numerical solution of Ordinary Differential equations: Solution by Taylor's series - Picard's method of successive approximations - Euler's method - Runge-Kutta methods.

UNIT 3: PROBABILITY, RANDOM VARIABLES

Probability: Sample space and events - Probability - The axioms of probability - Some elementary theorems - Conditional probability - Baye's theorem.

Random variables: Discrete and continuous distributions – Statistical Parameters (Mean, Variance and Standard Deviation) of distribution functions.

UNIT 4: PROBABILITY DISTRIBUTIONS & SAMPLING THEORY

Binomial - Poisson and Normal distributions - Related properties.

Sampling distribution: Populations and samples - Sampling distributions of mean (σ : known and unknown) - Proportions - Sums and differences.

UNIT 5: TEST OF HYPOTHESIS AND TEST OF SIGNIFICANCE

Test of Hypothesis: Means - Hypothesis concerning one and two means - Type I and Type II errors - One tail, two-tail tests.

Test of Significance: Student's t-test - F-test - Chi-square test of goodness of fit.

Total Hours: 45

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
C01	Demonstrate knowledge in solving algebraic and transcendental equations by various mathematical methods and Design novel mathematical methods for constructing the interpolating polynomials to the given data	P01,P02
CO2	Demonstrate knowledge infinding the numerical values to integrals through different mathematical methods and solving ordinary differential equations numerically through various methods and Design novel mathematical methods for solving the ordinary differential equations.	PO1,PO2
СО3	Demonstrate knowledge on use the probability and Random Variables in the field of engineering	PO1,PO2,PO3
CO4	Demonstrate knowledge in probability distributions and develop analytical skills for the problems involving means, probability distributions and standard deviations sampling techniques for decision making in uncertain environments	PO1,PO2,PO3
CO5	Demonstrate knowledge in testing of hypotheses and Tests of significance for small and large samples and Develop skills for analyzing the data with suitable tests of significance for practical situations through probability distributions	P01,P02,P03,P04

TEXT BOOKS:

- 1. S.C. Gupta, V.K. Kapoor, "Fundamentals of Mathematical Statistics", 10/e, 2001, S. Chand and Company Publishers, New Delhi.
- 2. T.K.V. Iyengar, B. Krishna Gandhi, S. Ranganatham and M.V.S.S.N. Prasad , "Probability and Statistics", 2012, S. Chand and Company Publishers, New Delhi.

REFERENCES:

- 1. V. Ravindranath, T.S.R. Murthy,"Probability and Statistics, 2011, I.K. International Pvt. Ltd, New Delhi.
- 2. Johnson A. Richard, Miler & Fruends, "Probability and Statistics for Engineers", 6/e, 2006, Pearson Education, New Delhi.
- 3. Dr. B. S. Grewal, "Higher Engineering Mathematics", 34/e, 1999, Khanna Publishers, Delhi
- 4. Dr. J. Ravichandran, "Probability and Statistics for Engineers", 2011, Wiley-India Publishers, New Delhi.
- 5. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, "Probability and Statistics for Engineers and Scientists", 7/e, 2002, Pearson Education Asia, New Delhi.

REFERENCE WEBSITE:

- 1. https://www.youtube.com/watch?v=hizXlwJO1Ck
- 2. https://www.youtube.com/watch?v=5817fLmsTGE
- 3. https://www.youtube.com/watch?v=yv6i9plC9nk
- 4. https://www.youtube.com/watch?v=r1sLCDA-kNY&list=PL46B9EA2CFEB51241
- 5. https://www.youtube.com/watch?v=r1sLCDAkNY&list=PL46B9EA2CFEB51241&index=1
- 6. ttps://www.youtube.com/watch?v=HnvB8BCDQm0&list=PL46B9EA2CFEB51241&index=2

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO *	3	3	2	2	-	-	-	-	-	-	-	-

(Accredited by NBA)

II B. Tech - IV Semester

20CSE231 COMPUTER ORGANIZATION AND ARCHITECTURE L T P C

(Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS))

PRE-REQUISITES: Digital Logic Design and Microprocessor

COURSE EDUCATIONAL OBJECTIVES:

- 1. To conceptualize the basics of organizational and architectural issues of a digital computer.
- 2. To articulate design issues in the development of processor or other components that satisfy design requirements and objectives.
- 3. To study various data transfer techniques in digital computer and the design of control unit.
- 4. To learn the function of each element of a memory hierarchy and I/O devices.
- 5. To develop skill to apply the concept of Pipelining in designing multiprocessor system.

UNIT 1: BASIC STRUCTURE OF COMPUTERS

Computer Types - Functional Units - Basic Operational Concepts - Bus Structures - Software - Performance - Multiprocessors and Multi Computers - Data Representation- Fixed Point Representation - Floating Point Representation - Error Detection Codes.

UNIT 2: CPU DESIGN AND COMPUTER ARITHMETIC

CPU Design: Instruction Cycle - Memory Reference Instructions-Input/output and Interrupt - Addressing Modes - DATA Transfer and Manipulation - Program Control Computer Arithmetic: Addition and Subtraction - Multiplication Algorithms - Division Algorithms - Floating Point Arithmetic Operations - Decimal Arithmetic Unit.

UNIT 3: REGISTER TRANSFER AND DESIGN OF CONTROLUNIT

Register Transfer: Register Transfer Language - Register Transfer - Bus and Memory Transfers - Arithmetic Micro operations - Logic Micro Operations - Shift Micro Operations - Control Unit: Control Memory - Address Sequencing–Micro program Example - Design of Control Unit.

UNIT 4: MEMORY AND INPUT/OUTPUT ORGANIZATION

Memory Organization: Memory Hierarchy-Main Memory-Auxiliary Memory-Associative Memory -Cache Memory - Virtual Memory - Input/output Organization: Input-Output Interface -Asynchronous data transfer - Modes of Transfer - Priority Interrupt - Direct memory Access.

UNIT 5: PIPELINE AND MULTIPROCESSOR

Pipeline: Parallel Processing–Pipelining - Arithmetic Pipeline - Instruction Pipeline - Multiprocessor: Characteristics of Multiprocessors - Interconnection Structures–Inter processor Arbitration - Inter Processor Communication and Synchronization.

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Demonstrate the knowledge on fundamentals of organizational and architectural issues of a digital computer	PO1, PO2
CO2	Identify design issues in the development of processor or other components	PO1, PO2, PO3, PO4
СОЗ	Demonstrate control unit operations and conceptualize various data transfer operation among registers.	PO1, PO3
CO4	Categorize memory organization and explain the function of each element of a memory hierarchy and compare different methods for computer I/O mechanisms.	PO1, PO3, PO5
CO5	Understand and use the concept of Pipelining in various multiprocessor applications.	PO1, PO4, PO5

Total Hours: 45

3003

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization", 5th Edition, McGraw Hill Education, 2013.
- 2. M.Moris Mano, "Computer Systems Architecture" 3/e, PEA, 2007.

REFERENCES:

- 1. John D. Carpinelli, "Computer Systems Organization and Architecture", PEA, 2009
- 2. William Stallings, "Computer Organization and Architecture", 6/e, Pearson/PHI.
- 3. Andrew S. Tanenbaum, "Structured Computer Organization", 4/e, PHI/Pearson.
- 4. Sivaraama Dandamudi, "Fundamentals or Computer Organization and Design", Springer Int. Edition.
- 5. John L. Hennessy and David A. Patterson, "Computer Architecture a quantitative approach", 4th Edition, Elsevier.
- 6. Joseph D. Dumas II, "Computer Architecture: Fundamentals and principles of Computer Design", BS Publication.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/103/106103180/
- 2. https://nptel.ac.in/courses/106/105/106105163/
- 3. https://nptel.ac.in/courses/106/106/106106166/

CO- PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3	3	3	-	-	-	-	-	-	-	-
CO3	3	-	2	-	-	-	-	-	-	-	-	-
CO4	3	-	3	-	3	-	-	-	-	-	-	-
CO5	2	-	-	2	2	-	-	-	-	-	-	-
со*	2.6	2.5	2.6	2.5	2.5	-	-	-	-	-	-	-

(Accredited by NBA)

II B.Tech - IV Semester

DATABASE MANAGEMENT SYSTEMS LTPC

(Common to CSE, CSM, CAI, CSD)

PRE-REQUISITES: Nil

20CSE241

COURSE EDUCATIONAL OBJECTIVES:

- 6. Discuss the basic database concepts, applications, data models, schemas and instances and design Entity Relationship (E-R) model for a database.
- 7. Demonstrate the use of integrity constraints, relational algebra operations and relational calculus.
- 8. Describe the basics of SOL, construct gueries using SOL, SOL functions, trigger and cursor concepts in PL/SQL.
- 9. Understand reasoning about functional dependency and to make the students to identify the role of normalization in database management systems.
- 10. To present the students with the knowledge of Transaction, concurrency and recovery strategies of DBMS

UNIT 1: DATABASE SYSTEMS AND ENTITY RELATIONSHIP MODELING

Database System Applications - Purpose of Database Systems - View of Data - DatabaseLanguages - Database Users and Administrators - Various Components of overall Database System Structure-Data Models-The Entity-Relationship Model - Attributes and Entity Sets - Relationship Sets - Entity-Relationship Diagrams.

UNIT 2: RELATIONAL DATA MODEL

Introduction to the Relational Model - Integrity Constraints -Relational algebra, selection and projection, set operations, renaming, joins, division, examples of algebra queries- Tuple Relational Calculus - Domain Relational Calculus-Expressive power of algebra and calculus.

UNIT 3: INTRODUCTIONS TO SQL

Structured Query Language (SQL): Introduction to SQL, Data types, Data Definition language commands, Data Manipulation language Commands and Data control Language Commands, Candidate Key, Primary key, Foreign key, Select Clause, Where Clause, Logical Connectivity's -AND, OR, Range Search, Pattern Matching, Order By, Group By, Set Operations - Union, Intersect and Minus, Aggregate Functions, Join Operations. PL/SQL: Control Structures, functions, Triggers and Cursors.

UNIT 4: NORMALIZATION

Introduction to Schema Refinement - Properties of Decompositions - Functional Dependencies -Attribute closure - Normal Forms - First - Second - Third - BCNF - Basic definitions of MVDs and JDs, Fourth and Fifth normal forms.

UNIT 5: TRANSACTION PROCESSING CONCEPTS AND CONCURRENCY CONTROL **TECHNIQUES** (9)

Transaction Concept - Transaction States - Implementation of Atomicity and Durability Serializability - Recoverability - Concurrent Executions - Lock-Based Protocols for Concurrency Control - Time Stamp-Based Protocol for Concurrency Control - Multiple Granularity Recovery System: Recovery and Atomicity - Log based Recovery - Recovery with Concurrent Transactions.

Total Hours: 45

(9)

(9)

3003

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Demonstrate knowledge on Data models and Database Languages and Design Entity Relationship model for a database	PO1, PO3
CO2	Analyze the relational database theory, and be able to write relational algebra and relational calculus expressions for queries.	PO1, PO2
СОЗ	Analyze and evaluate the databases using SQL DML/DDL Commands	PO1, PO2, PO3, PO5
CO4	Analyze databases using normal forms to provide solutions for real time applications.	PO1, PO2
CO5	Understand the properties of transactions in a database system, Analyze concurrency control techniques for handling concurrent transactions and understand recovery of data from failures	PO1, PO3,PO4

TEXT BOOKS:

- 1. Henry F. Korth, Silberchatz, Sudarshan, "Database System Concepts", 7/e, 2019, Tata McGraw-Hill, New York.
- 2. Raghu Rama Krishnan, "Database Management System", 2/e, 2000, Tata McGraw Hill, New York.

REFERENCES:

- 1. Elmasri and Navathe, "Fundamentals of Database Systems", 5/e, 2008, Pearson Education, USA.
- 2. Peter Rob, A. Ananda Rao and Carlos Coronel, "Database Management Systems", 5/e, 2003, Cengage Learning, USA.
- 3. Ivan Bayross, "SQL, PL/SQL Programming", 2/e, 2011, BPB Publications, New Delhi, India.
- 4. C.J. Date, "Introduction to Database Systems", 8/e, 2004, Pearson Education, USA.
- 5. M.L. Gillenson, "Fundamentals of Database Management Systems", 1/e, 2006, Wiley, New Delhi, India.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/106/106106220/
- 2. https://nptel.ac.in/courses/106/105/106105175/

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	-	3	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	3	-	3	-	-	-	-	-	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-
CO5	3	-	2	3	-	-	-	-	-	-	-	-
CO *	3	3	2.6	3	3	-	-	-	-	-	-	-

(Accredited by NBA)

II B.Tech - IV Semester

OPERATING SYSTEMS

(Common to CSE, CSM, CAI, CSD)

20CSE242

PRE-REOUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand main components of OS, System structures and the operations performed by OS as a resource manager.
- 2. To Study process concurrency and synchronization.
- 3. To analyze the different memory management techniques.
- 4. To gain knowledge about concepts of input/ output systems and storage management.
- 5. To manage different file systems, protection and security to the systems

UNIT 1: OPERATING SYSTEMS OVERVIEW

Introduction - What Operating system do - Operating system operations - Process management -Memory management - Storage management - Protection and Security - Distributed Systems -Special purpose systems - System structures: Operating system services - user operating system interface - System calls - Types of system calls - Operating system design and implementation -Operating system structure - Operating system generation - System boot.

UNIT 2: PROCESS MANAGEMENT AND CONCURRENCY

Process Management: Process concepts - threads - scheduling-criteria - algorithms and their evaluation - Thread scheduling - Concurrency: Process synchronization - the critical- section problem - Peterson's Solution - synchronization Hardware - semaphores - classic problems of synchronization - monitors.

UNIT 3: PRINCIPLES OF DEADLOCK AND MASS-STORAGE STRUCTURE & I/O SYSTEMS

(9) Principles of deadlock - system model - deadlock characterization - deadlock prevention -detection and avoidance - recovery form deadlock. Mass-storage structure - overview of Mass - storage structure - Disk structure - disk attachment - disk scheduling - swap-space management - RAID structure - stable-storage implementation - Tertiary storage structure.

UNIT 4: MEMORY MANAGEMENT

Memory Management and Virtual Memory :Logical & physical Address Space - Swapping -Contiguous Allocation - Paging - Structure of Page Table - Segmentation - Virtual Memory -Demand Paging - Performance of Demanding Paging - Page Replacement - Page Replacement Algorithms - Allocation of Frames - Thrashing.

UNIT 5: FILE SYSTEM INTERFACE

(10) File system Interface- the concept of a file - Access Methods - Directory structure - File system mounting - file sharing - protection - File System implementation - File system structure - file system implementation - directory implementation - allocation methods - free-space management - efficiency and performance - Protection and Security - Goals of protection - Principles of protection - Access matrix - The security problem - program threats - System and network threats, Language-Based Protection, Capability-Based Systems, The Security Problem, User Authentication, Program Threats, System Threats, Securing Systems and Facilities, Intrusion Detection, Cryptography, Computer-Security Classifications.

Total Hours: 45

(9)

(8)

(9)

LTPC 3003

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to Cos
CO1	Analyze operating system operations, system design and implementation.	PO1, PO2, PO5
CO2	Implement Thread scheduling, solutions to synchronize problems.	PO1, PO4, PO5
CO3	Apply memory management techniques, virtual memory concepts.	PO1,PO3,PO4, PO5
CO4	Manage process execution without deadlock, mass storage structure.	PO1,PO4, PO5
CO5	Understand file system interface, protection and security in System and Network.	PO1, PO2, PO4, PO5

TEXT BOOKS:

- 1. Abraham Silberchatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", 9thEdition, Wiley Student Edition, April 2013.
- 2. W. Stallings, "Operating systems Internals and Design Principles", 6th edition,Pearson,2009.

REFERENCES:

- 1. Andrew S Tanenbaum, "Modern Operating Systems", 3rdedition, PHI,2015.
- 2. D. M. Dhamdhere, "Operating Systems A concept based Approach", 2nd edition, TMH,2017.
- 3. B. L. Stuart, "Principles of Operating Systems", Cengage learning, India Edition, 2008.
- 4. A. S. Godbole, "Operating Systems", 2nd edition, TMH,2020.
- 5. S, Haldar and A. A. Arvind, "Operating Systems", Pearson Education, 2014.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/102/106102132/
- 2. https://nptel.ac.in/courses/106/108/106108101/

CO- PO	PO1	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	2	-	-	3	3	-	-	-	-	-	-	-
CO3	3	-	3	3	3	-	-	-	-	-	-	-
CO4	3	-	-	3	3	-	-	-	-	-	-	-
CO5	2	3	-	3	3	-	-	-	-	-	-	-
CO *	2.6	3	3	3	2.8	-	-	-	-	-	-	-

II B.Tech - IV Semester

20CSE243	SOFTWARE ENGINEERING AND DESIGN	LTPC

3003

PRE-REQUISITES: A course on Advanced Data Structures

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge of basic software engineering methods, practices and their appropriate application.
- 2. To understand software requirements and the SRS documents.
- 3. To design components based on different software architectural styles and to Study the notations of Unified Modeling Language to identify, analyze, and model structural and behavioral concepts of the system.
- 4. To understanding of approaches to verification and validation including static analysis, and Reviews.
- 5. To describe software measurement and software risks.

UNIT 1: INTRODUCTION TO SOFTWARE ENGINEERING AND PROCESS MODELS (9)

Introduction to Software Engineering: The evolving role of software, changing nature of software, Software myths - **A Generic view of process:** Software engineering- a layered technology, a process framework, the Capability maturity model integration (CMMI), process patterns, process assessment, personal and Team process models - **Process models:** The waterfall model, incremental process models, evolutionary process models, the Unified process.

UNIT 2: SOFTWARE REQUIREMENTS

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document - **Requirements engineering process:** Feasibility studies, requirements elicitation and analysis, Requirements validation, requirements management - **System models:** Context models, behavioral models, data models, object models, structured methods.

UNIT 3: DESIGN ENGINEERING

Design Engineering: Design process and design quality, design concepts, the design model - **Creating an architectural design:** software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT 4: TESTING STRATEGIES

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging - **Product metrics:** Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT 5: METRICS FOR PROCESS AND PRODUCTS

Metrics for Process and Products: Software measurement, metrics for software quality - **Risk management:** Reactive Vs proactive risk strategies, software risks, risk identification, risk Projection, risk refinement, RMMM, RMMM plan - **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

Total Hours: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Identify the key activities in managing a software project and can compare different process models.	PO1, PO2
CO2	Identify software requirements and design SRS document by analyzing the data flows.	PO1, PO3, PO4
СО3	Design class based components and conduct component level design based on architectural styles and patterns. Represent classes, responsibilities and states using UML notation and model structural concepts of the system. Model behavioral concepts of the system and analyze and document the requirements through use case driven approach	PO1,PO2, PO3,PO4,PO5
CO4	Identify various types of testing and development metrics for various phases of software development.	PO1, PO2, PO4
CO5	Identify the software risks and analyze the quality assurance activities	PO1, PO4

TEXT BOOKS:

- 1. Roger S Pressman, "Software Engineering, A practitioner's Approach", 8th edition, Tata McGraw Hill International Edition, 2019.
- 2. Somerville, "Software Engineering", 7th edition, Pearson Education, 2004.
- 3. Grady Booch, James Rambaugh, Ivar Jacobson, "The unified modeling language user guide", Pearson Education, New Delhi.

REFERENCES:

- 1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.
- 2. Richard Fairley, "Software Engineering Concepts", Tata McGraw Hill.
- 3. JalotePankaj, "An integrated approach to Software Engineering", Narosa
- 4. Waman S Jawadekar, "Software Engineering: A Primer", First edition, Tata McGraw Hill, 2008.
- 5. Grady Booch, "Object- Oriented Analysis and Design with Applications", 2nd edition, Pearson Education, New Delhi, India, 2007.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/105/106105182/
- 2. http://peterindia.net/SoftwareDevelopment.html

CO- PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	-	3	3	-	-	-	-	-	-	-	-
CO3	2	2	3	2	3	-	-	-	-	-	-	-
CO4	2	2	-	3	-	-	-	-	-	-	-	-
CO5	3	-	-	2	-	-	-	-	-	-	-	-
CO *	2.4	2	3	2.5	3	-	-	-	-	-	-	-

II B.Tech - IV Semester

20CSE244 DATA ANALYTICS USING R L T P C

(Common to CSE, CSM, CAI, CSD)

PRE-REQUISITES: A course on Programming with Python

COURSE EDUCATIONAL OBJECTIVES:

- 1. How to manipulate data within R
- 2. To create simple graphs and charts used in introductory statistics
- 3. The given data using different distribution functions in R.
- 4. The hypothesis testing and calculate confidence intervals; perform linear regression models for data analysis.
- 5. The relevance and importance of the theory in solving practical problems in the real world.

UNIT 1: INTRODUCTION

Introducing to R-Environment Setup-Data Types-Variables-Operators-Decision Making-Loops-Functions-Strings-Vectors-Lists.

<u>Tasks:</u>

- 1. Study of basic Syntaxes in R.
- 2. Implementation of vector data objects operations.
- 3. Study and implementation of Helse control structures in R.
- 4. Study and implementation of loop control structures.

UNIT 2: DATA INTERFACES

Matrices-Arrays-Factors-Data Frames-Packages - Import and Export data with :CSV Files-ExcelFiles-XML Files-JSON Files-Web Data-Database

Tasks:

- 1. Implementation of matrix, array and factors and perform via in R.
- 2. Implementation and use of data frames in R.
- 3. Data Manipulation with data table package.
- 4. Import and export data from csv files.
- 5. Import and export data from excel files.

UNIT 3: STATISTICS

Mean, Median & Mode-Linear Regression-Multiple Regression-Logistic Regression-Normal Distribution-Binomial Distribution-Poisson Regression-Analysis of Covariance-Time Series Analysis- Nonlinear Least Square

Tasks:

1. Demonstrate the different types of regressions.

UNIT 4: DATA VISUALIZATION

R Charts & Graphs-Pie Charts-Bar Charts-Boxplots-Histograms-Line Graphs- Scatterplots Tasks:

- 1. Demonstrate the range, summary, mean, variance, median, standard deviation, histogram, box plot, scatter plot using population dataset.
- 2. Study and implementation of Data Visualization with ggplot2.

UNIT 5: CLASSIFICATION

Decision Tree-Random Forest-Survival Analysis-Chi Square Tests Tasks:

- 1. Implementation of classification with decision tree in R.
- 2. Demonstration on a Statistical Model for Linear Relationship
 - a. Least Squares Estimates
 - b. The R Function Im
 - c. Scrutinizing the Residuals

(6)

(6)

(6)

1022

(6)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Install and use R for simple programming tasks.	PO1, PO2
CO2	Extend the functionality of R by using add-on packages	PO1, PO3
CO3	Extract data from files and other sources and perform various data manipulation tasks on them	PO1, PO4
CO4	Explore statistical functions and Tables to visualize results of various statistical operations on data in R	PO1, PO4
CO5	Apply the knowledge of R gained to data Analytics for real-life applications	PO1, PO2, PO4
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO10
CO9	Continue updating their skill related to data analysis concepts and implementing programs in future.	PO12

TEXT BOOKS:

- 1. The Art of R Programming: A Tour of Statistical Software Design, Norman Matloff, No Starch Press, 2011
- 2. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley Data & Analytics Series, 2013.

REFERENCES:

- 1. SandipRakshit, "Statistics with R Programming", McGraw Hill Education, 2018.
- 2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "An Introduction to Statistical Learning: with Applications in R", Springer Texts in Statistics, 2017.
- 3. Joseph Schmuller, "Statistical Analysis with R for Dummies", Wiley, 2017.
- 4. K G Srinivasa, G M Siddesh, ChetanShetty, Sowmya B J, "Statistical Programming in R", Oxford Higher Education, 2017.

REFERENCE WEBSITE:

- 1. www.oikostat.ch
- 2. https://learningstatisticswithr.com/
- 3. https://www.coursera.org/learn/probability-intro#syllabus
- 4. https://www.isibang.ac.in/~athreya/psweur/

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	1	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	1	-	3	3	3	-	3

(Accredited by NBA)

II B.Tech - IV Semester

20CSE245 DATABASE MANAGEMENT SYSTEMS LAB L T P C

(Common to CSE, CSM, CAI, CSD)

0 0 3 1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. Demonstrate practical knowledge on creation and alteration of tables, insertion and
- Querying of data and Analyze and evaluate the databases using SQL DML/DDL commands.
- 2. Write SQL Queries to implement a Database Schema for the given Database.
- 3. Design Simple Database using a Tool and Implement it using SQL.
- 4. Implement DDL and DML commands in SQL and PL/SQL, ORACLE to manage data in databases.
- 5. Programming PL/SQL including procedures, functions, cursors and triggers.

The Following Topics need to be covered in the Laboratory Sessions:

SQL

Introduction to SQL:

DDL - DML Commands- Basic Data Types- Commands to Create Table- Constraint Definition Commands for Table Handling- Alter Table – Drop Table- Insert - Update – Delete Commands for Record Handling- Select with Operators like Arithmetic - Comparison - Logical Query Expression Operators - Ordering the Records with Order by- Grouping the Records.

SQL Functions:

Date - Numeric - Character - Conversion Functions - Group Functions: avg - max - min - sum - count

Set Operations: Union – Union all - Intersect - Minus

Join concept: Simple - Equi - Nonequi Join - Self - Outer join

Query&Sub queries- View Introduction - Create - Update - and Drop Commands

PL/SQL

Advantages of PL/SQL- Support of SQL - Executing PL/SQL- PL/SQL Character Set & Data Types-Character - Row - rowid - Boolean - Binary integer - Number Variable - Constant **Control structures:** Condition-if- Interactive-loop - for - while- Sequential-go to.

Database Triggers

Definition - Syntax - Parts of Triggers- Types of Triggers - Enabling and Disabling Triggers-Cursors - Procedures and Functions- Definition and Implementation.

Note: The Faculty Members are instructed to provide the Necessary Exercises which covers the above Topics.

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Demonstrate practical knowledge on creation and alteration of tables, insertion and Querying of data.	PO1
CO2	Analyze the database schemas for the different types of database	PO2
СО3	Design the databases using SQL DML/DDL Commands	PO3
CO4	Design the complex PL/SQL programs for different problems	PO4
CO5	Use the procedure, function, trigger and cursor concepts in PL/SQL	PO5
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO10
CO9	Continue updating their skill related to SQL Commands and Queries and implementing programs in future.	PO12

REFERENCE BOOKS:

- 1. Ivan Bayross, "SQL, PL/SQL Programming", 2/e, BPB Publications, 2011, New Delhi, India.
- 2. Satish Ansari, "Oracle Database 11g: Hands-on SQL and PL/SQL", PHI Publishers, 2010.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/106/106106220/
- 2. https://nptel.ac.in/courses/106/105/106105175/
- 3. https://www.tutorialspoint.com/plsql/index.htm

CO-PC	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	З	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO*	3	3	3	3	3	-	-	3	3	3	-	3

(Accredited by NBA)

II B.Tech - IV Semester

20CSE246

OPERATING SYSTEMS LAB L T P C

(Common to CSE, CSM, CAI, CSD)

0 0 3 1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge about practical experience with designing and implementing concepts of operating systems.
- 2. To analyze and simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority.
- 3. To develop skill to implement the file allocation and organization techniques.
- 4. To Understand and Implement Deadlock management techniques.
- 5. To provide knowledge to implement memory management schemes and page replacement schemes.

List of Experiments:

- Simulate the following CPU scheduling algorithms

 a) Round Robin b) SJF
- Simulate the following CPU scheduling algorithms

 a) FCFS b) Priority
- 3. Simulate all file allocation strategies
- a) Sequential b) Indexed c) Linked
- 4. Simulate MVT and MFT.
- Simulate the following File Organization Techniques

 a) Single level directory b) Two level
- 6. Simulate the following File Organization Techniquesa) Hierarchical b) DAG
- 7. Simulate Bankers Algorithm for Dead Lock Avoidance.
- 8. Simulate Bankers Algorithm for Dead Lock Prevention.
- 9. Simulate all page replacement algorithms a) FIFO b) LRU c) LFU Etc. ...
- 10. Simulate Paging Technique of memory management
- 11. Write a C program to stimulate the following contiguous memory allocation techniques a) Worst-fit b) Best fit c) First fit
- 12. Write a C program to stimulate the disk scheduling algorithms. a)FCFS b) SCAN c) C-SCAN
- 13. Write a C program to simulate optimal page replacement algorithms
- 14. Write a C program to simulate the concept of Dining-Philosophers problem

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Simulate CPU Scheduling Algorithms like FCFS, Round Robin, SJF, and Priority	PO1, PO2, PO3, PO5
CO2	Simulate file allocation techniques	PO1, PO2, PO3, PO5, PO11
CO3	Simulate file organization techniques	PO2, PO3, PO5
CO4	Implement Deadlock management techniques.	PO2, PO4, PO5
CO5	Implement memory management schemes	PO1, PO2, PO5
CO6	Implement disk scheduling algorithms	PO1, PO2, PO5, PO8
C07	Simulate optimal page replacement algorithms	PO1, PO2, PO5, PO9
CO8	Simulate optimal page replacement algorithms	PO1, PO2, PO5, PO10
CO9	Simulate the concept of Dining-Philosophers problem	PO1, PO2, PO5, PO12

REFERENCE BOOKS:

- 1. Operating System Principles, 9th Edition, Abraham Silberchatz, Peter B. Galvin, Greg Gagne, Wiley Student Edition, 2009.
- 2. Modern Operating Systems (3rd Edition): Andrew S. Tanenbaum: 9780136006633, Pearson, 2008.
- 3. C Programming Language (2nd Edition): Brian W. Kernighan, Dennis M. Ritchie: 0076092003106,2015.
- 4. Operating Systems In Depth: Design and Programmingby Thomas W. Doeppner, 2010.

REFERENCE WEBSITE:

- 1. https://onlinecourses.nptel.ac.in/noc21_cs44/preview
- 2. https://profile.iiita.ac.in/bibhas.ghoshal/teaching_os_lab.html

CO-PC	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES - Chittoor AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Accredited by NBA)

II B.Tech - IV Semester

20CSE247 SOFTWARE ENGINEERING AND CASE TOOLS LAB L T P C

0 0 3 1.5

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To learn and implement the fundamental concepts of Software Engineering.
- 2. To explore functional and non-functional requirements through SRS.
- 3. To practice the various design diagrams through the appropriate tool.
- 4. To learn to implement various software testing strategies.
- 5. To develop a mini-project by applying the UML Concepts

List of Experiments:

Do the following Ten exercises for any two projects given in the list of mini projects:

- 1. Development of problem statement.
- 2. Preparation of Software Requirement Specification Document, Design Documents and Testing
- 3. Phase related documents.
- 4. Preparation of Software Configuration Management and Risk Management related documents.
- 5. Study and usage of any Design phase CASE tool
- 6. Performing the Design by using any Design phase CASE tools.
- 7. Draw a complete class diagram and object diagrams using Rational tools.
- 8. Reverse Engineer any object-oriented code to an appropriate class and object diagrams.
- 9. Develop test cases for unit testing and integration testing
- 10. Develop test cases for various white box and black box testing techniques.

Suggested domains for Mini-project:

- 1. ATM System
- 2. Library Management System
- 3. Passport automation system.
- 4. Hospital Management System
- 5. College Management System
- 6. On-line Examination System
- 7. E-ticketing
- 8. Recruitment system
- 9. Conference Management System

Suggested Software Tools:

ArgoUML, Eclipse IDE, Visual Paradigm, Visual case and Rational Suite

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Acquaint with historical and modern software methodologies	PO1,PO2,PO3
CO2	Understand the phases of software projects and practice the activities of each phase	PO1,PO2
СО3	Adopt skills such as distributed version control, unit testing, integration testing, build management, and deployment	PO1,PO2,PO3
CO4	Implement various software testing strategies.	PO1,PO2
CO5	Develop the mini projects using CASE Tools	PO1,PO2,PO3,PO4,PO5
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	PO10

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES - Chittoor AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Accredited by NBA)

	Continue updating their skill related to object oriented concepts	PO12
	and implementing programs in future.	

REFERENCE BOOKS:

- 1. Roger S. Pressman, "Software Engineering A Practitioner Approach", 1996, MGH.
- 2. Ian Sommerville, "Software Engineering" 5th edition, Pearson Edu, 1999.
- 3. Pankaj Jalote, "An Integrated Approach to software engineering", Narosa, 1991.
- 4. Grady Booch, "Object- Oriented Analysis and Design with Applications", 2nd edition, Pearson Education, New Delhi, India, 2007.

REFERENCE WEBSITE:

http://vlabs.iitkgp.ac.in/se/

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES - Chittoor AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)

II B.Tech - IV Semester ENVIRONMENTAL SCIENCE

(COMMON TO ALL BRANCHES)

PRE-REQUISITES: NIL

20MAC231

COURSE EDUCATIONAL OBJECTIVES:

- 1. To recognize nature of environmental studies and various renewable and nonrenewable resources.
- 2. To understand flow and bio-geo- chemical cycles and ecological pyramids.
- 3. To identify various causes of pollution and solid waste management and related preventive measures.
- 4. To evaluate and interpret the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- 5. To understand the causes of population explosion, value education and welfare programmes.

UNIT - I: INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL RESOURCES

Multidisciplinary nature of environmental studies: Definition, scope and importance. Need for public awareness.

Natural Resources: Renewable and non-renewable resources: Natural resources and associated problems. a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams- benefits and problems. c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. e) Energy resources: Growing energy needs, renewable and nonrenewable energy resources.

UNIT - II: CONCEPT OF ECOSYSTEM AND BIODIVERSITY

Structure and function of an ecosystem: Producers, consumers and decomposers- Energy flow in the ecosystem- Ecological succession- Food chains, food webs and ecological pyramids-Introduction, types, characteristic features, structure and function of the following ecosystem: a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its conservation: Introduction - Definition: genetic, species and ecosystem diversity-Biogeographical classification of India-Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, National and local levels-India as a mega-diversity nation-Hot-sports of biodiversity-Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. -Endangered and endemic species of India Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III: ENVIRONMENTAL POLLUTION AND WASTE MANAGEMENT

Environmental Pollution: Definition - Cause, effects and control measures of: - a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Thermal pollution q. nuclear hazards

Solid waste Management: Causes, effects and control measures of urban and industrialwastes-Role of an individual in prevention of pollution. Pollution case studies-Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV: SOCIAL ISSUES AND THE ENVIRONMENT

From Unsustainable to Sustainable development: Urban problems related to energy Water conservation, rain water harvesting, watershed management-Resettlement and rehabilitation of people; its problems and concerns. -Environment Protection Act-Air (Prevention and Control of Pollution) Act-Water (Prevention and control of Pollution) Act-Wildlife Protection Act- Forest Conservation Act -Issues involved in enforcement of environmental legislation- Public awareness.

(6)

(6)

(6)

(6)

ТРС

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES - Chittoor AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Accredited by NBA)

UNIT – V: HUMAN POPULATION AND THE ENVIRONMENT

(6)

Population growth: variation among nations-Population explosion – Family Welfare Programme-Environment and human health-Human Rights-Value Education-HIV/AIDS. Women and Child Welfare-Role of Information Technology in Environment and human Case Studies.

Total hours: 30

COURSE OUTCOMES:

On suc	ccessful completion of the course, students will be able to	POs mapped with COs
CO1	Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.	P01, P02, P03 P04, P05, P06,P07
CO2	Understand flow and bio-geo- chemical cycles and ecological pyramids.	PO1, PO2, PO3 PO4, PO5, PO6,PO7
СОЗ	Understand various causes of pollution and solid waste management and related preventive measures.	PO1, PO2, PO3 PO4, PO5, PO6,PO7
CO4	Understand concept of rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.	PO1, PO2, PO3 PO4, PO5, PO6,PO7
C05	Causes of population explosion, value education and welfare programmes.	PO1, PO2, PO3 PO4, PO5, PO6,PO7

TEXT BOOKS:

1. R. Rajagopalan," Environmental Studies", Oxford University Press.

2. Gilbert M. Masters and Wendell P. Ela., "Environmental Engineering and science" PHI Learning Pvt. Ltd, 2008

REFERENCE BOOKS:

- 1. ErachBharucha "Textbook of Environmental Studies for Undergraduate Courses", University grants commission, 2/e,2013.
- 2. C.P.Kaushik and Anubhakaushik "Text book of environmental studies", New age International publishers, 4/e,2006.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/127/105/127105018/
- 2. https://nptel.ac.in/courses/113/104/113104061/
- 3. https://nptel.ac.in/courses/120/108/120108005/
- 4. https://nptel.ac.in/courses/120/108/120108002/

CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	P012
CO.1	3	2	1	2	2	2	3	-	-	-	-	-
CO.2	3	2	1	2	2	2	3	-	-	-	-	-
CO.3	3	2	1	2	2	2	3	-	-	-	-	-
CO.4	3	2	1	2	2	2	3	-	-	-	-	-
CO.5	3	2	1	2	2	2	3	-	-	-	-	-
CO*	3	2	1	2	2	2	3	-	-	-	-	-

_

B.Tech - IV Semester

INTERNSHIP DURING SUMMER VACATION L T P C

0 0 0 0

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. Objective is to give an opportunity to the student to get hands on training in industry.
- 2. The course is designed so as to expose the students to industry environment and to take up on-site assignment as trainees or interns.

SCHEME OF INDUSTRY INTERNSHIP:

1. Students are encouraged to go to Industrial Internship for at least 2-3 weeks during summer vacation and should be organized by the Head of the Department for every student.

III B.Tech-V Semester

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 20CSD351 LTPC 3000 (CSE(DS))

PRE-REQUISITES: A course on Algebra and Calculus

COURSEEDUCATIONALOBJECTIVES:

- 1. To provide basic knowledge about artificial intelligence.
- 2. To understand various searching techniques for problem solving.
- 3. To understand the knowledge, reasoning and planning involved in artificial intelligence
- 4. To acquire knowledge on basic mathematics for machine learning.
- 5. To analyze the various classification algorithms and their methodologies

UNIT-1: INTRODUCTION

(9) **Introduction:** Definition of AI, Foundations of AI, History of AI, The State of Art. Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, Structure of Agents,

UNIT-2: PROBLEM SOLVING

Solving problems by searching: Problem solving agents, Searching for solutions, Uninformed Search Strategies, Informed search strategies, Heuristic Functions.

Beyond Classical Search: Local Search Algorithms and Optimization Problems, Local Search in Continues Spaces, Searching with Non deterministic Actions, Searching with partial observations, online search agents and unknown environments.

Game playing: mini-max algorithm, Alpha-Beta Pruning.

UNIT-3: KNOWLEDGE, REASONING AND PLANNING

Knowledge-Based Agents, Wumpus World, Logic, Syntax and Semantics of First-Order Logic, Forward chaining and backward chaining.

Classical Planning: Definition, Algorithms for Planning as State-pace Search, PlanningGraphs.

UNIT-4: INTRODUCTION TO MACHINE LEARNING

Human Learning- Types of Human Learning, Machine Learning- Types of learning-Supervised, Unsupervised, Reinforcement, Applications and challenges.

Data Preprocessing- Data Cleaning, Data Integration, Data Transformation, Data Reduction or Dimensionality Reduction.

Dimensionality Reduction: Linear Discriminant Analysis (LDA)-Principal Components Analysis (PCA)

UNIT-5: CLASSIFICATION

Introduction to Classification, Logistic Regression-Building Logistic Regression Model (Logit Function), Maximum Likelihood Estimation. Decision Tree-Steps to Construct a Decision Tree, Classification Using Decision Trees, Issues in Decision Trees, Ensemble Learning-Random Forest. Bayesian Classification-Naive Bayes Classifier, k-Nearest Neighbor (KNN).

(9)

(9)

(9)

COURSEOUTCOMES:

On suc able to	cessful completion of the course the student will be	POs related to COs
CO1	Recognize the basics about the artificial intelligence	PO1,PO2
CO2	Identify the searching technique for problem solving	PO1,PO2
CO3	Apply knowledge reasoning and planning for solving real- world problems	PO1,PO2,PO3,PO4,PO 5
CO4	Use knowledge on mathematics for machine learning.	PO1,PO2
CO5	Identify various classification Algorithms and their methodologies	PO1,PO2,PO4

TEXT BOOKS:

- 1. StuartJ.Russell,PeterNorvig,"ArtificialIntelligenceAModernApproach",4thEdition,P earson Education,2020.
- 2. WolfgangErtel, "IntroductiontoArtificialIntelligence", 2ndEdition, SpringerInternatio nalPub lishing, 2017.
- 3. Alpaydin Ethem, "Introduction to Machine Learning", 3rd Edition, PHI learning privatelimited, 2019.
- 4. SaikatDutt, Subramanian Chandramouli and Amit Kumar Das, "Machine Learning", Pearson, 2019.

REFERENCES:

- 1. StephenLucci, DannyKopec, "ArtificialIntelligenceinthe21stCentury", MercuryLearn ingan dInformation, 3rdEdition, 2018.
- 2. DeepakKhemani, "AFirstCourseinArtificialIntelligence", McGrawHill, 2017.
- 3. Marsland, Stephen, "Machine learning: an algorithmic perspective", Chapman and Hall/CRC,2014.

REFERENCEWEBSITE:

1.http://peterindia.net/AILinks.html

2.https://nptel.ac.in/courses/106/102/106102220/

CO -	P01	PO2	PO3	P04	P05	P06	P07	PO8	PO9	PO10	P011	P012
РО												
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	2	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	2	-	-	-	-	-	-	-	-
CO *	2.6	2.4	2	2	2	-	-	-	-	-	-	-

III B.Tech-V Semester

20CSE351

DATA WAREHOUSING AND MININGL T P C(Common to CSE, CSE(DS))3 0 0 3

PRE-REQUISITES: A course on DataBase Management Systems

COURSEEDUCATIONALOBJECTIVES:

- 1. Gain the knowledge about the basics of data mining and data warehousing concepts, data mining functionalities, and Preprocessing concepts.
- 2. Understand and implement the data warehouse architecture, different datawarehouse schemas
- 3. Analyze and implement the Association Rules for analyzing the Transactional Databases
- 4. Study and implement the major Classification and Clustering Algorithms
- 5. Study the advanced data mining concepts.

UNIT1: DATA WAREHOUSE

(9)

An Overview - Basic Concepts- Data Warehouse Modeling: Data Cube and OLAP Data Warehouse Design and Usage- Data Warehouse Implementation- Data Generalization by Attribute- Oriented Induction.

UNIT2: INTRODUCTION TO DATA MINING AND DATA PRE-PROCESSING (9)

Motivation and Importance of Data Mining - Data Mining - Kind of Data to be mined -Data Mining Functionalities - Kind of patterns to be mined - Major Issues in Data Mining. The need for Preprocessing - Data Cleaning - Data Integration and Transformation - Data Reduction - Data Discretization and Concept Hierarchy Generation.

UNIT3: MINING PATTERNS

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts - Frequent Item set Mining Methods-Pattern Evaluation Methods.

UNIT4: CLASSIFICATION AND CLUSTERING

Classification: Basic Concepts- Decision Tree Induction- Bayes Classification Methods- Rule- Based Classification- Advanced Methods: Bayesian Belief Networks-Classification by Back Propagation-Support Vector Machines

Clustering: Clustering Overview - Partitioning Clustering - K-Means and K-Medoids Algorithms - Hierarchical Clustering - Agglomerative Methods and divisive methods - Outlier Detection.

UNIT5: ADVANCED MINING

Multimedia Data Mining - Text Mining - Mining the World Wide Web - Data Mining Applications- Social Impacts of Data Mining.

Total Hours:45

COURSEOUTCOMES:

On s	uccessful completion of the course the student will be	Pos related to COs
CO1	Understand the need and applications of Data Warehouse andData Mining	PO1,PO2
CO2	Design and implement the data warehouse by using major datawarehouse schemas	PO1,PO3

(9)

(9)

(9)

	(DATA SCIENCE)										
СО3	Implement Association Rules for analyzing Transactionaldatabases	PO1,PO4									
CO4	Understand and Implement major Classification and ClusteringAlgorithms	PO1,PO4									
CO5	Apply the Data mining techniques in real time problems.	PO1,PO2,PO4									

TEXT BOOK:

- 1. Jiawei Han, Micheline Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann Publishers, Elsevier, Reprint 2017.
- 2. C.S.R.Prabhu, "DataWarehousing: Concepts, Techniques, Products and Applications", Third edition, Prentice HallofIndia, Reprint 2016.

REFERENCES:

- 1. AlexBersonandStephenJ.Smith,"DataWarehousing,DataMining&OLAPI",TataMcGraw-HillEdition,35thReprint2016.
- 2. K.P.Soman, ShyamDiwakarandV.Ajay, "Insight intoDataMiningTheoryandPracticel", Eas ternEconomyEdition, PrenticeHallofIndia, Reprint2017.
- 3. Jiawei Han, Micheline Kamber, Morgan Kaufmann, "Data Mining ConceptsandTechniques", ElsevierPublishers, 2ndEdition, Reprint2016.
- 4. ArunKPujari, "DataMiningTechniques", 3rdÉdition, UniversitiesPress.
- 5. PualrajPonnaiah,"Data Warehouse Fundamentals", WileyStudentEdition

REFERENCEWEBSITE:

1.https://nptel.ac.in/courses/106/105/106105174/

СО- РО	P01	PO2	PO3	P04	РО 5	P06	P07	P08	PO9	P010	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	-	2	-	-	-	-	-	-	-	-	-
CO3	3	-	-	3	-	-	-	-	-	-	-	-
CO4	3	-	-	3	-	-	-	-	-	-	-	-
CO5	3	3	-	3	-	-	-	-	-	-	-	-
CO*	3	3	2	3	-	-	-	-	-	-	-	-

III B.Tech-V Semester

ADVANCED DATA ANLYTICS

(CSE (DS))

PRE-REQUISITES: A course on Data Analytics

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the basics of data analysis.
- 2. To learn about setting up Big data Stack and Big data Pattern.
- 3. To learn about Apache Spark.
- 4. To Study about serving data bases and Web application frameworks.
- 5. To discuss various jobs related to Data Science.

UNIT-1: INTRODUCTION

What is Analytics, What is Big Data, Characteristics of Big data, Domain specific examples of big data, Analytics flow for big data, Big data stack, Mapping analytics flow to big data stack, case studies: Genome and Weather data analysis, Analytics patterns.

UNIT-2: SETTING UP BIG DATA STACK AND BIG DATA PATTERNS

Horton works data platform, Cloud era CDH stack, Amazon Elastic MapReduce, Azure HD Insight, Analytics architecture components and Design styles

UNIT-3: INTRODUCTION TO APACHE SPARK

What Is Apache Spark, Unified analytics, Apache Spark Structured APIs, Structuring Spark, The DataFrame API, The Dataset API, DataFrames versus Datasets.

Spark SQL and DataFrames: Introduction to Built-in Data sources, SQL Tables and Views, Data sources for DataFrames and SQL Tables.

UNIT-4: SERVING DATABASES AND WEBFRAME WORKS BIG DATA JOBS (10)

Relational databases, Non-Relational Databases, Python web application framework – Django, Case study: Django application for viewing weather data, The big picture of Big data jobs

UNIT-5: SIMULATION, MONTE CARLO INTEGRATION & VARIANCE REDUCTION (8)

Seeing yourself in a big data job, looking into big data platform, big data jobs for business analytics, big data jobs for data scientists, big data jobs for software developers **TOTALHOURS:45**

COURSEOUTCOMES:

On suc	ccessful completion of the course, students will be able to	Pos related to COs
CO1	To gain the knowledge on basics of Big data analytics and basics of	PO1,PO2
	Data analysis	
CO2	Understand the setting up of Big data stack and patterns	PO1,PO2,PO5
CO3	Expand knowledge on Apache Spark	PO1,PO2,PO3
CO4	Analyze relational and non relational databases using Django	PO1,PO2,PO5
CO5	Obtain training to secure a job	PO1,PO4

20CSD352

(8)

LTPC

3003

(10)

(8)

TEXTBOOKS:

- 1. Arshdeep Bahga, Vijay Madisetti, Big Data Science and Analytics: A Hands of Approach, Self Published:<u>www.hands-on-books-series.com.</u>
- 2. Jason Williamson, Big Data job for Dummies, Willey, 2015
- 3. Jules S. Damji, Brooke Wenig, Tathagata Das & Denny Lee, Learning Spark Lightning-Fast Data Analytics, OReilly Publication, 2nd Edition, 2020

REFERENCEBOOKS:

- 1. Exploratory Data Analysis with R-Roger D.Peng, Lean pubpublications, 2015
- 2. The Art of Data Science-A Guide for any one Who Works with Data-Roger D.Pengand Elizabeth Matsui, Lean pub Publications, 2014

REFERENCEWEBSITES:

- 1. https://www.mastersindatascience.org/learning/what-is-data-analytics/
- 2. https://www.techtarget.com/searchdatamanagement/definition/data-analytics
- 3. https://www.lotame.com/what-is-data-analytics/
- 4. <u>https://www.oracle.com/business-analytics/data-analytics</u>

CO- PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	2	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	-	-	2	-	-	-	-	-	-	-
CO5	3	-	-	2	-	-	-	-	-	-	-	-
CO*	3	3	2	2	2	-	-	-	-	-	-	-

III B.Tech-V Semester

20CSD353A

ADVANCED DATABASES (CSE (DS))

LTPC 3 0 0 3

COURSEEDUCATIONALOBJECTIVES:

- 1. To study the about the distributed databases.
- 2. To learn about the need of different databases.
- 3. To understand about different data models that can be used for these databases.
- 4. To be aware of data warehousing concept and design
- 5. To make the students get familiarized with transaction management of the database

UNIT -1: DISTRIBUTED DATABASES

DISTRIBUTED DBMS CONCEPTS AND DESIGN: Introduction – Functions and Architecture of DDBMS – Distributed Relational Database Design – Transparency in DDBMS – Distributed Transaction Management

DISTRIBUTED DBMS ADVANCED CONCEPTS: Concurrency control – Deadlock Management – Database recovery – The X/Open Distributed Transaction Processing Model – Replication servers – Distributed Query Optimization - Distribution and Replication in Oracle.

UNIT -2: OBJECT ORIENTED DATABASES

OBJECT ORIENTED DATABASES: Introduction – Weakness of RDBMS – Object Oriented Concepts Storing Objects in Relational Databases – Next Generation Database Systems – Object Oriented Data models – OODBMS Perspectives – Persistence – Issues in OODBMS – Object OrientedDatabase Management System Manifesto – Advantages and Disadvantages of OODBMS – Object Oriented Database Design – OODBMS

STANDARDS AND SYSTEMS: Object Management Group – Object Database Standard ODMG – Object Relational DBMS –Postgres - Comparison of ORDBMS and OODBMS

UNIT -3: WEB AND DBMS

Web Technology and DBMS – Introduction – The Web – The Web as a Database Application Platform – Scripting languages – Common Gateway Interface – HTTP Cookies – Extending the Web Server – Java – Microsoft's Web Solution Platform – Oracle Internet Platform – Semi structured Data and XML – XML Related Technologies – XML Query Languages

UNIT-4: DATA WAREHOUSING CONCEPTS

DATA WAREHOUSING CONCEPT: Introduction to Data Warehousing, Data WarehouseArchitecture, Data Warehousing Tools and Technologies, Data Mart, Data Warehousing and Temporal Databases, Data Warehousing Using Oracle

DATA WAREHOUSING DESIGN: Designing a Data Warehouse Database, Data Warehouse Development Methodologies, Kimball's Business Dimensional Lifecycle, Dimensionality Modeling, The Dimensional Modeling Stage of Kimball's, Data Warehouse Development Issues, Data Warehousing Design Using Oracle

UNIT-5:OLAP AND DATA MINING

OLAP: Online Analytical Processing, OLAP Applications, Multidimensional Data Model, OLAP Tools, OLAP Extensions to the SQL Standard, Oracle OLAP

DATA MINING: Data Mining Techniques, The Data Mining Process, Data Mining Tools, Data Mining and Data Warehousing, Data Mining (ODM).

TOTAL HOURS: 45

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Design, develop and implement a mid-scale relational database for an application domain using a commercial-grade RDBMS.	PO1, PO2, PO3
CO2	Use the persistence framework of a chosen language to perform Object Relational Mapping.	PO1, PO2, PO3
CO3	To develop in-depth knowledge about web and intelligent database	PO1,PO2, PO3, PO4
CO4	To provide an introductory concept about the way in which data can be stored in geographical information etc.	PO1, PO2,PO5
CO5	To be familiarized with transaction management of the databases	PO1, PO3, PO4

TEXT BOOKS:

1. Thomas M. Connolly, Carolyn E. Begg, "Database Systems - A Practical Approach to Design, Implementation, and Management", Third Edition, Pearson Education, 2003

REFERENCE BOOKS:

- 1. RamezElmasri&ShamkantB.Navathe, "Fundamentals of Database Systems", Fourth Edition, Pearson Education, 2004.
- 2. M.TamerOzsu, Patrick Ualduriel, "Principles of Distributed Database Systems", Second Edition, PearsonEducation, 2003.
- 3. C.S.R. Prabhu, "Object Oriented Database Systems", PHI, 200
- 4. Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management", Thompson Learning, Course Technology, 5th Edition, 2003

REFERENCE WEBSITES:

1. Advanced Database Queries | edX

CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	-	-	2	-	-	-	-	-	-	-
CO5	3	-	2	2	-	-	-	-	-	-	-	-
со*	3	3	2	2	2	-	-	-	-	-	-	-

III B.Tech-V Semester

20CSD353B

AUTOMATA AND COMPILER DESIGN (CSE (DS))

L T P C 3 0 0 3

PRE-REQUISITES: Problem Solving through C

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the concept of abstract machines and their power to recognize the languages.
- 2. To acquire skills in using LEX tool & YACC tool for developing a scanner and parser.
- 3. To Design and implement LL and LR parsers.
- 4. To Design algorithms to do code optimization in order to improve the performance of a program
- 5. Design algorithms to generate machine code.

UNIT -1: INTRODUCTION TO AUTOMATA, PHASES OF COMPILER

Formal language and Regular Expression - Languages - Regular Expressions, Finite Automata - DFA, NFA, Conversion of Regular Expression to NFA, NFA to DFA, Introduction to Compiler - Phases of a compiler - Lexical Analysis : The Role of the Lexical Analyzer - Input Buffering - Specification of Tokens - The Lexical-Analyzer Generator Lex.

UNIT -2: PARSING (10)

Top Down Parsing: Context Free Grammars, Top Down Parsing: Backtracking, LL(1), Recursive Descent Parsing, Operator-Precedence Parsing, Predictive Parsing, Preprocessing Steps Required for Predictive Parsing.

Bottom Up Parsing: Shift Reduce Parsing, LR and LALR Parsing, Error Recovery in Parsing, YACC - Automatic Parser Generator.

UNIT -3: SEMANTIC ANALYSIS

Intermediate Forms of Source Programs: Abstract syntax Tree, Polish Notation and Three Address Codes. Attributed Grammars, Syntax Directed Translation, Conversion of Popular Programming Languages, Language Constructs into Intermediate Code Forms, Type Checker. **Symbol Table:** Symbol Table Format, Storage Allocation: Static, Runtime Stack and Heap Storage Allocation.

UNIT-4: CODE OPTIMIZATION

Consideration for Optimization, Scope of Optimization, Principle sources of optimization, Local Optimization, Loop Optimization, Frequency Reduction, Folding, DAG Representation.

UNIT-5: OBJECT CODE GENERATION

Object code forms, machine dependent code optimization, register allocation and assignment generic code generation algorithms, DAG for register allocation.

COURSE OUTCOMES:

On sı	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Employ finite state machines to solve problems in computing.	PO1, PO2
CO2	Understand the basic concept of compiler design, and its different phases which will be helpful to construct new tools like YACC tool.	PO1, PO2,PO3, PO4
CO3	attribution while parsing and apply error detection and correction methods.	PO1,PO2, PO3,PO4
CO4	Apply the code optimization techniques to improve the space and time complexity of programs while programming.	PO1, PO2,PO3,PO4,PO5
CO5	Ability to design a compiler for a concise programming language.	PO1, PO2, PO3, PO4, PO5

-

TOTAL HOURS: 45

(9)

(8)

(8)

(10)

TEXT BOOKS:

- 1. IntroductiontoAutomataTheoryLanguagesandComputation,HopcroftH.E.andUllmanJ.D.,Pearson Education.
- 2. Principles of Compiler Design, A.V Aho and JD Ullman, Pearson Education.
- 3. Modern Compiler Construction in C, Andrew W.Appel, Cambridge University Press.

REFERENCE BOOKS:

- 1. Compiler Construction: Principles And Practice, Kenneth C. Louden, Thomson/ DelmarCengageLearning,2006.
- 2. Lex&yacc,DougBrown,JohnLevineandTonyMason,2ndEdition,O'reillyMedia.
- 3. Engineering a compiler, Keith Cooper and Linda Torczon, 2nd Edition, Morgan Kaufmann, 2011.

CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-
СО3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	2	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	-
CO *	3	3	2	2	2	-	-	-	-	-	-	-

III B.Tech-V Semester

20CSD353C

PREDICTIVE ANALYTICS (CSE (DS))

LTPC 3 0 0 3

PRE-REQUISITES: A Course on Data mining and Data warehousing, Data Anaytics.

COURSE EDUCATIONAL OBJECTIVES:

- 1. To discuss the concept of predictive analytics.
- 2. To learn about Data understanding and Data preparation.
- 3. To Illustrate the uses and applications of Predictive Analytics
- 4. To Demonstrate building of Predictive Analytics models
- 5. To implement appropriate performance measures for predictive models

UNIT -1: OVERVIEW OF PREDICTIVE ANALYTICS

What Is Analytics? What Is Predictive Analytics? Business Intelligence Predictive Analytics vs. Business Intelligence, Predictive Analytics vs. Statistics, Predictive Analytics vs. Data Mining, Who Uses Predictive Analytics, Challenges in Using Predictive Analytics, What Educational Background Is Needed to Become a Predictive Modeler?

Setting Up the Problem: Predictive Analytics Processing Steps: CRISP-DM, Business Understanding, Defining Data for Predictive Modelling, Defining the Target Variable, Defining Measures of Success for Predictive Models, Doing Predictive Modelling Out of Order, Case study Recovering Lapsed Donors, Fraud Detection

UNIT -2: DATA UNDERSTANDING AND DATA PREEPARATION

Data Understanding: What the Data Looks Like, Single Variable Summaries, Data Visualization in One Dimension, Histograms, Multiple Variable Summaries, Data Visualization, Two or Higher Dimensions, The Value of Statistical Significance, Pulling It All Together into a Data Audit.

Data Preparation: Variable Cleaning, Consistency in Data Formats, Outliers, Multidimensional Outliers, Missing Values, Fixing Missing Data, Feature Creation.

UNIT -3: ITEM SETS AND ASSOCIATION RULES, DESCRIPTIVE MODELLING

Item sets and Association Rules: Terminology, Parameter Settings, How the Data Is Organized, Measures of Interesting Rules, Deploying Association Rules, Problems with Association Rules, Building Classification Rules from Association Rules.

Descriptive Modelling: Data Preparation Issues with Descriptive Modelling, Principal Component Analysis, Clustering Algorithms, Interpreting Descriptive Models-Standard Cluster Model Interpretation.

UNIT-4: PREDICTIVE MODELLING, ASSESSING PREDICTIVE MODELS

Predictive Modelling: Decision Trees, Logistic Regression, Neural Networks, K-Nearest Neighbour, Naïve Bayes, Regression Models, Linear Regression, Other Regression Algorithms.

Assessing Predictive Models: Batch Approach to Model Assessment, Assessing Regression Models.

UNIT-5: MODEL ENSEMBLES, TEXT MINING

Model Ensembles: Motivation for Ensembles, Bagging, Boosting, Improvements to Bagging and Boosting, Model Ensembles and Occam's Razor, Interpreting Model Ensembles.

Text Mining: Motivation for Text Mining, A Predictive Modelling Approach to Text Mining, structured vs. Unstructured Data, Why Text Mining Is Hard, Data Preparation Steps, Text Mining Features, Modelling with Text Mining Features, Regular Expressions.

TOTAL HOURS: 45

123

(10)

(9)

(8)

(8)

(10)

COURSE OUTCOMES:

On sı	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Visualize and explore data to better understand relationships among variables	PO1, PO2,PO3
CO2	Understand the Data preparation	PO1, PO2
CO3	Organize the descriptive modeling task	PO1,PO2, PO3
CO4	Apply predictive models to generate predictions for new data, Choose and implement appropriate performance measures for predictive models	PO1, PO2,PO4
CO5	Understand how ensemble models improve predictions	PO1, PO4

TEXT BOOKS:

1. Dean Abbott, Applied Predictive Analytics, Published by Jhon Wiley &Sons, Inc, 2014.

REFERENCE BOOKS:

- 1. Eric Siegel, Predictive Analytics, Published by Jhon Wiley & Sons, inc, 2013.
- 2. Data Analytics using Python Kindle Editionby Bharti Motwani, 2020.

REFERENCE WEBSITES:

1. https://www.udemy.com/course/predictive-analytics-introduction-to-business-forecasting

CO- PO	P01	PO2	PO3	PO4	P05	PO6	P07	P08	P09	PO10	P011	P012
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-
CO5	3	-	-	2	-	-	-	-	-	-	-	-
CO*	3	3	2	2	-	-	-	-	-	-	-	-

III B.TECH. - V SEMESTER

200CIV351

AIR POLLUTION AND CONTROL (OPEN ELECTIVE - 1)

L T P C 3 0 0 3

PRE-REQUISITES: A Course on Environmental Studies and Engineering

COURSE OUTCOMES:

- 1. To provide knowledge about the various sources of Air pollution and its effects on human beings , Vegetation and Materials.
- 2. To Analyse The various air pollutant dispersion models
- 3. To provide knowledge about control methods and details of control equipments
- 4. To demonstrate Various sources of Noise pollution and control measures
- 5. To Identify the major sources of noise pollution, effects and control measures

UNIT I: SOURCES AND EFFECTS OF AIR POLLUTANTS

Air Pollution – Definitions, Scope- Significance and Episodes- Air Pollutants – Classifications – Natural and Artificial – Primary and Secondary- point and Nonpoint- Line and Areal Sources of air pollution- stationary and mobile sources. Effects of Air pollutants on man-material and vegetation- Global effects of air pollution – GreenHouse effect- Heat Islands- Acid Rains- Ozone Holes etc. Lapse Rates- Pressure Systems- Winds and moisture plume behaviour and plume Rise Models- Gaussian Model for Plume Dispersion

UNIT II: DISPERSION OF POLLUTANTS

Thermodynamics and Kinetics of Air-pollution – Applications in the removal of gases like SOx; NOx; CO; HC etc., air-fuel ratio- Computation and Control of products of combustion-Meteorology and plume Dispersion- properties of atmosphere- Heat- Pressure- Wind forces- Moisture and relative Humidity- Influence of Meteorologicalphenomena on Air Quality wind rose diagrams.

UNIT III: AIR POLLUTION CONTROL

Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment – gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

UNIT IV : AIR QUALITY MANAGEMENT

Air quality standards – Air quality monitoring – Preventive measures – Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement

UNIT V: NOISE POLLUTION

Introduction -Sources of noise pollution – Effects – Assessment – Standards – Control methods – Prevention- Environmental Impact Assessment and Air quality.

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On suc able	cessful completion of the course the student will be to,	POs related to COs
CO 1	Identify the major sources of air pollution and understand their effects on health and environment.	P01, P07
CO 2	Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models	PO2, PO3
CO 3	Design the control techniques for particulate and gaseous emissions	PO3, PO1
CO 4	Understand the standards of air quality and legal framework	PO1, PO6
CO 5	Identify the major sources of noise pollution, effects and control measures	P01, P07

TEXTBOOKS:

- 1. M. N. Rao and H. V. N. Rao," Air pollution",- Tata McGraw Hill Company.
- 2. K.V.S.G. Murali Krishna ,"Air pollution and control", Kaushal Publishers.

REFERENCE BOOKS:

- 1. S.Padmanabha Murthy," Environmental meteorology",
 - I.K.International Pvt Ltd, New Delhi.
- 2. BSN.Raju ,Fundamentals of air pollution, Oxford and IBH Publishers,India.

REFERENCE WEBSITES:

https://nptel.ac.in/courses/105/102/105102089/https://nptel.ac.in/courses/105/1 04/105104099/

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO.1	2			-	-	-	2	-	-	-	-	-
CO.2	-	2	2	-	-	-	-	-	-	-	-	-
CO.3	2		2	-	-	-	-	-	-	-	-	-
CO.4	1			-	-	3	-	-	-	-	-	-
CO.5	2			-	-	-	2	-	-	-	-	-
CO*	1.75	2	2	-	-	3	2	-	-	-	-	-

III B.Tech. - V Semester

200ECE351

AUTOMOTIVE ELECTRONICS (OPEN ELECTIVE – 1)

L T P C 3 - - 3

(9)

(9)

(9)

(9)

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge on basics of automotive electronics in vehicle system
- 2. To comprehend the working principles of sensors and actuators in automobiles
- 3. To develop skills on engine control and management systems
- 4. To study various automotive vehicle management systems in automobiles.
- 5. To gain knowledge on various communication protocols in vehicles.

UNIT -1: INTRODUCTION TO VEHICLE SYSTEM & AUTOMOTIVE ELECTRONICS (9)

Evolution and Need of Automotive electronics, Need of electronics in engine and chassis systems, Fuel Injection system engine, braking and steering systems, Need of Electronic Control Unit (ECU) in vehicle system, Components of ECU, Inputs and Outputs of ECU, Control of Vehicle systems using ECU.

UNIT -2: AUTOMOTIVE SENSORS AND ACTUATORS

Speed sensors, Pressure sensors: Manifold Absolute Pressure sensor, Temperature sensors: Coolant and Exhaust gas temperature, Position sensors: Throttle position sensor, accelerator pedal position sensor and crankshaft position sensor, Air mass flow sensor. Solenoids, stepper motors and relays

UNIT – 3: ELECTRONIC ENGINE MANAGEMENT SYSTEM

Electronic engine control: Input, output and control strategies, electronic fuel control system, fuel control modes: open loop and closed loop control at various modes, EGR control, Electronic ignition systems. Starting and charging system.

UNIT -4: ELECTRONIC VEHICLE MANAGEMENT SYSTEM

Antilock braking system, electronic suspension system, electronic steering control, traction, Transmission control, Safety: Airbags, collision avoiding system, low tire pressurewarning system

UNIT -5:EMBEDDED SYSTEM COMMUNICATION PROTOCOLS

Introduction to control networking – Communication protocols in embedded systems – SPI, I2C, USB – Vehicle communication protocols – Introduction to CAN, LIN, FLEXRAY, MOST, KWP2000.

Total Hours: 45

COURSE OUTCOMES:

On suc	cessful completion of the course, students will be able to	POs
CO1	Describe various vehicle systems in an automobiles and electronic control unit.	P01
CO2	Illustrate different types of sensors and actuators in an Automobiles	P01
СОЗ	Provide knowledge about engine management system.	P01,P02
CO4	Comprehend the various control systems used in automotive applications	P01,P02
CO5	Describe various vehicle communication protocols used in automobiles.	P01,P02

TEXT BOOKS:

- 1. Joerg Schaeuffele, Thomas Zurawka, "Automotive Software Engineering Principles, Processes, Methods and Tools", SAE International, 2005.
- 2. Ronald K. Jurgen, "Automotive Electronics Handbook", McGraw Hill Publications, 1999.
- 3. BOSCH "Automotive Handbook", SAE International, 10th Edition, 2018.

REFERENCE BOOKS:

- 1. Denton. T, "Automobile Electrical and Electronic Systems", 4th edition, 2012.
- 2. Nicholas Navit, "Automotive Embedded System Handbook", CRC Press,

Taylorand Francis

Group, 2009.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/107/106/107106088/
- 2. https://onlinecourses.nptel.ac.in/noc21_ee32/preview
- 3. https://ncert.nic.in/vocational/pdf/ivas103.pdf

CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	-	-	-	-	-	-	-	-	-	-	-
CO.2	3	-	-	-	-	-	-	-	-	-	-	-
CO.3	3	2	-	-	-	-	-	-	-	-	-	-
CO.4	3	2	-	-	-	-	-	-	-	-	-	-
CO.5	3	2	-	-	-	-	-	-	-	-	-	-
CO*	3	2	-	-	-	-	-	-	-	-	-	-

III B.Tech. - V Semester

200EEE351

RENEWABLE ENERGY SOURCES (OPEN ELECTIVE - 1)

LT PC 3003

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. Describing the current energy scenario in terms of renewable energy plan.
- 2. To describe the solar energy sources for electricity generation.
- 3. To understand the functions of wind turbine and ocean thermal energy conversion process.
- 4. To describe the types bio-energy for electricity generation and geothermal energy.
- 5. To educate the various new and alternative sources such as MHD power and fuel cells.

UNIT -1: ENERGY SCENARIO

Indian energy scenario in various sectors of domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status – Potential of various renewable energy sources – Global energy status – Per capita energy consumption in various countries – Future energy plans.

UNIT -2: SOLAR ENERGY

Solar radiation – Measurements of solar radiation and sunshine – Solar thermal collectors – Flat plate and concentrating collectors – Solar thermal applications – Solar thermal energy storage – Fundamentals of solar photo voltaic conversion – Solar cells – Solar PV Systems – Solar PV applications.

UNIT -3: WIND ENERGY AND OCEAN THERMAL ENERGY

Wind Energy: Wind data and energy estimation – Betz limit – Site selection for wind farms – Characteristics – Horizontal and vertical axis wind turbine – Wind turbine generators and its performance – Hybrid systems – Environmental issues – Applications. **Ocean Thermal Energy:** Tidal energy – Wave energy – Open and closed OTEC cycles.

UNIT -4: BIOMASS ENERGY AND GEOTHERMAL ENERGY

Biomass Energy: Bio resources – Biomass direct combustion – Thermo chemical conversion – Biochemical conversion – Mechanical conversion – Biomass gasifier – Types of biomass gasifiers – Cogeneration – Carbonisation – Pyrolysis – Biogas plants –Digesters – Biodiesel production – Ethanol production – Applications. **Geothermal Energy:** Geothermal energy sources – Types of geothermal power plants – Applications – Environmental impact – Small hydro.

UNIT -5: NEW AND ALTERNATIVE ENERGY SOURCES

Fuel Cell: Principle – Types of fuel cells – Hydrogen energy – Properties – Hydrogen production – Storage – Transport and utilization – Safety issues. **Magneto Hydro Dynamic Power:** Principles of magneto hydro dynamic (MHD) power generation – MHD systems – MHD accelerator – MHD engine, power generation systems – Electron gas dynamic conversion.

Total Hours: 45

(9)

(9)

(9)

(9)

(9)

On su	ccessful completion of the course, students will be able to	POs
C01	Explain the current energy scenario in terms of conventional renewable energy and future plan	P01, P02, P07, P012
CO2	Describe the types solar thermal collectors and solar energy sources for electricity generation	PO1, PO2, PO7, PO12
СОЗ	Understand the functions of wind turbine and Ocean Thermal Energy conversion process	PO1, PO2, PO7, PO12
CO4	Illustrate the bio-energy for electricity generation and advancement in geothermal Energy	PO1, PO2, PO7, PO12
C05	Demonstrate the various new and alternative sources such as MHD Power and fuel cells	P01, P02, P07, P012

TEXT BOOKS:

- 1. G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, Delhi, 6/e, 2017.
- 2. Khan.B.H, "Non-Conventional Sources", McGraw-Hill Education Pvt. Ltd, 3/e, 2017.

REFERENCE BOOKS:

- 1. G. S. Sawhney, "Non-Conventional Energy Resources", PHI Learning, 2012.
- 2. R.K.Rajput, "Non-Conventional Energy Sources and Utilisation (Energy Engineering)", S. Chand Publishing, 2012.
- 3. Aldo Vieira da Rosa, "Fundamentals of Renewable Energy Processes", Elsevier Academic Press, 2005.
- 4. S. P. Sukhatme and J K. Nayak, "Solar Energy", McGraw-Hill Education, 4/e, 2017.
- 5. Efstathios E. (Stathis) Michaelides, "Alternative Energy Sources", Springer-Verlag Berlin Heidelberg, 2012.

REFERENCE WEBSITE:

- 1. <u>https://nptel.ac.in/courses/121/106/121106014/</u>
- 2. <u>https://nptel.ac.in/courses/112/105/112105221/</u>
- 3. https://nptel.ac.in/courses/108/108/108108078/
- 4. https://nptel.ac.in/courses/103/103/103103206/
- 5. https://nptel.ac.in/courses/103/107/103107157/
- 6. https://nptel.ac.in/courses/109/101/109101171/
- 7. https://nptel.ac.in/courses/115/103/115103123/
- 8. <u>https://nptel.ac.in/courses/108/105/108105058/</u>

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO.1	3	1	-	-	-	-	1	-	-	-	-	2
CO.2	3	1	-	-	-	-	1	-	-	-	-	2
CO.3	3	1	-	-	-	-	1	-	-	-	-	2
CO.4	3	1	-	-	-	-	1	-	-	-	-	2
CO.5	3	1	-	-	-	-	1	-	-	-	-	2
CO*	3	1	-	-	-	-	1	-	-	-	-	2

III B.Tech.-V Semester

200MEC351	INDUSTRIAL ROBOTICS	LTPC
	(OPEN ELECTIVE – 1)	3 3

PRE-REQUISITES:NIL

COURSEEDUCATIONALOBJECTIVES:

- 1. To know the robot drive systems and internal grippers and external grippers
- 2. To understand the image processing and analysis of image data
- 3. 3. To learn Robot motion analysis and control.
- 4. 4. To study the robot language structure and programming
- 5. 5. To explain the various applications of robots in industry

UNIT-1:FUNDAMENTALS OF ROBOTIC TECHNOLOGY AND DRIVE SYSTEM (9)

Robot anatomy, configuration and motions – Robot specifications – Pitch, yaw, roll, joint notations, speed of motion, pay load – Work volume. Robot Drive System: Pneumatic, hydraulic drives, mechanical and electrical drives – Servo motors and stepper motor. Grippers: Mechanical, pneumatic and hydraulic grippers, magnetic grippers and vacuum grippers – Two fingered and three fingered grippers – Internal and external grippers.

UNIT-2:ROBOT SENSORS AND MACHINE VISION

Robot Sensors: Position of sensors – Range sensors – Proximity sensors – Touch sensors – Wrist sensors – Compliance sensors – Slip sensors. **Machine Vision:** Camera – Frame grabber – Sensing and digitizing image data – Signal conversion – Image storage and lighting techniques – Image processing and analysis – Data reduction – Edge detection – Segmentation feature extraction – Object recognition.

UNIT-3:ROBOT MOTION ANALYSIS AND CONTROL

Robot Kinematics: Manipulator kinematics – Position representation – Forward and reverse transformation – Adding orientation – Homogeneous transformations – D-H notation – Forward and inverse kinematics. **Robot Dynamics:** Differential transformation

- Compensating for gravity – Robot arm dynamics. **Trajectory Planning:** Trajectory planning and avoidance of obstacles – Path planning – Skew motion – Joint integrated motion – Straight line motion.

UNIT-4:ROBOT PROGRAMMING

Robot Programming: Lead through programming – Robot language structure – Motion commands of move, speed control, workplace, path, frames, end effecter operation, sensor operation and react statement – Program sequence and subroutine – Teach pendant programming – VAL II programming.

UNIT-5:ROBOT APPLICATIONS AND IMPLEMENTATION PRINCIPLES

Robot Applications: Material transfer and machine loading / unloading – Processing applications in spray coating – Assembly and inspection automation – Future applications of robot in mines, under water and space. **Implementation Principles:** Selection of robots in industry applications – Economic analysis of the robot.

TotalHours:45

(9)

(9)

(9)

(9)

COURSEOUTCOMES:

On suc	cessful completion of the course, students will be able to	POs		
CO1	Understand the robot drive systems and internal grippers and external grippers.	P01,P02		
CO2	Recognize the image data and analysis the image processing	P01,P02		
СО3	Understand the basic concepts of robot motion and analysis	P01,P02, P03,P04		
CO4	Know the robot language structure and robot programming.	PO1,PO2,PO4, PO3, PO5		
CO5	Explain the applications of robots in industries and Safety considerations in workplace	P01,P02,P03,P0 4,P05,P06		

TEXT BOOKS:

- 1. Mikell P Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G Odrey and Ashish Dutta, "Industrial Robotics: Technology, Programming and Applications", Tata McGraw-Hill Education Pvt. Ltd, 2/e, 2012.
- 2. K.S. Fu, R.C.Gonzales and C.S.G.Lee, "Robotics: Control, Sensing, Vision and Intelligence", Tata McGraw-Hill Education Pvt. Ltd., Noida ,1/e, 2008,.

REFERENCE BOOKS:

- 2. Introduction to Robotics: Analysis, Control, Applications, 3/e, 2020, Saeed B.Niku, Wiley India Pvt, Ltd., New Delhi.
- 3. Introduction to Robotics: Mechanics and Control, John J. Craig, 3/e, 2008, Pearson Education, New Delhi.
- 4. Robotics: Fundamental Concepts and Analysis, Ashitava Ghosal, 1/e, 2006, Oxford University Press, New Delhi.
- 5. Robotics Technology and Flexible Automation, S.R.Deb and Sankha Deb, 2/e, 2010, Tata McGraw-Hill Education Pvt. Ltd., Noida.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/107106090
- 2. https://nptel.ac.in/courses/112107289
- 3. https://nptel.ac.in/courses/112108093
- 4. https://nptel.ac.in/courses/112104298
- 5. https://nptel.ac.in/courses/112101099

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO.1	3	1	-	-	-	-	-	-	-	-	-	-
CO.2	3	1	-	-	-	-	-	-	-	-	-	-
CO.3	3	1	1	1	-	-	-	-	-	-	-	-
CO.4	3	1	1	1	1	-	-	-	-	-	-	-
CO.5	3	1	1	1	1	1	-	-	-	-	-	-
CO*	3	1	1	1	1	1	-	-	-	-	-	-

CO – PO MAPPING"

III B.Tech-V Semester

200HSM351

GRAPH THEORY WITH APPLICATIONS (OPEN ELECTIVE - 1)

L T P C

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To learn the representation of graphs and understanding the Graph Isomorphism, Sub graph-Vertex degrees, Walk, Paths, Cycles-graph connection, Bipartite graphs.
- 2. To understand the Trees concepts, digraphs, binary relations, Shortest path algorithms and to familiarize the knowledge of graph theory
- 3. To understand the matrix representation of graphs, designing incidence matrix, Adjacency matrix and circuit matrix
- 4. To explore the use of graphs in various applications in Switching and Coding Theory
- 5. To identify the important graph based real time applications of electrical networks such as RLC Networks with Independent sources, LOOP circuits

UNIT - 1: GRAPH THEORY INTRODUCTION

Graph and simple graphs (Complete graphs, Complement of graph)- Graph isomorphism–Sub graph- Vertex degrees, walk, paths, cycles-graph connection and components-Bipartite graphs.

UNIT – 2: DIRECTED GRAPHS AND SHORTEST PATH ALGORITHMS

Trees – Cut edges- Cut vertices-Blocks , Directed graphs types of directed graphs - digraphs and binary relations – directed paths and connectedness - Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm

UNIT - 3: MATRIX REPRESENTATION OF GRAPHS

Introduction - Adjacency matrix - Applications of Adjacency matrix-sufficient condition for isomorphism of graphs-power of an adjacency matrix-Adjacency matrix of a digraph-incidence matrix-circuit matrix-cut set matrix.

UNIT - 4: GRAPHS IN SWITCHING AND CODING THEORY (9)

Contact Networks – Analysis of Contact Networks – Synthesis of Contact Networks – Sequential Switching Networks – Unit Cube and its Graph – Graphs in Coding Theory.

UNIT - 5: ELECTRICAL NETWORK ANALYSIS BY GRAPH THEORY (9)

Introduction - Kirchhoff's current and Voltage laws-Loop currents and Node Voltages- RLC Networks with Independent sources: Nodal analysis, Loop analysis.

TOTAL HOURS: 45

COURSE OUTCOMES:

(On successful completion of the course, students will be able to								
C01	Demonstrate knowledge in reading and writing rigorous mathematical proofs involving introductory aspects of graphs and develop analytical skills in solving graph theoretic problems	PO1,PO2,PO3 PO4							
CO2	Demonstrate knowledge in Trees concepts, digraphs, binary relations, and Develop analytical skills in solving problems involving directed graphs and shortest path algorithm	PO1,PO2,PO3 PO4							
CO3	Demonstrate knowledge in matrix representation of graphs, designing incidence matrix, Adjacency matrix and circuit matrix and explore analytical skills in solving problems involving adjacency matrix and incidence matrix	PO1,PO2,PO3 PO4							

(9)

(9)

(9)

C04	Demonstrate knowledge in significant practical applications of graphs in Switching and Coding Theory; explore analytical skills in solving practical problems using graph theory concepts and Develop skills in designing Mathematical models for real time applications in coding theory.	PO1,PO2,PO3 PO4
CO5	Demonstrate knowledge in significant real time applications of electrical networks such as RLC Networks Independent sources; explore analytical skills in solving practical problems involving using graph theory concepts and Develop skills in designing Mathematical models for real time electrical networks.	PO1,PO2,PO3 PO4

TEXT BOOKS:

- 1. J.P.Trimblay and R.Manohar ,"Discrete mathematical structures with pplications tocomputer science", 27/e, Tata Mc Graw Hill Publications , 2006, New Delhi.
- 2. NarasinghDeo,"Graph Theory with applications to engineering and computer Science",25/e, Printice Hall of India Private Limited, 2003, New Delhi

REFERENCES:

- 1. Clark J. And Holton D.A., " A first look at Graph theory", Allied Publishers, 199
- 2. R.B.Bapat , Graphs and Matrices, Springer, London Dordrecht Heidelberg, New York, 2010 .
- 3. Gary Haggard John Schlipf, Sue Whitesides, "Discrete Mathematics for ComputerScience", 4/e, 2007, Thomson Publication, 2008, New Delhi.
- 4. S.D Sharma , "Operation Research", KedarNath Ram Nath & Co, Meerut . 2007.
- 5. J.A.Bonday and U.S.R. Murthy, "Graph Theory with application", North Holland, 1976.

REFERENCE WEBSITE:

2. https://onlinecourses.nptel.ac.in/noc21_cs48/preview

CO\PO	PO1	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO.1	3	3	3	2	-	-	-	-	-	-	-	-
CO.2	3	3	3	2	-	-	-	-	-	-	-	-
CO.3	3	3	3	2	-	-	-	-	-	-	-	-
CO.4	3	3	3	2	-	-	-	-	-	-	-	-
CO.5	3	3	3	2	-	-	-	-	-	-	-	-
CO*	3	3	3	2	-	-	-	-	-	-	-	-

III B.Tech-V Semester

20CSE355

WEB APPLICATION DEVELOPMENT (SOC) (Common to CSE, CSE(DS))

L T P C 0 1 2 2

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. Learn website development using HTML-CSS-JavaScript.
- 2. Understandtheconceptsofresponsivewebdevelopmentusingthebootstrapfram ework
- 3. Make use of the JQuery java script library to provide interactiveness to the websites.
- 4. Discover how to use Google Charts to provide a better way to visualize data on a website
- 5. Learn Content Management Systems to speed the development process

UNIT1: INTRODUCTION AND HTML

Introduction to web technologies - Fundamentals of HTML - Elements and Tags - Basic HTML5structure –Metadata - Block-Level Elements & Inline Elements - Links (Understand Absolute vs Relative paths) – Lists - Creating tables -Working with images – colors - Canvas and Forms-Interactive elements and Working with Multimedia.

UNIT2: CASCADING STYLE SHEETS

Introduction - CSS selectors - Inserting CSS in an HTML document – Backgrounds - Fonts and Text styles - Creating boxes - Displaying - Positioning and floating elements - Features of CSS3-Mediaqueries.

UNIT3: JAVA SCRIPT AND JQUERY

JavaScript: Overview of Java Script-Java Script functions–Events-Image maps and animations-Java Script objects-Working with browser and document objects. JQuery: Introduction - JQuery selectors - Methods to access HTML attributes – Events – Introduction to AJAX.

UNIT4: PHP AND MySQL

Introduction - Data types - Variables - Constants - Expressions - String interpolation - Control structures - Functions - Arrays - Embedding PHP code in web pages - Object Oriented PHP - PHP Web forms: PHP and web forms - Sending form data to a server - Working with cookies and session-PHP with MySQL: Interacting with the database-preparedstatement-Database transactions.

UNIT5: GOOGLE CHARTS AND OPEN SOURCE CMS

Understand the Usage of Pie chart-Bar Chart-Histogram-Area &Line Charts-Gantt Charts-What is a CMS?-Install CMS-Themes-Plugins.

List of Demo/ Experiments (Only for Skill Enhancement-Not for Exams) (15)

- 1. Designwebpagesusinghtml5whichincludesthefollowing:
 - a) Formatting Text b)Organizing Text c)Using Links and URLs d)Tables
- Designwebpagesusinghtml5whichincludesthefollowing:
 a) Images b)Colors c)Canvas
- 3. Create your Profile Page
- 4. Create a registration form covering all the input types in the format.
- 5. Create a web page embedding audio and video files using html5.
- 6. Make the registration form designed in experiment4 beautiful using CSS (add colorsbackgrounds-change font properties-borders-etc.)

(6)

(6)

4

(6)

(6)

(6)

- 7. Design a simple calculator using JavaScript to perform sum- product- difference- and quotient operations.
- 8. Design & Develop a Shopping Cart Application with features including Add Products-Update Quantity- Display Price (Sub-Total & Total)- Remove items/products from the cart.
- 9. Validate all Fields and Submit the registration form designed in experiment 6 using JQuery.
- 10. Develop an HTML document to illustrate each chart with real-time examples.
- 11. Develop an HTML document to illustrate bootstrap.
- 12. Develop an E-learning website using any CMS

TotalHours:45

COURSE OUTCOMES:

On su able t		POs related to COs
C01	Demonstrate knowledge on web page design elements	PO1-PO3
CO2	Demonstrate knowledge on client-side scripting and server- side scripting	PO1-PO2-PO3
CO3	Analyze user requirements to develop web applications.	PO1-PO2-PO3- PO5
CO4	Design client-server applications using web technologies.	PO1-PO2-PO3- PO5
CO5	Demonstrate problem solving skills to develop enterprise web applications.	PO1-PO2-PO3- PO5

TEXTBOOKS:

- 1. HTML5BlackBook:CoversCSS3-JavaScript-XML-XHTML-AJAX-PHPandJQuery-SecondEdition-2016-DreamtechPress-KogentLearningSolutionsInc.
- 2. W.Jason Gilmore-"BeginningPHPandMySQL"-FourthEdition-2011-Apress.

REFERENCES:

- 1. Deitel and Deiteland Nieto-"Internetand World Wide Web-How to Program"-PrenticeHall-5thEdition-2011.
- 2. Uttam K. Roy- "Web Technologies"-Oxford Higher Education.- 1st edition-10thimpression-2015.
- 3. Stephen Wynkoop and John Burke- "Running a Perfect Website"- QUE- 2nd Edition-1999.
- 4. JeffreyCandJackson-"WebTechnologiesAComputerSciencePerspective"Pearson Education-2011.
- 5. Gopalan N.P.and AkilandeswariJ.-"Web Technology"-PrenticeHallofIndia-2011.

REFERENCE WEBSITE:

- 1. HTML:https://developer.mozilla.org/en-US/docs/Glossary/HTML5
- 2. CSS:https://www.w3.org/Style/CSS/
- 3. JQuery:https://jquery.com
- 4. GoogleCharts:https://developers.google.com/chart
- 5. Wordpress:https://wordpress.comhttps://onlinecourses.nptel.ac.in/noc21_cs04/preview

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	P012
C01	3	-	3	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	2	-	-	-	-	-	-	-
CO4	3	2	3	-	2	-	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	-	-	-	-
CO *	3	2.5	3	-	2	-	-	-	-	-	-	-

20CSM242ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABL T P C(CSE (DS))0 0 3 1.5

PRE-REQUISITES: A course on Programming with Python

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the methods for implementing algorithms using artificial intelligence techniques.
- 2. To explore different algorithms for solving real-world problems.
- 3. To practice and implement various local search algorithms.
- 4. To understand different informed search strategies.
- 5. To Make use of Data sets in implementing the machine learning algorithms.
- 6. To analyze the supervised Learning algorithms.
- 7. To identify and analyze the unsupervised learning algorithms.
- 8. To use different tools and techniques for implementing machine learning algorithms.

List of Experiments:

- 1. Write a Program to Implement Breadth First Search.
- 2. Write a Program to Implement Depth First Search.
- 3. Write a Program to Implement 8-Puzzle problem.
- 4. Write a Program to Implement Water-Jug problem.
- 5. Write a Program to find the solution for Wumpus world problem.
- 6. Write a Program to Implement Simulated Annealing algorithm.
- 7. Write a Program to Implement Travelling Salesman Problem using Python.
- 8. Write a Program to Implement A* Algorithm.
- 9. Demonstrate various data preprocessing steps like Data Cleaning, Data Integration, DataTransformation, Data Reduction or Dimensionality Reduction.
- 10. Write a program to demonstrate the working of the decision tree algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 11. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 12. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

On su	POs related to COs	
CO1	Understand the different searching algorithms for solving problems.	PO1
CO2	Analyze and identify the problem solving techniques.	PO2
СО3	Design and develop various algorithms for solving real world problems	PO3
CO4	Understand and demonstrate various local search algorithms.	PO4
CO5		PO5
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group.	PO9
CO8	Communicate verbally and in written form, the understanding about the experiments.	P010
CO9	Continue updating their skill related to object oriented concepts and implementing programs in future.	P012

REFERENCE BOOKS:

- 1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 4th Edition, PearsonEducation, 2020.
- 2. Wolfgang Ertel, "Introduction to Artificial Intelligence", 2nd Edition, Springer International Publishing, 2017.
- 3. Stephen Lucci, Danny Kopec, "Artificial Intelligence in the 21st Century", Mercury Learning and Information, 3rd Edition, 2018.
- 4. John Hunt, "A Beginners Guide to Python 3 Programming", Springer, 2020.
- 5. SaikatDutt, Subramanian Chandramouli and Amit Kumar Das, "Machine Learning", Pearson, 2019.
- 6. Alpaydin Ethem, "Introduction to Machine Learning", 3rd Edition, PHI learning private limited, 2019.

REFERENCE WEBSITE:

- 1. https://www.tensorflow.org/
- 2. https://github.com/pytorch
- 3. https://keras.io/

СО-РО	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO2	-	3	-	-	-	-	-	-	-	-	-	-	3	2
CO3	-	-	2	-	-	-	-	-	-	-	-	-	3	2
CO4	-	-	-	3	-	-	-	-	-	-	-	-	3	2
CO5	-	-	-	-	2	-	-	-	-	-	-	-	3	2
CO6	-	-	-	-	-	-	-	3	-	-	-	-	3	2
C07	-	-	-	-	-	-	-	-	3	-	-	-	3	2
CO8	-	-	-	-	-	-	-	-	-	3	-	-	3	2
CO9	-	-	-	-	-	-	-	-	-	-	-	3	3	2
CO *	3	3	2	3	2	-	-	3	3	3	-	3	3	2

20CSE356

DATA WAREHOUSING AND MINING LAB (Common to CSE, CSE (DS))

LTP C 0031.5

PRE-REQUISITES: A Course on Data Base management Systems

COURSE EDUCATIONAL OBJECTIVES:

- 1. Understand the data sets- Association Rules
- 2. To Implement Classification on datasets
- 3. To implement Clustering algorithm on datasets.
- 4. To Build Analytical processing
- 5. Learn data mining tasks using R- Python and Weka tool

List of Experiments:

- 1. Introduction to Data Mining with R- Python and Weka tool.
- 2. Download at least three datasets from different the data sources
- 3. Implement Data Import and Export in R- Python and Weka tool
- 4. Carry out Regression and classification model with R- Python and Weka tool.
- 5. Perform Association Rule mining with R- Python and Weka tool.
- 6. Construct Decision Tree using R- Python and Weka tool.
- 7. Perform K-Means and Hierarchical clustering using R- Python and Weka tool.
- 8. Perform Hierarchical Clustering
- 9. Implement Text mining using R- Python and Weka tool.
- 10. Detect outliers in Data- Python and Weka tool.
- 11. Perform Time series clustering in R- Python and Weka tool
- 12. Perform Time series classification in R- Python and Weka tool

Task Resources:

- 1. Andrew Moore's Data Mining Tutorials (See tutorials on Decision Trees and CrossValidation)
- 2. Decision Trees (Source: Tan- MSU)
- Tom Mitchell's book slides (See slides on Concept Learning and Decision Trees) UsingPython Programming
- 4. Data Mining with R Tutorial

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Design different models for solving the problems	PO1
CO2	Develop the mini projects using CASE Tools	PO2
CO3	Analyze the data sets by using Association Rules- Classification and Clustering Techniques.	PO3
CO4	Create a Data Warehouse and perform data accessing	PO4
CO5	Perform Data Preprocessing such as data cleaning- Transformation and Reduction	PO5
CO6	Follow the ethical principles in implementing the programs	PO8
C07	Do experiments effectively as an individual and as a team member in a group	PO9
C08	Communicate verbally and in written form- the understanding about the experiments	PO10
CO9	Continue update skill related to Python and Weka tool Tool and implementing programs in future	PO12

REFERENCE BOOKS:

- 1. Jiawei Han and Micheline Kamber- "Data Mining Concepts and Techniques"-MorganKaufmann Publishers- Elsevier- 3rd Edition- 2011.
- 2. Arun K Pujari- "Data Mining Techniques"- 3rd Edition- Universities Press.
- 3. Pualraj Ponnaiah- "Data Warehouse Fundamentals"- Wiley Student Edition.
- 4. Vikaram Pudi- P Radha Krishna- "Data Mining"- Oxford University Press

REFERENCE WEBSITE:

1. https://nptel.ac.in/courses/106/105/106105174/

CO-PO	PO	PO	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
	1	2										
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
CO7	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	2	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	2	-	3

20MAC351

CONSTITUTION OF INDIA

LTPC

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the Indian constitution, fundamental rights and duties.
- 2. To know the procedure of union government and its administration.
- 3. To know the procedure of governor role, CM and council of ministers and position.
- 4. To know the procedure of district and village level administration.
- 5. To gain the knowledge of electoral system in India.

UNIT -1: INTRODUCTION

Introduction to Indian Constitution - Constitution - Meaning of the term - Indian Constitution -Sources and constitutional history - Features- Citizenship - Preamble - Fundamental Rights and Duties - Directive Principles of State Policy.

UNIT -2: UNION GOVERNMENT AND ITS ADMINISTRATION

Union Government and its Administration Structure of the Indian Union - Federalism - Centre - State relationship - President's Role, power and position - PM and Council of ministers - Cabinet and Central Secretariat -Lok Sabha - Rajya Sabha - The Supreme Court and High Court - Powers and Functions

UNIT -3: STATE GOVERNMENT AND ITS ADMINISTRATION

Governor Role and Position, CM and Council of ministers. State Secretariat: Organization, Structure and Functions

UNIT -4: LOCAL ADMINISTRATION

District's Administration Head - Role and Importance - Municipalities - Mayor and role of Elected Representatives -CEO of Municipal Corporation Pachavati Raj - Functions- PRI - Zilla Parishath -Elected officials and their roles - CEO, Zilla Parishath - Block level Organizational Hierarchy -(Different departments) - Village level - Role of Elected and Appointed officials - Importance of grass root democracy.

UNIT -5: ELECTION COMMISSION

Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

Total Hours: 30

142

(6)

(6)

(6)

(6)

(6)

COURSE *OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs related to COs		
CO1	Understand historical background of the constitution making and its importance for building a democratic India.	PO6, PO8, PO12		
CO2	Understand the functioning of three wings of the government ie., executive, legislative and judiciary.	PO6, PO8, PO12		
СО3	Understand the value of the fundamental rights and duties for becoming good citizen of India.	PO6, PO8, PO12		
CO4	Analyze the decentralization of power between central, state and local self-government	PO6, PO8, PO12		
CO5	Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.	PO6, PO8, PO12		

TEXT BOOKS:

- Durga Das Basu, "Introduction to the Constitution of India", Prentice Hall of IndiaPvt. Ltd.. New Delhi
- 2. Subash Kashyap, "Indian Constitution", National Book Trust

REFERENCE BOOKS:

- 1. J.A. Siwach, "Dynamics of Indian Government & Politics".
- 2. H.M.Sreevai, "Constitutional Law of India", 4th edition in 3 volumes (Universal Law Publication)
- 3. J.C. Johari, " Indian Government and Politics", Hans India
- 4. M.V. Pylee, "Indian Constitution", Durga Das Basu, Human Rights in ConstitutionalLaw, Prentice – Hall of India Pvt. Ltd.. New Delhi

REFERENCE WEBSITE:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	-	-	-	-	-	3	-	3	-	-	-	3
CO.2	-	-	-	-	-	3	-	3	-	-	-	3
CO.3	-	-	-	-	-	3	-	3	-	-	-	3
CO.4	-	-	-	-	-	3	-	3	-	-	-	3
CO.5	-	-	-	-	-	3	-	3	-	-	-	3
CO*	-	-	-	-	-	3	-	3	-	-	-	3

20CSD355 COMMUNITY SERVICE PROJECT EVALUATION

L T P C 0 0 0 1.5

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. Objective is to give an opportunity to the student to get hands on training in industry.
- 2. The course is designed so as to expose the students to industry environment and to take up on-site assignment as trainees or interns.

SCHEME OF INDUSTRY INTERNSHIP:

- 1. At the end of the Industrial Internship- the candidate shall submit a certificate from the organization where he/she has undergone industrial training and also a brief report.
- 2. An industry internship report to be submitted by the individual and along with the internship certificate provided by the organization- whichwill be reviewed and evaluated by a committee constituted by the Head of the Department.
- 3. The evaluation for 100 marks will be carried out internally based on this internship report and a Viva-Voce Examination will be conducted by a Departmental Committee constituted by the Head of the Department/Institution.

On	successful completion of the course- students will be able to	POs
CO1	Demonstrate in-depth knowledge on the selected topic	P01
CO2	Identify- analyze and formulate complex problem chosen for selected work to attain substantiated conclusions.	PO2
CO3	Design solutions to the chosen selected problem.	PO3
CO4	Undertake investigation of selected problem to provide valid conclusions	PO4
CO5	Use the appropriate techniques- resources and modern engineering tools necessary for selected work	PO5
CO6	Apply selected information for sustainable development of the society.	PO6
C07	Understand the impact of selected concept in the context of environmental sustainability.	P07
CO8	Understand professional and ethical responsibilities while executing the selected work.	PO8
CO9	Function effectively as individual and a member in the internship.	PO9
CO10	Develop communication skills- both oral and written for preparing and presenting internship report.	P010

COURSE OUTCOMES:

On	successful completion of the course- students will be able to	POs
CO11	Demonstrate knowledge and understanding of cost and time analysis required for carrying out the internship.	P011
CO12	Engage in lifelong learning to improve knowledge and competence in the chosen area of the selected topic.	P012

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	3	-	-	-	-	-	-
C07	-	-	-	-	-	-	3	-	-	-	-	-
CO8	-	-	-	-	-	-	-	3	-	-	-	-
CO9	-	-	-	-	-	-	-	-	3	-	-	-
CO10	-	-	-	-	-	-	-	-	-	3	-	-
C011	-	-	-	-	-	-	-	-	-	-	3	-
CO12	-	-	-	-	-	-	-	-	-	-	-	3
СО	3	3	3	3	3	3	3	3	3	3	3	3

20CSE361

BIG DATA ANALYTICS (Common to CSE, CSE (DS))

L T P C 3 0 0 3

PRE-REQUISITES: A course on Data Warehousing and Data Mining

COURSE EDUCATIONAL OBJECTIVES:

- 1. To make familiar with the basics of Big Data Analytics platform.
- 2. To apply the skills to manage Hadoop and HDFS.
- 3. To gain knowledge on developing the Map Reduce application.
- 4. To know how to work with Pig and Hive.
- 5. To understand the concepts of HBASE, Zookeeper and Sqoop.

UNIT 1: INTRODUCTION TO BIG DATA

Introduction to Big Data platform- What is Big Data? Big Data Sources-Acquisition-Nuts and Bolts of Big data-Features of Big Data-Security - Compliance - auditing and protection-Evolution of Big Data-Best practices for Big Data Analytics-Big Data characteristics- Volume - Veracity - Velocity - Variety-Structure of Big Data- Exploring the opportunities with Big Data.

UNIT 2: HADOOP ECOSYSTEM AND YARN

Introduction to Hadoop-Data Storage and Analysis- Comparison with Other Systems - A brief history of Hadoop - Apache Hadoop and The Hadoop Ecosystem - The Hadoop Distributed File System - The Design of HDFS-HDFS concepts - The Command Line Interface.

Hadoop ecosystem components - , Hadoop File systems -Schedulers - Fair and Capacity – Hadoop New Features- NameNode High Availability, HDFS Federation, MRv2, YARN, Running MRv1 in YARN.

UNIT 3: MAPREDUCE PROGRAMMING

Developing a Map Reduce Application - How Map Reduce Works - Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort - Map Reduce Types and Formats - Map Reduce Features.

UNIT 4: WORKING WITH PIG AND HIVE

Installing and running pig- An Example- Comparison with Databases- Pig Latin Scripts-User defined functions-Data processing Operators-Pig in Practice.

Installing Hive-Running Hive-Comparison with Traditional Databases – HiveQL – Tables-Querying Data.

UNIT 5: HBASE- ZOOKEEPER – SQOOP

HBasics – Concepts – Example-HBase Versus RDBMS-Praxis – Zookeeper-Installing and Running Zookeeper – Example-Zookeeper Services-Building applications with Zookeeper - Introduction to Sqoop-Database Imports-Working with Imported data-Importing large objects-performing exports. Case Study: Mahout, Spark MLLib, Apache Oozie and Apache Flume.

Total Hours: 45

keeper anu

(9)

(9)

(9)

(9)

(9)

146

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
CO1	Understand the basics of Big data Analytics	PO1, PO2
CO2	Manage Hadoop data storage and file system.	PO1, PO2, PO4
CO3	Design the application using Map Reduce programming	PO1, PO2, PO3
CO4	Perform operations on Pig and Hive	PO1, PO2, PO3, PO5
CO5	Analyze the Hadoop Eco systems like HBASE, Zookeeper and Sqoop	PO1, PO2, PO3, PO4, PO5

TEXT BOOK:

- 1. Frank J Ohlhorst , "Big Data Analytics: Turning big Data in to Big Money", Wiley and SAS Business series, 2012
- 2. Tom White, "HADOOP: The definitive Guide", O Reilly 2012..
- 3. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.

REFERENCES:

- 1. Tom Plunkett, Brian Macdonald et al, "Oracle Big Data Handbook", Oracle Press, 2014.
- 2. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, John Wiley &Sons, 2012.
- 3. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &Sons, 2012.
- 4. Frank J Ohlhorst, "Big Data Analytics: Turning big Data in to Big Money", Wiley and SAS Business series, 2012.
- 5. Arshdeep Bahga, Vijay Madisetti, "Big Data Science& Analytics: A Hands On Approach", VPT, 2016.
- 6. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY BigData Series)", JohnWiley&Sons,2014.

REFERENCE WEBSITES:

- 1. https://www.simplilearn.com/introduction-to-big-data-and-hadoop-tutorial
- 2. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	3	-	-	-	-	-	-	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	3	-	-	-	-	-	-	-
CO5	3	3	3	3	3	-	-	-	-	-	-	-
CO *	3	3	3	3	3	-	-	-	•	-	-	-

20CSD361

DATA VISUALIZATION LTPC (CSE (DS)) 3003

PRE-REQUISITES: A Course on "Artificial Intelligence", Data Mining and Knowledge on Data analytics may be helpful.

COURSE EDUCATIONAL OBJECTIVES:

- 1. To Discuss the importance of Data Visualization
- 2. To Demonstrate story telling
- 3. To understand the environment of Tableau
- 4. To learn variations and uncertainty over time control charts
- 5. To visualize different plots, charts and lines.

UNIT -1: THE IMPORTANCE OF CONTEXT AND CHOOSING AN EFFECTIVE VISUAL (8)

Introduction, the importance of Context-Exploratory vs. explanatory analysis, Choosing and effective visual-Simple Text-Tables-Heatmap-Graphs-Points-Lines-Bars

UNIT -2: CLUTTER IS YOUR ENEMY, FOCUS YOUR AUDIENCE ATTENTION, LESSONS IN STORYTELLING (9)

CLUTTER IS YOUR ENEMY: Clutter, Gestalt principles of visual perception, Proximity, Similarity, Enclosure, Closure, Continuity, Lack of visual order.

FOCUS YOUR AUDIENCE ATTENTION: A brief lesson on memory-Preattentive attributes in text, Graphs- Use color sparingly.

LESSONS IN STORY TELLING: The magic of story- Storytelling in plays- Storytelling and the cinema, written word, Constructing the story- The beginning, middle, end.

UNIT -3: COMMUNICATING DATA

(10) A step in the process, a model of communication, three types of communication problems, six principles of communicating data. Introduction to Tableau: Using Tableau, Tableau products, connecting to data. How much and how many: Communicating how much, communicating how many Ratios and Rates: Ratios, Rates.

UNIT-4: PROPORTIONS AND PERCENTAGES

Part to whole, current to historical, actual to target, Mean and Median, Variation and Uncertainty: Respecting variation, Variation over time-Control charts, Understanding uncertainty.

UNIT-5: MULTIPLE QUANTITIES

Scatter plots, Stacked Bars, Regression and Trend Lines, The Quadrant Chart Changes over time: The origin of time charts, the line chart, the dual axis line chart, the connected scatter plot. MAPS AND LOCATION: One special map, circle maps, filled maps

COURSE OUTCOMES:

On su to,	iccessful completion of the course the student will be able	POs related to COs
CO1	Understand the fundamental of Data visualization	PO1, PO2
CO2	Analyze the power of storytelling and the way to make data a pivotal point in your story	PO1, PO2
CO3	Understand the communication problems and Tableau environment	PO1,PO2, PO3,PO5
CO4	Gained knowledge on variation over time control charts	PO1, PO2, PO4, PO5
CO5	Visualize the data with plots, charts and lines	PO1, PO2,PO3,PO4,PO5

(8)

TOTAL HOURS: 45

(10)

TEXT BOOKS:

- 1. Cole NussbaumerKnaflic, Storytelling with data, Wiley
- 2. Ben Jones, Communicating Data with Tableau, O'Reilly

REFERENCE BOOKS:

- 1. A Julie Steele and NoahIliinsky, Designing Data Visualizations: Representing Informational Relationships,O'Reilly.
- 2. Andy Kirk, Data Visualization: A Successful Design Process, PAKT.
- 3. Scott Murray, Interactive Data Visualization for Web, O'Reilly.

REFERENCE WEBSITES:

- 1. Data Analysis and Visualization Foundations |Coursera
- 2. Data Visualization | Coursera

CO- PO	P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	P011	P012
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	2	-	-	-	-	-	-	-
CO4	3	3	-	2	2	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	-
CO *	3	3	2	2	2	-	-	-	-	-	-	-

III B.Tech - VI Semester

20CSE363

COMPUTER NETWORKS

LTPC

(Common to CSE, CSE(AI&ML), CSE(AI), CSE(DS))

3003

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge on Identify the components required to build different types of networks, understand the OSI and TCP/IP architectures and different data link layer protocols.
- 2. To be exposed to the required functionality at the Ethernet.
- 3. To understand the different routing protocols, internet protocols and IP addressing.
- 4. To learn the use of TCP, UDP protocols.
- 5. To develop skills to apply the concept of application layer protocols.

UNIT 1: INTRODUCTION, PHYSICAL AND DATA LINK LAYER

Network Hardware - Network software - OSI & TCP/IP References models - Guided transmission media

Wireless Transmission – Communication Satellites – Switching - Data link layer design issues

- Error detection and corrections - Stop and Wait protocol - Sliding window protocol.

UNIT 2: MEDIUM ACCESS CONTROL SUB LAYER

Multiple access protocols - Ethernet: Ethernet physical layer - Ethernet MAC sub layer protocol -Switched Ethernet - Fast Ethernet - Gigabit Ethernet- Wireless LANS: The 802.11 Architecture and protocol stack - The 802.11 physical layer - The 802.11 MAC sub layer protocol - The 802.11 frame structure- Bluetooth: Bluetooth Architecture- Bluetooth Protocol Stack-Bluetooth radio layer - Bluetooth link layer.

UNIT 3: NETWORK LAYER

Network layer design issues - Routing algorithms (RIP, OSPF, BGP, DSDV, DSR) – Congestion control algorithms – Internetworking – **The Network Layer in the Internet:** IPv4 - IPv6 - IP Addresses.

UNIT 4: TRANSPORT LAYER

Elements of transport protocols – Congestion Control - The Internet Transport Protocols: UDP - The **Internet Transport Protocols: TCP:** Introduction – TCP Service model – TCP protocol – TCP segment header - TCP Connection Establishment, Connection release - TCP sliding window - TCP timer management – TCP Congestion control.

UNIT 5: APPLICATION LAYER

Domain Name System- Electronic mail (SMTP, POP3, IMAP, MIME) - WWW - HTTP - FTP - Web Services - SNMP

Total Hours: 45

150

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
C01	Demonstrate knowledge on fundamentals of network components and topologies, Analyze the OSI and TCP/IP stack and the different protocols in Data Link layer.	PO1, PO2
CO2	Classify the Media Access Control Protocols and different Internetworking	PO1, PO2
СО3	Demonstrate various types of routing techniques and design the different routing protocols for wired / wireless.	PO1, PO2, PO3, PO4, PO5
CO4	Demonstrate uses of datagram delivery	PO1, PO2, PO3, PO4, PO5
CO5	Apply the different strategies Operations of DNS, FTP, HTTP, Email Protocols, SNMP	PO1, PO2, PO3, PO4

TEXT BOOK:

- 1. Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks", Pearson Education, New Jersey, 5th edition, 2011.
- 2. Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, NewDelhi, 5th edition, 2018.

REFERENCES:

- 1. Michael A.Gallo, William M. Hancock, "Computer Communications and Networking Technologies", 2/e, Cengage Learning, New Delhi, 2005.
- 2. Natalia Olifer, Victor Olifer, "Computer Networks: Principles, Technologies and Protocolsfor Network Design", 1/e, Wiley India, New Jersey, 2006.
- 3. Nader F. Mir, Computer and Communication Network, 1/e, Pearson Education, New Jersey, 2007.
- 4. James F.Kurose K.W.Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", Pearson Education, New Jersey, 6th edition, 2012.
- 5. G.S.Hura and M.Singhal, "Data and Computer Communications", 1/e, CRC Press, Taylorand Francis Group, FL United States, 2001.

REFERENCES WEBSITES:

- 1. https://www.cisco.com/c/en/us/solutions/smallbusiness/resourcecenter/networking/networking -basics.html
- 2. https://memberfiles.freewebs.com/00/88/103568800/documents/Data.And.Computer.Communic ations.8e.WilliamStallings.pdf
- 3. https://nptel.ac.in/courses/106/105/106105080/
- 4. https://nptel.ac.in/courses/106/105/106105081/

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-
CO4	3	3	3	3	2	-	-	-	-	-	-	-
CO5	3	3	3	3	-	-	-	-	-	-	-	-
CO *	3	3	3	3	2	-	-	-	-	-	-	-

(Data Science)

III B. Tech - VI Semester

20CSE354B

CLOUD COMPUTING Common to CSE, CSE(DS))

L T P C 3 0 0 3

PRE-REQUISITES: A course on Database Management Systems

COURSE EDUCATIONAL OBJECTIVES:

1:To provide knowledge on different types of Computing Systems and types of Cloud Computing Basics.

2: To describe the different services of cloud

3: To describe the Privacy and security aspects of cloud.

4: To know common standards for Cloud

5: To develop skill to setup our own private cloud and to Know various applications of Cloud.

UNIT 1: INTRODUCTORY CONCEPTS AND OVERVIEW

Distributed systems - High performance cluster computing - Grid computing - Virtualization - Meaning of the terms cloud and cloud computing - cloud based service offerings - Grid computing versus Cloud computing - Benefits of cloud model - limitations -legal issues - Key characteristics of cloud computing - Challenges for the cloud - Public cloud – Private cloud – Hybrid cloud.

UNIT 2: CLOUD WEB SERVICES, BUILDING CLOUD NETWORKS

Infrastructure as a service - Platform-as-a-service - Software-as-a-Service - Building cloud networks - Evolution from the MSP model to cloud computing and software-as-a-Service - The cloud data center - SOA as step toward cloud computing - Basic approach to a data center-based SOA

UNIT 3: FEDERATION, PRESENCE, IDENTITY, PRIVACY AND SECURITY IN THE CLOUD(9)

Federation in the cloud - Presence in the cloud - Privacy and its relation to cloud-based information system - Security in the Cloud - Cloud security challenges - Software-as-a-Service security

UNIT 4: COMMON STANDARDS IN CLOUD COMPUTING - END USER ACCESS TO CLOUD COMPUTING (9)

The open cloud consortium - The distributed management task force - Standards for application developers - Standards for messaging - Standards for security - YouTube - Zimbra - Facebook - Zoho - DimDim collaboration - Smartphone - Mobile operating systems for smart phones - Mobile platform virtualization - Future trends.

UNIT 5: CASE STUDY

Case studies:1 - Amazon EC2 - Amazon simple DB - Amazon S3 - Amazon cloud front.

Case studies:2 - Google App Engine - Google web tool kit - Microsoft Azure Services platform - Microsoft dynamic CRM

Case studies:3 - Setting up your own private cloud using open source tools.

Total Hours: 45

(9)

(9)

TEXT BOOKS:

 Cloud Computing implementation- management and security, 1/e, John W. Rittinghouse, James F. Ransome ,2009, CRC Press, Taylor & Francis group, US.
 Cloud Computing: A practical approach, 1/e, Anthony T.velte, TobyJ.velte Robert Elsenpeter-2009, Tata McGraw Hill edition, India.

REFERENCES:

1. Cloud Computing: Principles and Paradigms , 1/e, RajkumarBuyya, James Broberg and Andrzej Goscinski, 2013, Wiley Pvt. Ltd, India.

2. Cloud Computing: Concepts, Technology& Architecture, 1/e, Thomas Erl, Ricardo Puttini and ZaighamMahmood, 2013, PH, New Delhi.

3. Cloud Application Architectures, 1/e, George Reese, 2009 Oreillypublishers, California.

4. Cloud Computing and SOA convergence in your enterprise, 1/e, David S. Linthicum, Addison, Wesley, Boston, 2010, US.

5. Cloud Computing: SaaS - PaaS - IaaS- Virtualization- Business Models- Mobile, Security and More, 1/e, Kris Jamsa, Jones& Bartlett Learning, Massachusetts, 2013, US.

CO-PO	MAPPING:	
-------	-----------------	--

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	3	-	-	-	-
CO4	3	-	-	-	-	2	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	2	-	-	3
CO *	3	3	3	-	2	2	-	3	2	-	-	3

III B.Tech - VI Semester

20CSE364A

COMPUTER GRAPHICS AND ANIMATIONS L TPC 3 0 0 3 (Common to CSE, CSE(DS))

PRE-REQUISITES: A Course on Data mining and Data warehousing

COURSE EDUCATIONAL OBJECTIVES:

- 1. To discuss the concept of predictive analytics.
- 2. To learn about Data understanding and Data preparation.
- 3. To Illustrate the uses and applications of Predictive Analytics
- 4. To Demonstrate building of Predictive Analytics models
- 5. To implement appropriate performance measures for predictive models

UNIT 1: INTRODUCTION

Overview of graphics systems - Video display devices, Raster scan systems, Random scan systems, Graphics Software - Output primitives – points and lines, line drawing algorithms, circle and ellipse generating algorithms - Boundary fill and Flood fill algorithms.

UNIT 2: TWO DIMENSIONAL GRAPHICS

Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations - Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; window-to-viewport coordinate transformation, Two dimensionalviewing functions - clipping operations – point, line, and polygon clipping algorithms.

UNIT 3: THREE DIMENSIONAL GRAPHICS

Three dimensional concepts - Three dimensional object representations - Polygon surfaces- Polygon tables - Curved Lines and surfaces - Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces -Transformation and Viewing: Three dimensional geometric and modeling transformations - Translation, Rotation, Scaling, composite transformations - Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Visible surface detection methods.

UNIT 4: ILLUMINATION AND COLOUR MODELS

Light sources – basic illumination models – halftone patterns and dithering techniques - Propertiesof light – Standard primaries and chromaticity diagram - Intuitive colour concepts – RGB colour model – YIO colour model – CMY colour model – HSV colour model – HLS colour model.

UNIT 5: ANIMATIONS & REALISM 10 ANIMATION GRAPHICS

Design of Animation sequences – animation function – raster animation – key frame systems – motion specification - morphing - tweening - Computer Graphics Realism: Tiling the plane - Recursively defined curves – Koch curves – C curves – Dragons – turtle graphics – ray tracing.

154

Total Hours: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to Cos
CO1	Design two dimensional graphics	PO1,PO2,PO3
CO2	Apply two dimensional transformations.	PO1,PO2
CO3	Design three dimensional graphics and Apply three dimensional transformations.	PO1,PO2,PO3
CO4	Apply Illumination and color models.	PO1,PO2
CO5	Design animation sequences.	PO1,PO2,PO3,PO4,PO5

TEXT BOOKS:

- John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley, "Computer Graphics: Principles and Practice", 3rd Edition, Addison-Wesley Professional, 2013.
- 2. Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 .

REFERENCES:

- 1. Donald Hearn and M. Pauline Baker, Warren Carithers, "Computer Graphics With Open GL", 4th Edition, Pearson Education, 2010.
- 2. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and BartlettPublishers, 2006.
- 3. Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.
- 4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, KelvinSung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
- 5. William M. Newman and Robert F.Sproull, "Principles of Interactive Computer Graphics", McGrawHill 1978.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/103/106103224/
- 2. https://www.skillshare.com/browse/animation

CO- PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	3	3	-	-	-	-	-	-	-
CO *	3	3	2	3	3							

20CSE364B

INTERNET OF THINGS (Common to CSE, CSE(DS))

LTPC 3003

PRE-REQUISITES: A course on Computer Networks

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the fundamentals of Internet of Things.
- 2. To learn about Building state of the art architecture in IoT.
- 3. To learn about basis of IOT protocols.
- 4. To build a small low-cost embedded system using Raspberry Pi and ARDUINO,
- 5. To apply the concept of Internet of Things in the real-world scenario.

UNIT I: Introduction To IoT

Introduction to Internet of Things -Definition and Characteristics of IoT, Physical Design of IOT- IoT Protocols -Logical Design of IoT - IoT communication models - IoT Communication APIs - IoT enabled Technologies- Wireless Sensor Networks - Cloud Computing - Big data analytics - Communication protocols - Embedded Systems.

UNIT II: M2M and IoT Architecture

The Vision - Introduction - From M2M to IoT. M2M high-level ETSI architecture - IETF architecture forIoT - OGC architecture - IoT reference model - Domain model - information model - functional model - communication model - IoT reference architecture.

UNIT III: IoT Protocols

Protocol Standardization for IoT – Efforts – M2M and WSN Protocols – SCADA and RFID Protocols – Unified Data Standards - Protocols - IEEE 802.15.4 - BACnet Protocol - Modbus- Zigbee Architecture - Network layer - 6LowPAN - CoAP - Security

UNIT IV: Building IOT With Raspberry Pi & Arduino

Building IOT with RASPERRY PI- IoT Systems - Logical Design using Python – IoT Physical Devices & Endpoints - IoT Device -Building blocks -Raspberry Pi -Board - Linux on Raspberry Pi - Raspberry Pi Interfaces - Programming Raspberry Pi with Python - Other IoT Platforms - Arduino

UNIT V: Case Studies And Real-World Applications

Real world design constraints - Applications - Asset Management-Industrial automation- smart grid-Commercial building automation- Smart cities - participatory sensing - Data Analytics for IoT -Software & Management Tools for IoT Cloud Storage Models & Communication APIs - Cloud for IoT -Amazon Web Services for IoT.

Course Outcomes:

On su	accessful completion of the course, students will be able to	POs related to
		COs
CO1	Demonstrate knowledge on fundamentals of Internet of Things and its functionalities.	PO1, PO2
C02	Demonstrate knowledge on Building state of the art architecture in IoT.	PO1, PO2
CO3	Analyze various protocols for IoT	PO1, PO2
CO4	Design a portable IoT using Raspberry Pi	PO1, PO2, PO3, PO4

(9)

(9)

(9)

(9)

(9)

Total Hours: 45

CO5	Deploy an IoT application and connect to the cloud using Raspberry Pi & ARDUINO and apply the concept of Internet of Things in thereal- wo rld scenario.	PO1, PO2, PO3, PO4, PO5

TEXT BOOKS:

- 1. Internet of Things A hands-on approach, Arshdeep Bahga, Vijay Madisetti, 2015, Universities Press
- From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, 1 edition, Vlasios Tsiatsis, Stamatis Karnouskos, Jan Holler, David Boyle, Catherine Mulligan, 2014 Academic Press

REFERENCES:

- 1. Internet of Things (A Hands-on-Approach), 1stEdition, Vijay Madisetti and Arshdeep Bahga, 2014, VPT.
- 2. Rethinking the Internet of Things: A Scalable Approach to Connecting Everything,1st Edition, Francis daCosta, Apress Publications, 2013
- 3. Architecting the Internet of Things, Bernd Scholz-Reiter, Florian Michahelles, ISBN 978- 3842-19156-5, Springer.
- 4. The Internet of Things Key Applications and Protocols, Olivier Hersent, David Boswarthick, Omar Elloumi, ISBN 978-1-119-99435-0, Wiley Publications.
- 5. The Internet of Things in the Cloud: A Middleware Perspective, HonboZhou , 2012, CRC Press

РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
со	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	2		-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	2	2			-	-	-	-	-	-	-	-
CO4	2	2	3	3	-	-	-	-	-	-	-	-
CO5	3	3	2	2	3	-	-	-	-	-	-	-
co*	2.6	2.4	2.5	2.5	3	-	-	-	-	-	-	-

III B.Tech-VI SEMESTER

200HSM361

LASERS AND FIBER OPTICS (OPEN ELECTIVE - 2) LT P C 3 0 0 3

PRE-REQUISITES NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To acquire knowledge on fundamentals of LASERS
- 2. To study the working of different types of LASERS
- 3. To develop knowledge on applications of LASERS in various fields
- 4. To gain knowledge in fundamentals of Optical fiber, construction, types, and attenuations
- 5. To develop knowledge on applications of Optical fibers in various fields

UNIT- I: LASER INTRODUCTION

Introduction- Spontaneous and stimulated emission of radiation- Properties of lasers (monochromacity, directionality, coherence and brightness) - Conditions for laser action: population inversion- Pumping and different pumping mechanisms- Einstein coefficients and relation among the coefficients.

UNIT – II: TYPES OF LASERS

Nd-YAG laser- He: Ne laser- Semiconductor laser (GaAs)- Argon Ion Laser-CO2 Laser

UNIT – III: APPLICATIONS OF LASERS

Lasers in Holography- Laser in fusion reaction- Lasers in Raman spectroscopy- Lasers in industry -Lasers in isotope separation- Lasers in medicine.

UNIT - IV: OPTICAL FIBERS

Introduction- Construction of fiber – Working principle of optical fiber (total internal reflection)- Propagation of light through the fibers- Numerical aperture , Acceptance angle and Acceptance cone -Fiber types: Refractive index profile and ray propagation- Step and graded index fibers -Attenuation in fibers: Attenuation coefficient and different loss mechanisms.

UNIT – V: APPLICATIONS OF FIBERS

Fiber optic communication system(block diagram)- Sensing applications of fibers: Pressure sensor, Liquid level sensor, Displacement sensor, Chemical sensor – Optical fibers in medicine (endoscopes) - Optical fibers in computer networks (block diagram).

TOTAL HOURS: 45

(10)

(8)

(9)

COURSE OUTCOMES

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Acquire the basic knowledge on LASERS	PO1, PO12
CO2	Understand different types of LASERS	PO1, PO12
CO3	Develop knowledge on different applications of LASERS	PO1, PO12
CO4	Acquire the basic knowledge on Optical Fibers	P01,P012
CO5	Develop knowledge on different applications of Optical Fibers	P01,P012

REFERENCE BOOKS:

- 1. K.Thyagarajan and A.K.Ghatak "Lasers Theory and Applications " Macmillan India Limited, New Delhi.
- 2. B.BLaud "Lasers And non-Linear Opics" second edition, NewAge International(P) limited, Publishers, New Delhi.
- 3. John Powers, Richard D Irwin "An Introduction to Fiber Optic Systems", Second Edition.
- 4. M.R.Srinivasan" Physics for Engineers" -, New Age International, 2009

CO/PO	P01	PO2	PO3	P04	PO5	PO6	P07	P08	PO9	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	3	-	-	-	-	-	-	-	-	-	-	1
CO4	3	-	-	-	-	-	-	-	-	-	-	1
CO5	3	-	-	-	-	-	-	-	-	-	-	1
СО	3	-	-	-	-	-	-	-	-	-	-	1

III B.Tech. - VI Semester

200CIV361

BUILDING TECHNOLOGY (OPEN ELECTIVE - 2)

L T P C 3 - - 3

PRE-REQUISITES: A course on building materials their manufacturing process and utilization in low-cost housing techniques

COURSE EDUCATIONAL OBJECTIVES:

- 1. To teach various types of building materials their manufacturing process and utilization in low-cost housing techniques
- 2. To teach the functions and manufacturing process of glass and plastic materials that are commonly used in building construction
- 3. To teach various types of thermal and acoustic insulation materials used in building construction
- 4. To teach the functions and importance of various structural components
- 5. To teach in detail about the materials like paints and floor finishes meant for interior works

UNIT I : BASICS TERMINOLOGY

Overview of the course, basic definitions, buildings-types-components-economy, and designprinciples of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

UNIT II: TERMITE PROOFING

Termite proofing: Inspection-control measures and precautions-lighting protection of buildingsgeneral principles of design of openings-various types of fire protection measures to be considered while planning a building.

UNIT III: VERTICAL TRANSPORTATION IN A BUILDING

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairs-planning of stairs-other modes of vertical transportation –lifts-ramps- escalators.

UNIT IV PREFABRICATION SYSTEMS IN RESIDENTIAL BUILDINGS (9)

Prefabrication systems in residential buildings-walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

UNIT V: ACOUSTICS

Acoustics –effect of noise –properties of noise and its measurements, principles of acoustics of building. Sound insulation-importance and measures

TOTAL HOURS: 45

(9)

(9)

(9)

COURSE OUTCOMES:

On suc to	cessful completion of this course the student will be able	POs related to COs
CO1	Understand the principles in planning and design the buildings	P01, P02
CO2	To get different types of buildings, principles and planning of the building	P01, P02 ,
СО3	To know the different methods of termite proofing in buildings	P01, P02
C04	Know the different methods of vertical transportation in buildings.	PO1, PO2 , PO3, PO4
C05	Know the implementation of prefabricated units in buildings and the effect of earthquakes on buildings.	P01, P02

TEXT BOOKS:

- 1. "Building construction by Varghese", PHI Learning Private Limited $2^{\rm nd}$ Edition 2015
- 2. Punmia.B.C, Jain.A.K and Jain.A.K Laxmi Publications "Building construction" 11th edition 2016

REFERENCE BOOKS:

- 1. National Building Code of India, Bureau of Indian Standards
- 2. Building construction-Technical teachers training institute, Madras, Tata McGraw Hill.
- 3. Building construction by S.P.Arora and S.P.Brndra Dhanpat Rai and Sons Publications, New Delhi 2014.

REFERENCE WEBSITES:

1. https://nptel.ac.in/courses/105102206 https://nptel.ac.in/courses/105103206

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	2	3	-	-	-	-	-	-	-	-	-	-
CO.2	1	3	-	-	-	-	-	-	-	-	-	-
CO.3	2	3	-	-	-	-	-	-	-	-	-	-
CO.4	1	1	3	3	-	-	-	-	-	-	-	-
CO.5	2	3	-	-	-	-	-	-	-	-	-	-
CO *	1.6	2.6	3	3	-	-	-	-	-	-	-	-

III B.Tech – VI Semester

200EEE361

POWER PLANT ENGINEERING (OPEN ELECTIVE - 2) LT P C 3 0 03

PRE-REQUISITES: Nil.

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the working principles of steam power plants.
- 2. To understand the working principles of diesel and gas turbine power plant
- 3. To explain the working of nuclear power plant and safety measures.
- 4. To know the working of hydroelectric power plant and other energy sources
- 5. To learn the economics, Energy management and environmental issues.

UNIT -1: STEAM POWER PLANT

Introduction to the sources of energy – Resources and development of power in India. **Steam Power Plant:** Plant layout – Working of different circuits – Types of coal – Properties of coal – Coal handling system – Ash handling system – Feed water treatment. **Combustion Process:** Stages of combustion – Overfeed and underfeed stoker firing – Stoker firing of coal – Pulverized coal firing system – Cyclone furnace – Fluidized bed combustion system – Cooling towers and heat rejection.

UNIT -2: DIESEL AND GAS TURBINE POWER PLANT

Diesel Power Plant: Introduction – IC Engines, types, construction – Plant layout with auxiliaries – Fuel supply system, air starting equipment, lubrication and cooling system – Super charging. **Gas Turbine Power Plant:** Introduction – Classification – Construction – Layout with auxiliaries – Principles of working of closed and open cycle gas turbines – Combined cycle power plants and comparison.

UNIT -3: NUCLEAR POWER PLANT

Basics of nuclear engineering– Fuels and nuclear reactions – Layout and subsystems – Reflectors – Pressurized water reactor (PWR) – Boiling water reactor (BWR) – Canada Deuterium Uranium reactor (CANDU) – Gas cooled and liquid metal fast breeder reactor – Heavy water reactor – Working and comparison – Safety measures for nuclear plants.

UNIT -4: HYDROELECTRIC POWER PLANT AND RENEWABLE ENERGY SOURCES (9)

Hydroelectric Power Plant: Water power – Hydrological cycle – Hydrographs – Storage and pondage – Classification of dams and spill ways – Hydroelectric typical plant layout and components – Pumped storage power plants – Selection of turbines. **Renewable Energy Sources:** Construction and working principle of wind, tidal, solar photo voltaic, solar thermal, geo thermal, biogas and fuel cell systems.

UNIT -5: ENERGY MANAGEMENT, ECONOMICS AND ENVIRONMENTAL ISSUES (9) Energy Management: Types of loads – Load distribution and sharing – Load curve – Demand factor – Average load – Load factor – Diversity factor – Cost of electrical energy – General arrangement of power distribution – Economics in power plant selection and power generation. **Environmental Issues:** Effluents from power plants – Impact on environment – Pollutants – Pollution standards – Methods of Pollution control – Control of waste disposal and recovery – Waste disposal options for coal and nuclear power plants.

Total Hours: 45

(9)

(9)

COURSE OUTCOME

On su	ccessful completion of the course, students will be able to	POs
CO1	Know the working principles of steam power plants and analyzes its performance.	P01, P02
CO2	Explain the working of diesel and gas turbine power plant	P01, P02
соз	Understand the working principles of nuclear power plant and safety measures	P01, P02, P07, P012
CO4	Explain the working of hydroelectric power plant and other renewable energy sources	P01, P02, P07, P012
C05	Describe the economics, Energy management environmental issues of power generation	P01, P02, P07, P011, P012

TEXT BOOKS:

- 1. P.K.Nag, "Power Plant Engineering", McGraw-Hill Education Pvt. Ltd., New Delhi, 4/e, 2014.
- 2. R.K Hegde, "Power Plant Engineering", Pearson Education, India, 1/e, 2015.

REFERENCE BOOKS:

- 1. M. M. El-Wakil, "Power Plant Technology", Tata McGraw-Hill, New Delhi, 1/e, 2010.
- 2. Arora and S. Domkundwar, "A Course in Power Plant Engineering", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 6/e, 2012.
- 3. G.D.Rai, "Introduction to Power Plant Technology", Khanna Publishers, New Delhi, 3/e, 2012.
- 4. G.R. Nagpal and S.C. Sharma, "Power Plant Engineering", Khanna Publisher, New Delhi, 16/e, 2004.
- 5. R.K.Rajput, "A Text Book of Power Plant Engineering", Laxmi Publications (P) Ltd., New Delhi, 5/e, 2016.

REFERENCE WEBSITE:

- 1. <u>https://nptel.ac.in/courses/112/107/112107291/</u>
- 2. https://nptel.ac.in/courses/112/103/112103277/
- 3. <u>https://nptel.ac.in/courses/112/107/112107216/</u>
- 4. https://nptel.ac.in/courses/103/103/103103206/
- 5. <u>https://nptel.ac.in/courses/112/103/112103243/</u>

		0										
CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
CO.1	3	1	-	-	-	-	-	-	-	-	-	-
CO.2	З	1	-	-	-	-	-	-	-	-	-	-
CO.3	3	1	-	-	-	-	1	-	-	-	-	1
CO.4	З	1	-	-	-	-	1	-	-	-	-	1
CO.5	3	1	-	-	-	-	1	-	-	-	1	1
CO*	3	1	-	-	-	-	1	-	-	-	1	1

III B.Tech.-VI Semester

200MEC361

3D PRINTING CONCEPTS (OPEN ELECTIVE - 2)

L T P C 3 - - 3

(9)

PRE-REQUISITES:NIL

COURSEEDUCATIONALOBJECTIVES:

- 1. To understand the need for additive manufacturing technology.
- 2. To learn the design for additive manufacturing, CAD modeling and printing process.
- 3. To know the parameters and process of liquid and solid based additive manufacturing processes.
- 4. To explain the powder based additive manufacturing process and material jetting.
- 5. To demonstrate the post processing techniques and applications of AM process

UNIT-1:OVERVIEW OF ADDITIVE MANUFACTURING(AM)

Additive V/s Conventional Manufacturing / CNC – Rapid prototyping – Rapid Tooling – Rapid manufacturing – Generic AM process – Development of AM technology –Use of layers – Classification of AM process – Basic steps for AM process – Differentiation between photo polymer, powder based, molten material, solid sheets and metal system.

UNIT-2:CAD MODELING AND DESIGN FOR ADDITIVE MANUFACTURING (9)

CAD Modeling: Preparation of CAD models – Data processing – STL format. **DFAM:** Partorientation and structure generation – Removal supports – Hollowing out parts – Undercuts – Inter locking features – Reduction of part and identification – Model slicing – Tool path generation. **Printing Processes:** Droplet formation technologies – Continuous mode–Drop on demand mode– Bio-plotter.

UNIT-3:LIQUID AND SOLID BASED ADDITIVE MANUFACTURING PROCESSES (9)

Principle, materials, properties, process and applications of Stereo lithography (SLA), Poly Jet, Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM) and Ultrasonic Consolidation.

UNIT-4:POWDER BASED ADDITIVE MANUFACTURING PROCESSES (9)

Principle, materials, properties, process and applications of Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), Laser Engineered NetShaping (LENS) and Binder Jetting.

UNIT-5:POST PROCESSING TECHNIQUES AND APPLICATIONS

Product Quality: Support material removal – Surface texture improvements – Accuracy improvements – Aesthetic improvements – Preparation for use of pattern –Propertyenhancementusingthermalandnon-thermaltechniques–Inspectionandtesting– Defects and their causes. **Applications:** Additive Manufacturing application of aerospace,electronics,healthcare,defense,automotive,construction,foodprocessing,machin etool Business opportunities and future directions of AM.

Total Hours: 45

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
C01	Understand the need and development of additive manufacturing technology	P01,P02
CO2	Explain the design for additive manufacturing, CAD modeling, printing process	P01,P02,P03
СОЗ	Illustrate the process of liquid and solid based additive manufacturing processes	P01,P02,P03
CO4	Explain the powder based additive manufacturing process and material jetting	P01,P02,P03
CO5	Summarize the post processing techniques and applications of AM process	P01,P02,P03

TEXTBOOKS:

- 1. IanGibson, David W.Rosen and Brent Stucker, "Additive ManufacturingTechnologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing", Springer, 2/e, 2015.
- 2. Chee Kai Chua, Kah Fai Leong and Chu Sing Lim, "Rapid Prototyping: Principles and Applications", World ScientificPublishers, 3/e, 2010.

REFERENCEBOOKS:

- 1. T.S. Srivatsan and T.S. Sudarshan, "Additive manufacturing: Innovations, AdvancesandApplications", Taylor& FrancisGroup, LLC.
- 2. BandarAlMangour, "AdditiveManufacturingofEmergingMaterials", Springer, 2018.
- 3. L. Jyothish Kumar, Pulak M. Pandey and David Ian Wimpenny, "3D Printing andAdditiveManufacturingTechnologies", Springer NatureSingaporePvtLtd, 2019.
- 4. Rafiq Noorani, "3D Printing: Technology, Applications and Selection", CRC Press, Taylor&FrancisGroup, 2018.

REFERENCEWEBSITE:

- 1.<u>https://nptel.ac.in/courses/112/103/112103306/</u>
- 2.https://nptel.ac.in/courses/112/104/112104162/
- 3.<u>https://nptel.ac.in/courses/112/107/112107078/</u>
- 4.<u>https://nptel.ac.in/courses/112/107/112107077/</u>

-													
	CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
	CO.1	3	2	-	-	-	-	-	-	-	-	-	-
	CO.2	3	2	1	-	-	-	-	-	-	-	-	-
	CO.3	3	2	1	-	-	-	-	-	-	-	-	-
	CO.4	3	2	1	-	-	-	-	-	-	-	-	-
	CO.5	3	2	1	-	-	-	-	-	-	-	-	-
	CO*	3	2	1	-	-	-	-	-	-	-	-	-

III B.Tech. - VI Semester

200ECE361

COMMUNICATION NETWORKS (OPEN ELECTIVE - 2)

L T P C 3 - - 3

(9)

(9)

(9)

(9)

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. Build an understanding of the fundamental concepts of computer networking.
- 2. Familiarize the student with the basic taxonomy and terminology of the computer networking area.
- 3. Introduce the student to advanced networking concepts.
- 4. Preparing the student for entry Advanced courses in computer networking.
- 5. Allow the student to gain expertise in some specific areas of networking.

UNIT -1: INTRODUCTION TO DATA COMMUNICATION

Introduction: Network Topologies, Protocols & Standards, Layered Architecture LAN, WAN, MAN. OSI Reference Model, TCP/IP Reference Model, Guided and Unguided Media

UNIT -2: DATA LINK LAYER

Data Link Layer: Design Issues, Framing – Error Control – Flow Control, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols, ARQ schemes, HDLC-PPP-Ethernet- IEEE 802.3,4,5 Protocols, Wireless LAN- the 802.11 Architecture and ProtocolStack-The802.11 Physical Layer- The802.11 MAC Sub layer Protocol-The 805.11 Frame Structure-Services.

UNIT -3: MAC LAYER AND ROUTING ALGORITHM

The Medium Access Control Sub layer - The Channel Allocation Problem - Static Channel Allocation Assumptions for Dynamic Channel Allocation, Multiple Access Protocols-Aloha-CSMA Protocols Collision - Free Protocols, Need for Internetworking, Design Issues, Addressing, Internet Protocol (IPv4/IPv6), Virtual Circuit and Datagram Networks, Routing Algorithms, Congestion Control Algorithms.

UNIT -4: TRANSPORT LAYER

Transport layer: UDP, TCP, Congestion Control mechanisms, QOS, Techniques to improve QOS.

UNIT -5: COMMUNICATION INTERFACE AND COMMUNICATION BUSES (9)

Application Layer: Cryptography and network security, DNS, Electronic Mail, FTP, HTTP, SNMP,DHCP.

Total Hours: 45

166

COURSE OUTCOMES:

On se to	uccessful completion of the course, Students will be able	POs
CO1	Independently understand basic computer network technology.	P01, P02,P03
CO2	Understand and explain Data Communications System and its components.	PO1, PO2, PO3, PO4
соз	Analysis the different types of network topologies and protocols and Enumerate the layers of the OSI model and TCP/IP.	P01, P02, P03,
CO4	Identify the different types of network devices and their functions within a network.	P01, P02, P04
CO5	Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation.	P01, P02, P04

TEXT BOOKS:

- 1. Tanenbaum and David J Wetherall, "Computer Networks", Pearson Edu., 5th Edition, 2010.
- 2. Behrouz A. Forouzan, Firouz Mosharraf, "Computer Networks: Top Down Approach" McGraw Hill Education, 1st Edition.

REFERENCE BOOKS:

- 1. Larry L. Peterson and Bruce S. Davie, "Computer Networks A Systems Approach", Morgan Kaufmann/Elsevier, 5th Edition, 2011.
- 2. William Stallings, "Data & Computer Communication", Pearson Education India, 10/e, 2014.
- 3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top–Down Approach Featuring the Internet", Pearson Education, 6th Edition, 2013.

REFERENCE WEBSITE:

- 1. https://www.javatpoint.com/computer-network-tutorial
- 2. https://www.sciencedirect.com/topics/computer-science/data communication network

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	3	3	-	-	-	-	-	-	-	-	-
CO2	2	3	2	3	-	-	-	-	-	-	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-
CO4	3	2	-	3	-	-	-	-	-	-	-	-
CO5	3	2	-	3	-	-	-	-	-	-	-	-
CO*	2.8	2.6	2.3	3	-	I	-	-	-	-	-	-

III B.Tech- VI Semester

20HSM231

SOFT SKILLS (SOC) (Common to All Branches) L T P C 0 1 2 2

(9)

PRE-REQUISITE: NIL

COURSE OBJECTIVES:

- 1. To encourage all round development of the students by focusing on soft skills
- 2. To make the students aware of critical thinking
- 3. To develop problem-solving skills and decision making
- 4. To develop Emotional Intelligence and Stress Management
- 5. To develop leadership skills and to function effectively with heterogeneous teams

UNIT -1: Soft Skills & Communication skills

Introduction, meaning, significance of soft skills- definition, Significance, types of communication skills Intrapersonal & Inter-personal skills-Verbal and Non-verbal Communication

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – selfexpression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Groupleader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speechesconvincing-negotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation

UNIT -2: CRITICAL THINKING

Active Listening – Observation – Curiosity – Introspection – Analytical Thinking– Open-mindedness – Creative Thinking

Activities: Gathering information and statistics on a topic - sequencing - assorting - reasoning

- critiquing issues -placing the problem - f inding the root cause - seeking viable solution

- judging with rationale - evaluating the views of others - Case Study, Story Analysis

UNIT -3: PROBLEM SOLVING & DECISION MAKING

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution

Methods of decision making – Effective decision making in teams – Methods & Styles.

Activities: Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important prof

essional, careerand organizational decisions and initiate debate on the appropriateness of the decision.

Case Study & Group Discussion

(9)

(DATA SCIENCE) UNIT -4: EMOTIONAL INTELLIGENCE & STRESS MANAGEMENT

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self- Regulation –Stress factors – Controlling Stress – Tips.

Activities: Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, and sympathy, and confidence, compassion in theform of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT-5:LEADERSHIP SKILLS

Team-Building – Decision-Making – Accountability – Planning – Public Speaking – Motivation –Risk- Taking - Team Building - Time Management

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice –sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership – Mahendar Singh Dhoni etc.

TOTAL HOURS: 45

COURSE OUTCOMES:

On su able t	ccessful completion of the course, students will be	POs related to COs
CO1	Demonstrate knowledge effectively on Soft Skill & Communication Skills	PO1, PO6, PO7, PO8, PO9, PO10, PO12
CO2	Demonstrate knowledge on Critical Thinking	PO1, PO6, PO7, PO8, PO9, PO10, PO12
соз	Solve problems and take appropriate decisions	PO1, PO2, PO6, PO7, PO8, PO9, PO10, PO12
CO4	Effectively manage Emotional Intelligence and Stress Management	PO1, PO6, PO7, PO8, PO9, PO10, PO12
CO5	Function effectively as a leader and with heterogeneous team	PO1, PO6, PO7, PO8, PO9, PO10, PO11, PO12

TEXTBOOKS:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra Barun K.)Publisher:OxfordUniversity Press; Pap/Cdr edition (July 22, 2012)
- Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr</u> <u>ShikhaKapoor</u>Publisher : IK International Publishing House; 0 edition (February 28, 2018)

(9)

REFERENCE BOOKS:

- 1. Soft skills: personality development for life success by Prashant Sharma, BPBpublications2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- 3. Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: NotionPress
- 6. Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: VayuEducationof India.

REFERENCE WEBSITES:

- 1. https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-b001_q
- 2. <u>https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHIsQFwJZel_j2PUy0pwjVUgj7KIJ</u>
- 3. https://youtu.be/-Y-R9hDI7IU
- 4. <u>https://youtu.be/gkLsn4ddmTs</u>
- 5. <u>https://youtu.be/2bf9K2rRWwo</u>
- 6. <u>https://youtu.be/FchfE3c2jzc</u>

CO-PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3					2	2	2	2	3		2
CO.2	3					2	2	2	2	2		2
CO.3	3	2				2	2	2	2	2		2
CO.4	3					2	2	2	2	2		2
CO.5	3					2	2	2	2	2	3	2
CO *	3	2				2	2	2	2	2.2	3	2

20CSE366

BIG DATA ANALYTICS LAB (Common to CSE, CSE(DS))

L T P C 0 0 3 1.5

PRE-REQUISITES: A course on Data Warehousing and Data Mining

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide an overview of an exciting growing field of Big Data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, MapReduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problemsin for decision support.
- 5. To gain knowledge on PIG Latin and HIVE.

List of Experiments:

- 1. Understanding the Hortonworks Sandbox for Hadoop.
- 2. Installing Hortonworks Sandbox VMware Player on Windows
- 3. Understanding and Working with basic HDFS operations such as:
 - Starting HDFS,
 - Listing files in HDFS.
 - Adding files and directories.
 - Retrieving files.
 - Deleting files.
 - Shutting down the HDFS.
- 4. Understanding and Working with Ambari for provision, manage and monitor a Hadoop cluster, and also to integrate Hadoop with the existing enterprise infrastructure.
- 5. Write a java map-reduce program for counting the number of occurrences of each word ina text file.
- 6. Write a java map-reduce program for mines healthcare data and perform various analysison healthcare dataset.
- 7. Working with PIG Latin scripts in Script mode and Grunt shell.
- 8. Write Pig Latin scripts to illustrate Load, Store, Describe, Dump operators
- 9. Write Pig Latin scripts to illustrate Group, Co-group, Filter Operators.
- 10. Write Pig Latin scripts to illustrate join, union and Split Operators.
- 11. Develop a Map-reduce programming with Hive to create, alter, and drop databases, tables, views, functions, and indexes.
- 12. Illustrate unstructured data into NoSQL data and perform various operations

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be	POs related to COs
C01	Explain the motivation for big data systems and identify the main sources of Big Data in the real world.	PO1, PO2,
CO2	Demonstrate an ability to use frameworks like Hadoop to efficiently store retrieve and process Big Data for Analytics.	PO1, PO2,
СО3	Implement several Data Intensive tasks using the Map Reduce Paradigm	PO1, PO2, PO3, PO4
CO4	Apply several newer algorithms for Clustering Classifying and finding associations in Big Data	PO1, PO2, PO3,

	()	
COF	Design and implement successful Recommendation engines for	PO1, PO2, PO3, PO4,
CO5	enterprises.	PO5

On su	ccessful completion of the course the student will be	POs related to COs
CO6	Follow ethical principles in designing and implementation of various routing algorithms	PO8
C07	Do experiments effectively as an individual and as a member in a group	PO9
CO8	Communicate verbally and in written form, the understanding about the experiment	PO10
CO9	Continue updating their skill related to Networking and routing algorithms	PO12

REFERENCE BOOKS:

- 1. ArshdeepBahga, Vijay Madisetti, "Big Data Science & Analytics: A HandsOnApproach", VPT, 2016
- 2. Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data ScienceanditsApplications(WILEYBigDataSeries)", JohnWiley&Sons, 2014

REFERENCE WEBSITES:

- 1. https://www.simplilearn.com/introduction-to-big-data-and-hadoop-tutorial
- 2. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

CO-PO	MAPPING:
-------	----------

СО-РО	РО 1	РО 2	PO3	P04	P05	P06	P07	PO8	РО 9	PO10	PO1 1	PO1 2
C01	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	3	-	-	-	-
C07	-	-	-	-	-	-	-	-	3	-	-	-
CO8	-	-	-	-	-	-	-	-	-	3	-	-
CO9	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

20CSD363

DATA VISUALIZATION LAB (CSE (DS))

L T P C 0 0 3 1.5

PRE-REQUISITES: A Course on Data Visualization

COURSE EDUCATIONAL OBJECTIVES:

- 1. Discuss concepts and principles of data visualization particularly related to decision making.
- 2. Investigate technologies and practices for visualizing data as part of a data management and Analytics system.
- 3. Apply user interface design principles and practices to develop interactive data visualizations.
- 4. Design effective dashboard for decision making at various levels.
- 5. Conduct research on relevant data visualization topics.

List of Experiments:

- 1. Connecting to the data
- 2. Formatting and insertion of data
- 3. Creating worksheets, navigating the sheets, applying filters, aggregating the data
- 4. Organize the data into dashboards
- 5. Create story
- 6. Develop interactive plots in Python
- 7. Create Time series Data Visualization in Python
- 8. Visualization of Semi-Structured data
- 9. Create Sales Growth Dashboard for the tracking of sales teams progress

10. Design Social media Dashboard – find how well your sponsored social activating are performing, monitor your PPC campaigns

11. Develop Healthcare Data Dashboard – Allows hospital administrators to manage and identify patient hazards from a single screen.

COURSE OUTCOMES:

On s	uccessful completion of the course the student will be able to,	POs Related to COs
CO1	Understand and describe the main concepts of data visualization	PO1,PO2
CO2	Publish the created visualizations to Tableau Server and Tableau Public	PO3,PO5
CO3	Reorganization of good (and bad) data visualizations.	PO2
CO4	How to interpret a data visualization, and Using shapes, colors, text and layout appropriately	PO4,PO5
CO5	Identifying stories and insights in data, preparing data for visualization.	PO1,PO2
CO6	Create several different charts using Tableau.	PO1,PO3,PO5
C07	Follow the ethical principles in Visualizing	PO8
CO8	Do experiments effectively as an individual and as a team member in a group.	PO9
CO9	Communicate verbally and in written form, the understanding about the Experiments.	PO10
CO10	Continue updating their skill related to visualizing the data	PO12

TEXT BOOKS:

1. Visualization Analysis & Design by Tamara Munzner (2014) (ISBN 9781466508910)

REFERENCE BOOKS:

- 1. Interactive Data Visualization for the Web by Scott Murray 2nd Edition (2017)
- 2. D3.js in Action by Elijah Meeks 2nd Edition (2017)
- 3. Semiology of Graphics by Jacques Bertin (2010)
- 4. The Grammar of Graphics by Leland Wilkinson
- 5. ggplot2 Elegant Graphics for Data Analysis by Hadley Wickham
- 6. Scott Murray, Interactive Data Visualization for Web, O'Reilly.

REFERENCE WEBSITES:

- 1. Data Analysis and Visualization Foundations |Coursera
- 2. Data Visualization | Coursera

СО-РО	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	-	-	3	-	3	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	3	-	-	-	-	-	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-
CO6	3	-	3	-	3	-	-	-	-	-	-	-
CO7	-	-	-	-	-	-	-	3	-	-	-	-
CO8	-	-	-	-	-	-	-	-	3	-	-	-
CO9	-	-	-	-	-	-	-	-	-	3	-	-
CO10	-	-	-	-	-	-	-	-	-	-	-	3
CO *	3	3	3	3	3	-	-	3	3	3	-	3

III B.Tech-VI Semester

20CSD363

PROJECT SKILLS LAB

L	Т	Ρ	С
0	0	3	1.5

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. Objective is to give an opportunity to the student to get hands on training in design and innovation.
- 2. Comparing and contrast the several existing solutions for the problem identified.
- 3. Formulating and propose a plan for creating a solution for the research plan identified.
- 4. Conducting the experiments as a team and interpret the results.
- 5. Reporting and presenting the findings of the work conducted.

The aim of the project skill lab is to deepen comprehension of principles by applying them to a new problem which may be the device / system / component / working mode to be created fabricated may be decided in consultation with the supervisor and if possible with an industry. A project topic must be selected by the students in consultation with their supervisor. The students may be grouped into 3 to 5 and work under a project supervisor.

A project report to be submitted by the group and along with the model / system, which will be reviewed and evaluated for internal assessment by a committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated basedon oral presentation and the project report along with device / system / component / working model jointly by external and internal examiners constituted by the Head of the Department.

On suc	ccessful completion of the course the student will be	POs related to COs
CO1	Demonstrate in-depth knowledge on the project topic	PO1
CO2	Identify, analyze and formulate complex problem chosen for project work to attain substantiated conclusions.	P02
CO3	Design solutions to the chosen project problem.	PO3
CO4	Undertake investigation of project problem to provide valid conclusions	PO4
CO5	Use the appropriate techniques, resources and modern engineering tools necessary for project work	PO5
CO6	Apply project results for sustainable development of the society.	PO6
C07	Understand the impact of project results in the context of environmental sustainability.	P07
CO8	Understand professional and ethical responsibilities while executing the project work.	PO8
CO9	Function effectively as individual and a member in the project team	PO9
CO10	Develop communication skills, both oral and written for preparing and presenting project report.	P010
C011	Demonstrate knowledge and understanding of cost and time analysis required for carrying out the project.	P011
CO12	Engage in lifelong learning to improve knowledge and competence in the chosen area of the project.	P012

COURSE OUTCOMES:

СО-РО	РО 1	РО 2	PO3	PO4	P05	P06	P07	PO8	РО 9	PO10	PO1 1	PO1 2
C01	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	3	-	-	-	-	-	-
C07	-	-	-	-	-	-	3	-	-	-	-	-
CO8	-	-	-	-	-	-	-	3	-	-	-	-
CO9	-	-	-	-	-	-	-	-	3	-	-	-
CO10	-	-	-	-	-	-	-	I	-	3	-	-
CO11	-	-	-	-	-	-	-	-	-	-	3	-
CO12	-	-	-	-	-	-	-	-	-	-	-	3
CO	3	3	3	3	3	3	3	3	3	3	3	3

B.Tech.-VI Semester

20MAC352

III

DESIGN THINKING FOR INNOVATION

LTPC 2 - - -

PRE-REQUISITES: NIL.

COURSEEDUCATIONALOBJECTIVES:

- 1. To Study the concepts of design thinking and innovations.
- 1. To know the basic research concepts in design thinking.
- 2. To learn the basic concepts of start-ups in design process.
- 3. To understand the business model design concepts.
- 4. To study the principles of innovations in design thinking.

UNIT-1: INTRODUCTION TO DESIGN THINKING

Concept, frame work and principles of design thinking - Criteria of an inspirational design - Writing the inspirational design - Research findings about inspirational design - Pitfallsto avoid - Defining personas - Creating Personas - Importance and application of Personas -Customer experience mapping.

UNIT-2: DESIGN THINKING TO BRIDGE RESEARCH AND CONCEPT

Challenges in idea generation – Need for a systematic method – Visualizing and empathizing – Applying the method – New design ideas – Design heuristics – Value of the design heuristics. **Prototypes in Design:** Product development framework – Prototypes inprocess – Integrating design into the front end of the innovation process and challenges – Design practice and tools - Integrate design professionals in front end innovation process.

UNIT-3: START-UPS UNDERSTAND AND APPLY DESIGN PROCESSES

Emerging start-up culture – IPR to protect innovation – Path from idea to product – Impactof corporate culture and forces – Pillars of innovation– Knowledge management as intelligenceand task – Designing amidst uncertainty– Selected tools for breakthrough innovation – Organizational implications - Design thinking within the firm - Role of key personnel -Organizational practices and culture – Value of design thinking.

UNIT-4: BUSINESS MODEL DESIGN AND PRINCIPLES OF INNOVATION

Business model – Business model design and method – Process of designing a business model - Implementation of business model. **Principles of Innovations:** Most powerful competitors - Type of products will buy the - Best customers for products - Scope of the business right -Avoid commoditization – Disruptive growth – Strategy development process – Good money and bad money - Role of senior executives.

UNIT-5: INNOVATION MANAGEMENT

Importance and overview of innovation process - Innovation in an organizational context -Development activities and design environment - Innovation and invention - Successful and unsuccessful innovation - Different types of innovation - Models of innovation - Disruptive innovations - Cyclic model of innovation with interconnected cycles.

Total Hours: 30

(6)

(6)

(6)

(6)

(6)

COURSEOUTCOMES:

On su	ccessful Completion of the course, students will be able to	Pos		
C01	Understand the concepts of design thinking and innovations.	P01,P02,P03		
CO2	Explain the basic research concepts in design thinking.	P01,P02,P03		
CO3	Describe the basic concepts of start-ups in design process.	P01,P02,P03		
CO4	Explain the business model design concepts.	P01,P02,P03		
C05	Demonstrate the principles of innovations in design thinking.	P01,P02,P03		

TEXTBOOKS:

- 1. Michael G. Luchs, K. Scott Swan and Abbie Griffin., "Design Thinking New Product Development Essentials from the PDMA", John Wiley & Sons, Inc., 2016.
- 2. Clayton M. Christensen and Clayton M. Christensen "The Innovator's Solution -Creating and Sustaining Successful Growth", Harvard Business School Press.

REFERENCEBOOKS:

- 1. Paul Trott, "Innovation Management and New Product Development" 6/e, Pearson Education Ltd.,
- 2. Creativity in Product Innovation, Jacob Goldenberg and David Mazursky, 2002, Cambridge University Press.
- 3. The Design of Everyday Things Revised Edition, Don Norman, 2013, Perseus Books Group.
- 4. From Imagination to Innovation New Product Development for Quality of Life, A. Coskun Samli, 2011, Springer New York Dordrecht Heidelberg London
- 5. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

REFERENCEWEBSITE:

- 1. https://nptel.ac.in/courses/110106124
- 2. https://nptel.ac.in/courses/109104109
- 3. https://nptel.ac.in/courses/107101086
- 4. https://nptel.ac.in/courses/107104076

C-PO MAPPING:												
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	2	3	-	-	-	-	-	-	-	-	-
CO.2	3	2	3	-	-	-	-	-	-	-	-	-
CO.3	3	2	3	-	-	-	-	-	-	-	-	-
CO.4	3	2	3	-	-	-	-	-	-	-	-	-
CO.5	3	2	3	-	-	-	-	-	-	-	-	-
CO *	3	2	3	-	-	-	-	-	-	-	-	-

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

(Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Data Science)

B.Tech. - VII Semester

20HSM471A

INDUSTRIAL ENGINEERING AND PSYCHOLOGY

L T P C 3 - - 3

(9)

(9)

(9)

(9)

(9)

PRE-REQUISITES: NIL. COURSE EDUCATIONAL OBJECTIVES:

- 1. To learn the concepts and characteristics of personnel Management.
- 2. To understand the organizational structures and plant layout.
- 3. To know the basic need of work and method study and industrial psychology.
- 4. To learn the Forecasting and process planning concepts.
- 5. To study the inventory control and personnel management in an industry.

UNIT-1: CONCEPTS OF MANAGEMENT

Management: Importance of administration and organization – Managerial skills, policies, and objectives – Management contribution of FW Taylor, Henry Foyaland Gilberth– Principles, types, process, levels and functions of management – Management chart– Concepts in project management and MIS–Industrial ownership – Responsibilities of supervisor/foreman – Leadership concepts. **Personnel Management:** Concepts, recruitment, selection, training, job evaluation, merit rating, wage plans, incentives, safety, housekeeping, welfare measures, promotion, lay-off, transfer and discharge.

UNIT-2: ORGANIZATIONAL STRUCTURES AND PLANT LAYOUT

Organization: Concept, importance, characteristics and process of organization – Organization theory, principle, structure, chart and committees – Project, matrix and informal organization – Departmentation – Authority and delegation – Group dynamics – Organizational change, development and conflict – Leadership and communication system. **Plant Layout:** Types, flow pattern, work station, storage, layout and factory design.

UNIT-3: WORK STUDY AND INDUSTRIAL PSYCHOLOGY

Work and method study – Ergonomics principles – Process chart symbols – Flow process, activity chart, flow and string diagram – Operation analysis and motion and economy– Design and layout of work place– Therbligs –SIMO chart – Time study – Standard data – Analytical estimating – Performance Rating –Allowances – PMTS. **Industrial Psychology:** Concept, individuals and group – Motivation theories – Hawthorne experiment – Morale and motivation – Environmental condition –Industrial fatigue.

UNIT-4: PRODUCTION PLANNING AND CONTROL

Productivity: I/O model– Factors affecting the productivity–Productivity resources and measures. **Production Planning:** Continuous and intermittent production –Job, open and closed job shop– Large projects–Forecasting–Process planning – Batch quantity–Tool control and production–Loading, scheduling, dispatching and routing and flow control.

UNIT-5: MATERIALS MANAGEMENT AND INVENTORY CONTROL

Materials Management: Concepts–Procurement–Purchase and order–Buying techniques. **Inventory Control:** Classification – Objectives – Functions – Economic order quantity (EOQ) – Inventory models– ABC analysis–Material requirements planning (MRP)– Manufacturing resource planning(MRP-II).

TOTAL HOURS: 45

III

COURSE OUTCOMES:

On su able t	ccessful completion of the course, students will be o,	POs
C01	Understand the concepts of management and characteristics of Administration and organization	P01, P02, P012
CO2	Explain the organizational structures and plant layout for productivity Improvements	P01, P02, P012
СОЗ	Describe the basic need of work study, method study, time study and industrial psychology	P01, P02, P012
CO4	Explain the Forecasting, Process planning and control of manufacturing a product	P01,P02, P012
CO5	Demonstrate the inventory control and personnel management in an industry	P01, P02, P011, P012

TEXT BOOKS:

- 1. O.P. Khanna, "Industrial Engineering and Management", Dhanpat Rai PublishingCompany(P)Ltd., New Delhi, 17/e, 2010.
- 2. Pravin Kumar, "Industrial Engineering and Management", Pearson Education, NewDelhi, 1/e, 2015.

REFERENCE BOOKS:

- 1. S. N. Chary, "Production and Operations Management", Tata McGraw-Hill EducationPvt.Ltd.,Noida, 6/e,2019.
- 2. William J Stevenson, "Operations Management", Tata McGraw-Hill Education Pvt.Ltd.,Noida, 12/e,2018.
- 3. ShailendraKale, "Production and Operations Management", Tata McGraw-Hill Education Pvt. Ltd., Noida, 1/e, 2013.
- 4. Kanishka Bedi, "Production and Operations Management", Oxford UniversityPress, India, 3/e, 2013.
- 5. Harold T A mrine, John A Ritchey, Colin L Moodie and Joseph F K mec, "Manufacturing Organization and Management", Pearson Education, New Delhi, 6/e,2004.

REFERENCE WEBSITE:

1.https://nptel.ac.in/courses/112/107/112107292/ 2.https://nptel.ac.in/courses/112/107/112107142/ 3.https://nptel.ac.in/courses/112/107/112107143/

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12
CO.1	3	2	-	-	-	-	-	-	-	-	-	2
CO.2	3	2	-	-	-	-	-	-	-	-	-	2
CO.3	3	2	-	-	-	-	-	-	-	-	-	2
CO.4	3	2	-	-	-	-	-	-	-	-	-	2
CO.5	3	2	-	-	-	-	-	-	-	-	1	2
CO*	3	2	-	-	-	-	-	-	-	-	1	2

IV B.Tech.-VII Semester

20HSM471B **INTELLECTUAL PROPERTY RIGHTS AND PATENTS**

PRE-REQUISITES: NIL

COURSEEDUCATIONALOBJECTIVES:

- 1. To introduce the fundamental aspects of intellectual property Rights.
- 2. To disseminate knowledge on fundamentals of patent, transfer and infringement.
- 3. To introduce the fundamental aspects of copyrights and trademarks.
- 4. To acquire knowledge on geographical indication, industrial design and IC layout.
- 5. To disseminate knowledge on intellectual property management.

UNIT-1: INTRODUCTION TO INTELLECTUAL PROPERTY

Definitions and importance of intellectual property - Introduction and history of WTO -Structure of WTO agreements and dispute settlements – Principles of trading system – Trade policy reviews - Agreement on TRIPS - Ministerial conferences - Emerging issues inIPR -Protection of plant varieties – Patent sharks – Open-source movement – Bio-piracy.

UNIT-2: FUNDAMENTALS OF PATENT, TRANSFER AND INFRINGEMENT (9) **Fundamentals of Patent:** History of patents in India – Grant of patent – Inventions those are not patentable - Process and product patent - Specification and procedure of patent - efilling – Temporal and spatial – Opposition to grant of patent – Rights and PCT of patents - Marketing rights - Milestones in Indian patent. Transfer and Infringement: Transfer and Infringement of patent rights – Surrender of patents – Challenges in patents.

UNIT-3: COPYRIGHT AND TRADE MARKS

(9) **Copyright:** Definition – Copyright board registration in India – Ownership of copyright – Rights of the owner – Terms of copyright – Registration of copyright – Convention and UCC - Rights of broadcasting - International copyright - Infringement of copyright - Copyright Act, Amendment and Issues. **Trademarks:** Developing a Trademark – Trademark registration – Trademark applications – Procedure for trademark registration in India – Terms, assignment, transmission, certification, infringement of trademarks.

UNIT-4: GEOGRAPHICAL INDICATION, INDUSTRIAL DESIGN AND IC LAYOUT (9) Geographical Indications: Concept, historical perspective, potential benefit, renewal and status of Geographical Indications - Geographical Indications in India - Infringement of GI - Status of GI registration in India. Industrial Designs and IC Layouts: Registration of Industrial Designs - Copyrights in Industrial designs - Terms, procedure and conditions for Industrial Designs – Infringement of ID – Integrated circuit layout design – Trade secrets.

UNIT-5: INTELLECTUAL PROPERTY MANAGEMENT

Creating Intellectual Property: Need for creating intellectual property - Development of IP and Knowledge – Types of innovations – Behavioral aspects. Intellectual Property Management: Need and importance of IP management – IP management activities – 5Cs model of managing IP – Research and Developments in India (Case Study).

(9)

LTPC - - 3

COURSEOUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
C01	Understand fundamental aspects of intellectual property Rights.	PO1, PO12
CO2	Demonstrate knowledge on fundamentals of patent, transfer and infringement.	P01, P03, P012
СОЗ	Understand fundamental aspects of copyrights and trademarks.	P01, P03, P012
CO4	Demonstrate knowledge on geographical indication, industrial design and IC layout.	P01, P03, P012
CO5	Demonstrate knowledge on intellectual property management.	P01, P03, P012

TEXTBOOKS:

- 1. Intellectual Property Rights, Pandey Neeraj and DharniKhushdeep, 2014, PHI Learning Ltd., India.
- 2. Intellectual Property Rights and Copyrights, S.P. Satarkar, EssEss Publications, 2003.

REFERENCEBOOKS:

- 1. Intellectual Property in the New Technological Age, 2016: Vol. I Perspectives, Trade Secrets and Patents, Peter S. Menell, Mark A. Lemley, and Robert P. Merges. 2016
- 2. Intellectual Property in the New Technological Age, 2016: Vol. II Copyrights, Trademarks and State IP Protections, Peter S. Menell, Mark A. Lemley, and Robert P. Merges. 2016.
- Intellectual Property Rights Law in India, T. Ramappa, 2/e, 2016, Asia Law House. 3.
- Resisting Intellectual Property, Debora J. Halbert, 2006, Taylor & Francis Ltd 4. ,2007
- 5. Law Relating to Intellectual Property Rights, V K Ahuja, 3/e, 2017, Lexis Nexis.

REFERENCEWEBSITE:

- 1. <u>https://onlinecourses.swayam2.ac.in/cec22_lw12/preview</u>
- 2. https://onlinecourses.nptel.ac.in/noc22 mg98/preview

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12
CO.1	3	-	-	-	-	-	-	-	-	-	-	3
CO.2	3	-	1	-	-	-	-	-	-	-	-	3
CO.3	3	-	1	-	-	-	-	-	-	-	-	3
CO.4	3	-	1	-	-	-	-	-	-	-	-	3
CO.5	3	-	1	-	-	-	-	-	-	-	-	3
CO *	3	-	1	-	-	-	-	-	-	-	-	3

IV B.Tech.-VII Semester

20HSM471C MANAGING INNOVATION AND ENTREPRENEURSHIP L T P C

PRE-REQUISITES: NIL

COURSEEDUCATIONALOBJECTIVES:

- 1. To the scope of innovation management principles.
- 2. To study the characteristics of innovation within firms.
- 3. To study the technological entrepreneurship and innovation practices.
- 4. To study the concepts in entrepreneurship for engineers.
- 5. To understand the financial requirements for starting new venture.

UNIT-1: IMPORTANCE OF INNOVATION AND MANAGEMENT

Importance of innovation– Innovation in an organizational context – Development activities and design environment – Innovation and invention – Successful and unsuccessful innovation – Types and models of innovation– DUI mode of innovation – Disruptive innovations – Cyclic model of innovation with interconnected cycles.

UNIT-2: MANAGING INNOVATION WITHIN FIRMS

Organizations and innovation – The dilemma of innovation management – Innovation dilemma in low technology sectors – Dynamic capabilities – Managing uncertainty – Managing innovation projects – Organizational characteristics that facilitate the innovation process – Industrial firms – Organizational structures and innovation – The role of the individuals in innovation – IT systems and their impact on innovation – Management tools for innovation. **Operations and Process Innovation:** Design and innovation in the context of operations – Process design and innovation – Innovation in the management of the operations process – Design of the organization and its suppliers – Lean innovation.

UNIT-3:TECHNOLOGICAL ENTREPRENEURSHIP AND INNOVATION PRACTICES (9)

Types of entrepreneurships – Sustainable entrepreneurship – Learning lifecycle and the learning strategy – Incubators – Technology management and transfer – Technology transfer mechanisms and models – Technology transfer obstacles – Success factors for technology transfer – Spin offs – Strategic alliances and commercialization metrics.

UNIT-4:ENTREPRENEURSHIP FOR ENGINEERS

Industrial Evolution: Necessity of industrial viewpoints – Entrepreneurial mind. **How to Commercialize Invention:** Discovery of a new functi on or material – Performance improvement – Product planning creativity – Marketing creativity. **Start-Up:** The Founder and team – Entrepreneurial process – Legal procedure. **Business Plan:** Executive summary – Management and organization – Product/service – Marketing plan – Administrative policies, procedures, and controls – Growth plan – Financial plan.

UNIT-5:BUSINESS PLAN TO FUNDING VENTURE

How to Find Financial Resources: Debt and equity — Internal and external funds including loans – Financial resources at the start-up stage – Government grants and Research funds – Private financing. **Financial Management:** Sales and payroll – Daily accounting – Financial statements – Demand, supply, and market equilibrium.

TotalHours:45

3 - - 3

(9)

(9)

(9)

COURSEOUTCOMES:

On su	ccessful completion of the course, students will be able to	Pos
CO1	Describethescopeofimportance in innovation and management	P01, P06,P08,P09, P011, P012
CO2	Understand the concepts of managing innovation within firms.	PO1, PO6,PO8,PO9, 011, PO12
СО3	Illustratetheconceptoftechnological entrepreneurship and innovation practices	P01, P06,P08,P09, 011, P012
CO4	Summarizethesystematicapproach to entrepreneurship for engineers	P01, P06,P08,P09, 011, P012
CO5	Understand the business plan to funding venture.	P01, P06,P08,P09, 011, P012

TEXTBOOKS:

- 1. Paul Trott, -Innovation Management and New Product Development 6/e, Pearson Education Ltd.,
- Elias G. Carayannis, Elpida T. Samara & Yannis L. Bakouros-Innovation and Entrepreneurship - Theory, Policy and Practice∥ Springer International Publishing Switzerland, 2015.
- 3. Kenji Uchino, —Entrepreneurship for engineers∥ by Taylor and Francis Group, LLC,2010.

REFERENCEBOOKS:

- Robert D. Hisrich, Michael P. Peters, Dean A. -Entrepreneurship| 10/e, McGraw-Hill, 2017.
- 2. Michael G. Luchs, K. Scott Swan and AbbieGriffin., —Design Thinking New Product Development Essentials from the PDMA∥, John Wiley & Sons, Inc., 2016.
- 3. Clayton M. Christensen and Clayton M. Christensen-The Innovator's Solution Creating and SustainingSuccessful Growth∥, Harvard Business School Press.

REFERENCEWEBSITE:

- 1. https://nptel.ac.in/courses/127105007
- 2. https://nptel.ac.in/courses/109105176
- 3. https://nptel.ac.in/courses/107101086

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	P012
CO.1	1	-	-	-	-	1	-	1	1	-	3	1
CO.2	1	-	-	-	-	1	-	1	1	-	3	1
CO.3	1	-	-	-	-	1	-	1	1	-	3	1
CO.4	1	-	-	-	-	1	-	1	1	-	3	1
CO.5	1	-	-	-	-	1	-	1	1	-	3	1
CO*	1	-	-	-	-	1	-	1	1	-	3	1

(Data Science)

IV B.Tech.-VII Semester

(Common to all)

20HSM471C UNIVERSAL HUMAN VALUES AND ETHICS

L T P C 3 - - 3

(9)

(9)

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To develop a holistic perspective based on self-exploration about themselves (Human being), family, society and nature/existence
- 2. To understanding (or developing clarity) of the harmony in the human being, family, society, and nature/existence
- 3. To Strengthening of self-reflection.
- 4. To d evelop of commitment and courage to act.
- 5. To study the holistic understanding of harmony on professional ethics.

UNIT -1: BASIC GUIDELINES, CONTENT AND PROCESS FOR VALUE EDUCATION (9)

Purpose and motivation for the course, recapitulation from Universal Human Values – Self-exploration–what is it? - its content and process; "natural acceptance" and experiential validation- as the process for self-exploration – continuous happiness and prosperity- a look at basic human aspirations – Right understanding, relationship and physical facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority – Right understanding, relationship and physical facility-the basic requirements for fulfilment of aspirations of every human being with their correct priority – Right understanding, relationship and physical facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority – Right understanding, relationship and physical facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority – Right understanding, relationship and physical facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority – Right understanding, relationship and physical facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.

Activities: Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT -2: UNDERSTANDING HARMONY IN THE HUMAN BEING

Understanding human being as a co-existence of the sentient "I" and the material "Body" – Understanding the needs of Self ("I") and "Body" - happiness and physical facility – Understanding the Body as an instrument of "I" (I being the doer, seer and enjoyer) – Understanding the characteristics and activities of "I" and harmony in "I" – Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail – Programs to ensure Sanyam and Health.

Activities: Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one"s own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

UNIT –3: UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY

Understanding values in human-human relationship; meaning of justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; trust andrespect as the foundational values of relationship – Understanding the meaning of trust; difference between intention and competence – Understanding the meaning of respect, difference between respect and differentiation; the other salient values in relationship – Understanding the harmony in the society (society being an extension of family): resolution, prosperity, fearlessness (trust) and co-existence as comprehensive human goals – Visualizing a universal harmonious order in society-undivided society, universal order-from

family to world family.

Activities: Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students" lives.

UNIT -4: UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE (9) Understanding the harmony in the nature – Interconnectedness and mutual fulfilment among the four orders of nature-recyclability and self-regulation in nature – Understanding existence as co-existence of mutually interacting units in all-pervasive space – Holistic perception of harmony at all levels of existence.

Activity: Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology.

UNIT -5: UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS

Natural acceptance of human values – Definitiveness of Ethical Human Conduct – Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order – Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems – Case studies of typical holistic technologies, management models and production systems – Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b.At the level of society: as mutually enriching institutions and organizations – Sum up.

Activity: Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Total Hours: 45

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	Pos
C01	Students are expected to become more aware of themselves, and their surroundings (family, society, nature)	P06, P07, P08, P09, P012
CO2	They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.	PO6, PO7, PO8, PO9, PO12
СО3	They would have better critical ability.	PO6, PO7, PO8, PO9, PO12
CO4	They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).	PO6, PO7, PO8, PO9, PO12
CO5	It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	PO6, PO7, PO8, PO9, PO12

TEXT BOOKS:

- 1. R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978- 93-87034-47-1
- R R Gaur, R Asthana, G P Bagaria, "Teachers" Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93- 87034-53-2

REFERENCE BOOKS:

- 1. A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.
- 2. Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"
- 3. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.
- 4. Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule"
- 5. Vivekananda Romain Rolland(English)
- 6. Gandhi Romain Rolland (English)

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/109104068
- 2. https://nptel.ac.in/courses/110105097
- 3. https://nptel.ac.in/courses/109106117
- 4. https://nptel.ac.in/courses/109103142

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	-	-	-	-	-	2	2	3	2	-	-	3
CO.2	-	-	-	-	-	2	2	3	2	-	-	3
CO.3	-	-	-	-	-	2	2	3	2	-	-	3
CO.4	-	-	-	-	-	2	2	3	2	-	-	3
CO.5	-	-	-	-	-	2	2	3	2	-	-	3
CO*	-	-	-	-	-	2	2	3	2	-	-	3

"CO-PO MAPPING"

IV B.Tech-VII Semester

20CSD471A

MINING MASSIVE DATASET (CSE (DS))

LTPC 3 0 0 3

PRE-REQUISITES: A Course on database systems, Data Mining and related programming systems

COURSE EDUCATIONAL OBJECTIVES:

- 1. To learn the basic concept of mining and massive datasets
- 2. To understand the concept of Learning about the functions, methods, hashing of systems and Technologies
- 3. To understand sampling and filtering data
- 4. To analyze functions of Various Algorithms used in Data Mining and Data Set
- 5. To discuss the model of recommendation system.

UNIT -1: DATA MINING

What is Data Mining-Statistical Modeling-Machine Learning-Computational Approaches to Modeling-Feature Extraction, Statistical Limits on Data Mining-Total Information Awareness-Bonferroni's Principle. Things Useful to Know-Hash Functions-Indexes.

MAPREDUCE: Distributed File Systems-Large-Scale File-System Organization, MapReduce, Algorithms Using MapReduce, Extensions to MapReduce

UNIT -2: FINDING SIMILAR ITEMS

Applications of Near-Neighbor Search-Jaccard Similarity of Sets-Similarity of Documents-Similarity of Documents, Shingling of Documents, Similarity-Preserving Summaries of Sets, Locality-Sensitive Hashing for Documents, Distance Measures-Definition of a Distance Measure-Euclidean Distances-Jaccard Distance-Cosine Distance-Edit Distance-Hamming Distance-The Theory of Locality-Sensitive Functions

UNIT -3: MINING DATA STREAMS

The Stream Data Model, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Estimating Moments, Counting Ones in a Window, Decaying Windows, Link Analysis, Page Rank, Efficient Computation of Page Rank, Topic-Sensitive Page Rank, Link Spam, Hubs and Authorities

UNIT-4: FREQUENT ITEM SETS

The Market-Basket Model- Definition of Frequent Item sets-Applications of Frequent Item sets-Association Rules- Finding Association Rules with High Confidence, Market Baskets and the A-Priori Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.

CLUSTERING: Introduction to Clustering Techniques, Hierarchical Clustering, K-means Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces, Clustering for Streams and Parallelism

UNIT-5: ADVERISING ON THE WEB

Issues in On-Line Advertising, On-Line Algorithms- On-Line and Off-Line Algorithms- Greedy Algorithms, The Matching Problem, The AdWords Problem, Recommendation Systems, A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction

TOTAL HOURS: 45

(10)

(8)

(10)

(8)

(9)

188

COURSE OUTCOMES:

Οn sι to,	iccessful completion of the course the student will be able	POs related to COs
CO1	Understand the basic concepts of Mining and Massive Dataset.	PO1, PO2
CO2	Study the Concepts of Learning about the functions, methods, hashing of systems and Technologies.	PO1, PO2, PO3
CO3	Learn about the Sampling Data, Clustering Techniques and Problems.	PO1,PO2, PO3, PO4
CO4	Analyze functions of Various Algorithms used in Data Mining and Data Set	PO1, PO2, PO3, PO4
CO5	Explore the recommendation model	PO1,PO2 PO3, PO4

TEXT BOOKS:

1. Anand Rajaraman and Jeff Ullman, Mining of Massive Datasets, Cambridge. Press.

REFERENCE BOOKS:

1. Jiawei Han, and Micheline Kamber. *Data Mining: Concepts and Techniques.* Morgan Kaufmann, Second Edition

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO*	3	3	2	2	-	-	-	-	-	-	-	-

IV B.Tech-VII Semester

20CSD471B

PROCESS MINING (CSE (DS))

L T P C 3 0 0 3

PRE-REQUISITES: A list of activities that are related to the process IDs

COURSE EDUCATIONALOBJECTIVES:

- 1. To discuss the basic concepts of Process mining.
- 2. To understand how to do process model and analysis.
- 3. To know the about advanced process discovery techniques.
- 4. To learn about process mining software.
- 5. To demonstrate how to apply process mining.

UNIT -1: INTRODUCTION

Process Mining in a Nutshell, Purpose: Identifying the Right Use Cases, Challenges, Pitfalls, and Failures. Process Mining, RPA, BPM, and DTO.

UNIT -2: PROCESS MINING, MODELLING AND ANALYSIS

PROCESS MINING: The Missing Link- Limitations of Modelling, Process Mining, Analyzing an Example Log, Play-In, Play-Out, and Replay, Positioning Process Mining. **PROCESS MODELLING AND ANALYSIS:** The Art of Modelling, Process Models, Model-Based

Process Analysis.

UNIT -3: PROCESS DISCOVERY

PROCESS DISCOVERY:A Simple Algorithm for Process Discovery, Rediscovering Process Models, Challenges.

ADVANCED PROCESS DISCOVERY TECHNIQUES: Characteristics, Heuristic Mining, Genetic Process Mining, Region-Based Mining, Inductive Mining.

UNIT-4: PROCESS MINING SOFTWARE, PROCESS MINING IN THE LARGE

PROCESS MINING SOFTWARE: Process Mining Not Included, Different Types of Process Mining Tools, ProM: An Open-Source Process Mining Platform, Commercial Software.

PROCESS MINING IN THE LARGE: Big Event Data, Case-Based Decomposition, Activity-Based Decomposition, Process Cubes, Streaming Process Mining

UNIT-5: ANALYZING, FUTURE OF PROCESS MINING

ANALYZING"LASAGNA PROCESSES" – Characterization, Use Cases, Approach, Applications ANALYZING"SPAGHETTI PROCESSESS"- Characterization, Approach, Applications OUTLOOK: FUTURE OF PROCESS MINING- Academic View: Development of the Process Mining Discipline. Business View: Towards a Digital Enabled Organization

TOTAL HOURS: 45

	ccessful completion of the course the student will be able	POs related to COs
CO1	To Learn Transparency Is a Prerequisite for Digital Transformation	PO1, PO2
CO2	Understand Process Modelling and Analysis	PO1, PO2,PO3
CO3	Learn and apply process discovery techniques.	PO1,PO2, PO3,PO4
CO4	Applying process mining in the Large	PO1, PO2,PO3,PO4
CO5	Analysis of Lasagna and Spaghetti process and future of process mining.	PO1, PO2,PO3,PO4,PO5

(9)

(8)

(10)

(10)

(8)

3.

SREENIVASAINSTITUTEOFTECHNOLOGYANDMANAGEMENTSTUDIES. AUTONOMOUS DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

TEXT BOOKS:

- 1. Reinkemeyer, Lars. "Process mining in action." Principles, Use Cases and Outlook, Santa Barbara, 2020.
- 2. Aalst, Wil van der. "Data science in action." Process mining. Springer, Berlin, Heidelberg, 2016

REFERENCE BOOKS:

- 1. Ferreira, Diogo R. A primer on process mining: Practical skills with python and graphviz. Cham: Springer International Publishing, 2017.
- Burattin, Andrea. "Process mining techniques in business environments." volume 207 of Lecture Notes in Business Information Processing. Springer International Publishing, 2015. Huser, Vojtech. "Process mining: Discovery, conformance and enhancement of business processes." 2012.

CO- PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	P012
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	-
CO*	3	3	2	2	2	-	-	-	-	-	-	-

(DATA SCIENCE)

IV B.Tech-VII Semester

20CSD471C

USER INTERFACE DESIGN (CSE (DS))

L T P C 3 0 0 3

PRE-REQUISITES:A Course on Web Application Development

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand about graphical and web user interface.
- 2. To understand the concept of user interface design process.
- 3. To learn business function and understand the principle of good screen design.
- 4. To develop system menus and navigation schemes.
- 5. To understand how to approach user interface design.

UNIT -1: USER INTERFACE, GRAPHICAL AND WEB USER INTERFACE (8) THE IMPORTANCE OF USER INTERFACE: Defining the User Interface, The Importance Of Good Design, The Benefits of Good Design, A Brief History of The Human- Computer Interface-Introduction of The Graphical User Interface, The Blossoming of The World Wide Web, A Brief

History of Screen Design

CHARACTERISTICS OF GRAPHICAL AND WEB USER INTERFACES: The Graphical User Interface, The Web User Interface, Principles of User Interface Design.

UNIT -2: THE USER INTERFACE DESIGN PROCESS, KNOW YOUR USER OR CLIENT (10) THE USER INTERFACE DESIGN PROCESS: Obstacles and Pitfalls in the Development Path, Usability, The Design Team

KNOW YOUR USER OR CLIENT: Understanding How People Interact with Computers, Important Human Characteristics in Design, Perception, Memory, Sensory Storage, Visual Acuity, Human Considerations in Design-The User's Knowledge and Experience, The User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics, Human Interaction Speeds.

UNIT -3: UNDERSTAND THE BUSINESS FUNCTION, GOOD SCREEN DESIGN

UNDERSTAND THE BUSINESS FUNCTION: Business Definition and Requirements Analysis, Determining Basic Business Functions, Design Standards or Style Guides, System Training and Documentation Needs.

UNDERSTAND THE PRINCIPLES OF GOOD SCREEN DESIGN: Human Considerations InScreen Design, Interface Design Goals, Statistical Graphs

UNIT-4: DEVELOP SYSTEM MENUS AND NAVIGATION SCHEMES

Structures of Menu, Functions Of Menus, Formatting And Phrasing Of Menus, Navigating Menus, Kinds Of Graphical Menus, Window Characteristics, Components Of A Window, Types Of Windows, Window Operations, Web Systems.

UNIT-5: SELECTING THE PROPER DEVICE-BASED CONTROL

Characteristics of Device-Based Controls, Presentation Controls, Write Clear Text and Messages, Provide Effective Feedback and Guidance and Assistance, Create Meaningful Graphics, Icons And Images, Multimedia, Graphics, Organize and Layout Windows and Pages, The Purpose Of Usability Testing, Developing and Conducting The Test.

TOTAL HOURS: 45

(9)

(8)

(10)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Understand Importance and Characteristics of User interface design	PO1, PO2
CO2	Understand User Interface Design process	PO1, PO2, PO3
CO3	Understand screen-based controls and device-based controls	PO1,PO2, PO3, PO4
CO4	Apply System menus, navigation schemes and windows characteristics	PO1, PO2, PO3, PO4
CO5	Design the prototypes and test plans of user interface	PO1,PO2 PO3, PO4

TEXT BOOKS:

1. The Essential Guide to User Interface Design, Second Edition, Wilbert O. Galitz, 2002.

REFERENCE BOOKS:

- 1. User Interface Design, A Software Engineering Perspective, Soren Lauesen.
- 2. User Interface Design and Evolution, Debbie Stone, Caroline Jarrett, Mark Woodroffe, Shailey Minocha, 2005

REFERENCEWEBSITE:

1. Google UX Design Professional Certificate | Coursera

CO- PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	P012
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO*	3	3	2	2	-	-	-	-	-	-	-	-

IV B.Tech-VII Semester

20CSD472A

ARTIFICIAL NEURAL NETWORKS (CSE (DS))

LTPC 3 0 0 3

PRE-REQUISITES: A Course on Calculus, Linear Algebra, Statistics and Probability

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the biological neural network and to model equivalent neuron models.
- 2. To understand the architecture, learning algorithms.
- 3. To know the issues of various feed forward and feedback neural networks.
- 4. To learn about self organization maps
- 5. To explore the Neuro dynamic models for various problems.

UNIT -1: INTRODUCTION TO NEURAL NETWORKS, LEARNING PROCESS (8)

INTRODUCTION: A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks

LEARNING RROCESS: Error Correction Learning, Memory Based Learning, Hebbian Learning, Competitive, Boltzmann Learning, Credit Assignment Problem.

UNIT -2: SINGLE LAYER AND MULTILAYER PERCEPRON

SINGLE LAYER PERCEPTRON: Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques, Perceptron - Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a Gaussian Environment

MULTILAYER PERCEPTRON: Back Propagation Algorithm XOR Problem, Heuristics, Output Representation and Decision Rule.

UNIT -3: BACK PROPAGATION

Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning

UNIT-4: SELF ORGANIZATION-MAPS (SOM)

Two Basic Feature Mapping Models, Self-Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector Quantization, Adaptive Patter Classification.

UNIT-5: NEURO DYNAMICS

Dynamical Systems, Stability of Equilibrium States, Attractors, Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network Paradigm Hopfield Models – Hopfield Models, Computer Experiment

COURSE OUTCOMES:

to,	iccessful completion of the course the student will be able	POs related to COs
CO1	networks	PO1, PO2
CO2	Perform the training of neural networks using various learning rules.	PO1, PO2,PO3
CO3	Understanding the concepts of forward and backward propagations.	PO1,PO2, PO3,PO4
CO4	Gained knowledge on self organization map	PO1, PO2,PO3,PO4
CO5	Understand and Construct the Hopfield models.	PO1, PO2,PO3,PO4,PO5

(10)

(9)

(10)

(8)

TOTAL HOURS: 45

TEXT BOOKS:

- 1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.
- 2. Artificial Neural Networks B. Yegnanarayana Prentice Hall of India P Ltd 2005

REFERENCE BOOKS:

- 1. Neural Networks in Computer Intelligence, Li Min Fu MC GRAW HILL EDUCATION 2003
- 2. Neural Networks -James A Freeman David M S Kapura Pearson Education 2004.
- 3. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006

CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	2	-	-	-	-	-	-	-
CO*	3	3	2	2	2	-	-	-	-	-	-	-

IV B.Tech-VII Semester

20CSD472B

BAYESIAN DATA ANALYSIS (CSE (DS))

LTPC 3003

PRE-REQUISITES: A Course on Calculus, Linear Algebra, Statistics and Probability

COURSE EDUCATIONAL OBJECTIVES:

- 1. To describe the foundations of the Bayesian framework of statistics.
- 2. To explain the terminologies in Bayesian analysis, such as prior, posterior, credible, intervals, MCMC, etc.
- 3. To explain and demonstrate in applications the advantages and disadvantages of the Bayesian approach in comparisons to classical approaches.
- 4. To perform Bayesian analyses using statistical software on real data.
- 5. To conduct a research project involving Bayesian analysis and effectively communicate their findings/products.

UNIT -1: INTRODUCTION

Introduction to Probability, Priors and Posterior Analysis, Statistical Models, The Bayes inference, Bayes Rule, Normal model, Conjugate model, Binomial model, Posterior Distribution and Inferences.

UNIT -2:SIMULATION

Markov Chain Monte Carlo simulation, Introduction to R and Jags, The Metropolis-Hasting algorithm, Gibbs Sampler, Approximation based on posterior modes.

UNIT -3:MULTI-PARAMETER AND HIERARCHICAL MODELS

Multi-parameter -Normal data with non-informative, conjugate, and semi-conjugate prior distributions, Multivariate normal model, Hierarchical - Exchangeability and setting up, Computation.

UNIT-4: FUNDAMENTALS OF BAYESIAN DATA ANALYSIS

Model checking, Evaluating, comparing, and expanding models, Modeling accounting for data collection, Decision analysis

UNIT-5:NON-LINEAR MODELS

Mixture models- Setting up and interpreting mixture models, Gaussian process models Multivariate models- Non normal models and multivariate regression surfaces Comparison of Population Inference for Proportions, Inference for Normal Populations, Inference for Rates, Sample Size Determination

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Explain in detail the Bayesian framework for data analysis	PO1, PO2
CO2	Perform Bayesian computation using Markov chain Monte Carlo methods using R	PO1, PO2, PO3, PO4, PO5
CO3	Develop, analytically describe, and implement multi-parameter probability models in the Bayesian framework	PO1,PO2, PO3,PO4,PO5
CO4	Show high level Interpretation of Bayesian Analysis Results and perform Bayesian model evaluation and assessment	PO1, PO2, PO3, PO4, PO5
CO5	Demonstrate how Bayesian Methods can be used to solve rea worl problems, including forming a hypothesis, collecting andanalyzing data, and reaching appropriate conclusions	PO1, PO2,PO3,PO4,PO5

(10)

TOTAL HOURS: 45

(10)

(8)

(9)

(8)

TEXT BOOKS:

- 1. Ronald Christensen, Wesley Johnson, Adam Bran scum, Timothy E Hanson, Bayesian Ideas and Data Analysis. An Introduction for Scientists and Statisticians. CRC Press, 2011
- 2. Andrew Gelman, John B, CarlinChapman, Bayesian Data Analysis, Hall/CRC Publication, 2013

REFERENCE BOOKS:

- 1. Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B.Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC.2013
- 2. Gill, Jeff. Bayesian Methods: A Social and Behavioral Science Approach. CRC. 3rd Edition.2013.
- 3. Peter D. Hoff, A First Course in Bayesian Statistical Methods, Springer, 2009.

CO- PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	P011	P012
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	-
CO3	3	3	2	2	2	-	-	-	-	-	-	-
CO4	3	3	2	2	2	-	-	-	-	-	-	-
C05	3	3	2	2	2	-	-	-	-	-	-	-
CO *	3	3	2	2	2	-	-	-	-	-	-	-

IV B.Tech-VII Semester

20CSD472C

DATA AND INTERNET SECURITY (CSE (DS))

L T P C 3 0 0 3

PRE-REQUISITES: A Course on Computer networks

COURSE EDUCATIONAL OBJECTIVES:

- 1. To explain the importance and application of confidentiality, integrity, authentication and Availability.
- 2. To understand various cryptographic algorithms.
- 3. To learn the MAC and Hash algorithms.
- 4. To describe the enhancements made to IPv4 by IPSec.
- 5. To discuss Web security and Firewalls.

UNIT -1: ATTACKS ON COMPUTERS AND COMPUTER SECURITY, CRYPTOGRAPHY (8) Attacks on Computers and Computer Security: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security

Cryptography - Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT -2: SYMMETRIC AND ASYMMETRIC KEY CIPHERS

Symmetric key Ciphers: Block Cipher principles & Algorithms (DES, AES), Differential and Linear Cryptanalysis, Block cipher modes of operation, Stream ciphers, Location and placement of encryption function, Key distribution

Asymmetric key Ciphers: Principles of public key cryptosystems, Algorithms(RSA, Diffie-Hellman Key Exchange).

UNIT -3: MESSAGE AUTHENTICATION ALGORITHMS AND HASH FUNCTIONS

Authentication requirements, Functions, Message authentication codes, Hash Functions, Secure hash algorithm, HMAC, CMAC, Digital signatures, Authentication Applications: Kerberos, X.509Authentication Service.

UNIT-4: E-MAIL SECURITY, IP SECURITY

E-Mail Security: Pretty Good Privacy, S/MIME

IP Security: IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, combining security associations, key management

UNIT-5: WEB SECURITY, INTRUDERS, VIRUS AND FIREWALLS

Web Security: Web security considerations, Secure Socket Layer and Transport Layer Security, Secure electronic transaction

Intruders, Virus and Firewalls: Intruders, Intrusion detection, password management, Virus and related threats, Countermeasures, Firewall design principles, Types of firewalls

TOTAL HOURS: 45

(10)

(8)

(10)

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
	Understand basics of Cryptography and Network Security.	PO1,PO2
CO2	Encrypt and decrypt messages, sign and verify messages using well known signature generation and verification algorithms.	PO1,PO2
CO3	Analyze existing authentication and key agreement protocols.	PO1,PO2,PO3,PO4
CO4	Use e-mail and file security software's.	PO1,PO2,PO3,PO5
CO5	Develop SSL/Firewall.	PO1,PO2,PO3,PO4

TEXT BOOKS:

- 1. Cryptography and Network Security : William Stallings, Pearson Education, 4th Edition.
- 2. Cryptography and Network Security : Atul Kahate, Mc Graw Hill, 2nd Edition.

REFERENCE BOOKS:

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, Ist edition.
- 2. Cryptography and Network Security : Forouzan Mukhopadhyay, Mc Graw Hill, 2nd Edition.
- 3. Information Security, Principles and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Sceurity: WM.Arthur Conklin, Greg White, TMH.
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

REFERENCEWEBSITE:

1. https://nptel.ac.in/courses/106/105/106105162/

CO- PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	P012
C01	2	3	3	2	-	-	-	-	-	-	-	-
CO2	3	3	3	3	-	-	-	-	-	-	-	-
CO3	3	3	2	3	-	-	-	-	-	-	-	-
CO4	2	3	2	-	1	-	-	-	-	-	-	-
CO5	2	3	3	2	2	-	-	-	-	-	-	-
CO*	2.4	3	2.6	2.5	1.5	-	-	-	-	-	-	-

(Data Science)

IV B. Tech - VII Semester

20CSE471A

DEEP LEARNING

LTPC

(Common to CSE, CSE (DS))

3003

PRE-REQUISITES: A course on Machine Learning

COURSE EDUCATIONAL OBJECTIVES:

- 1. To analyze a neural network by applying the basics of mathematics and machine learning.
- 2. To analyze the data using multilayer perceptron and back propagation algorithms.
- 3. Apply regularization and optimization techniques to improve the performance of neural networks.
- 4. To identify appropriate deep learning model for text, multimedia, and biological data analysis.
- 5. Compare deep neural networks and deep learning models to infer the suitable learning algorithm on large scale data.

UNIT 1: INTRODUCTION

Historical Trends in Deep Learning – Machine Learning basics - earning algorithms - Linear Algebra for Machine Learning - Testing - Cross Validation - Dimensionality Reduction - fitting - Hyper parameters and validation sets - Estimators – Bias – Variance - Loss Function- Regularization.

UNIT 2: NEURAL NETWORKS

Biological Neuron – Idea of Computational units - Linear Perceptron - Perceptron Learning Algorithm - Convergence theorem for Perceptron Learning Algorithm - Linear Separability - Multilayer perceptron – Back propagation.

UNIT 3: MODERN PRACTICES IN DEEP NETWORKS

Introductions to Simple DNN - Platform for Deep Learning - Deep Learning Software Libraries - Deep Feed forward networks – Gradient-Based Learning - Architecture Design – Various ActivationFunctions, ReLU, Sigmoid – Error Functions - Regularization methods for Deep Learning - Early Stopping - Drop Out - Optimization methods for Neural Networks – Adagrad, Adam.

UNIT 4: DEEP LEARNING MODELS

Convolutional Neural Networks (CNNs): CNN Fundamentals – Architectures – Pooling – Visualization – Sequence Modeling: Recurrent Neural Networks (RNN) - Long-Short Term Memory (LSTM) – Bidirectional LSTMs-Bidirectional RNNs -Deep Unsupervised Learning: Autoencoders – Auto Encoder Applications -Deep Boltzmann Machine (DBM).

UNIT 5: APPLICATIONS AND CASE STUDY

Application, Case Study - Handwritten digits recognition using deep learning - LSTM with Keras – Sentiment Analysis – Image Dimensionality Reduction using Encoders LSTM with Keras – Alexnet – VGGnet.

Total Hours: 45

(9)

(9)

(9)

COURSE OUTCOMES:

On suc	ccessful completion of the course, students will be able to	POs
CO1	Describe the basics of mathematics machine learning and learning algorithms.	PO1, PO2
CO2	Describe the Neural Networks and back propagation.	PO1, PO2
СО3	Describe the Deep learning networks.	PO1, PO2, PO3, PO4
CO4	Describe the Deep learning Models.	PO1, PO2, PO3, PO4
CO5	Implement the design Deep Learning Concepts.	PO1, PO2, PO3, PO4

TEXT BOOKS:

1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, 4th Edition, MIT Press, 2016.

REFERENCE BOOKS:

- 1. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 2. Michael A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- 3. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

REFERENCE WEBSITE:

- 1. https://nptel.ac.in/courses/106/105/106105215/
- 2. http://www.deeplearning.net/tutorial/
- 3. https://www.guru99.com/deep-learning-tutorial.html
- 4. https://www.coursera.org/courses?query=deep%20learning

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	-	-	-	-	-	-	-	-	-	-	-
CO.2	2	3	2	3	-	-	-	-	-	-	-	-
CO.3	3	3	2	-	-	-	-	-	-	-	-	-
CO.4	3	-	3	-	-	-	-	-	-	-	-	-
CO.5	2	3	3	3	-	-	-	-	-	-	-	-
CO *	2.7	3	2.7	3	-	-	-	-	-	-	-	-

IV B.Tech - VII Semester

20CSD473A

VIDEO ANALYTICS (CSE (DS)) L T P C 3 0 0 3

PRE-REQUISITES: A course on Image processing

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the need for video Analytics
- 2. To recognize the basic configuration of video analytics
- 3. To realize the functional blocks of a video analytic system
- 4. To analyze the security features of video analytics
- 5. To get exposed to the various applications of video analytics

UNIT 1: VIDEO ANALYTIC COMPONENTS

Need for Video Analytics-Overview of video Analytics- Foreground extraction- Feature extractionclassifier - Preprocessing- edge detection- smoothening- Feature space-PCA-FLD-SIFT features

UNIT 2: FOREGROUND EXTRACTION

Background estimation- Averaging- Gaussian Mixture Model- Optical Flow based- Image Segmentation- Region growing- Region splitting-Morphological operations- erosion-Dilation-Tracking in a multiple camera environment

UNIT 3: CLASSIFIERS

Neural networks (back propagation) - Deep learning networks- Fuzzy Classifier- Bayesian classifier-HMM based classifier

UNIT 4: VIDEO ANALYTICS FOR SECURITY

Abandoned object detection- human behavioral analysis -human action recognition- perimeter security- crowd analysis and prediction of crowd congestion

UNIT 5: VIDEO ANALYTICS FOR BUSINESS INTELLIGENCE & TRAFFIC MONITIRING AND ASSISTANCE (9)

Customer behavior analysis - people counting- Traffic rule violation detection- traffic congestion identification for route planning- driver assistance- lane change warning

Total Hours: 45

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
CO1	Identify the need of video analytics	PO1, PO2
CO2	Perform various foreground segmentation and extraction	PO1, PO2, PO3
СО3	Perceptive the concepts of forward and backward propagations and classification techniques.	PO1, PO2, PO3
CO4	Design video analytic algorithms for security applications	PO1, PO2, PO3, PO4.PO5
CO5	Design video analytic algorithms for business intelligence	PO1, PO2, PO3, PO4,PO5

(9)

- (9)
- (9)

TEXT BOOKS:

- 1. Nilanjan Dey (Editor), Amira Ashour (Editor) and Suvojit Acharjee (Editor), Applied Video Processing in Surveillance and Monitoring Systems (IGI global) 2016.
- Graeme A. Jones (Editor), Nikos Paragios (Editor), Carlo S. Regazzoni (Editor) Video-Based Surveillance Systems: Computer Vision and Distributed Processing , Kluwer academic publisher, 2001

REFERENCE BOOKS:

- 1. Zhihao Chen (Author), Ye Yang (Author), Jingyu Xue (Author), Liping Ye (Author), Feng Guo (Author), The Next Generation of Video Surveillance and Video Analytics: The Unified Intelligent Video Analytics Suite, CreateSpace Independent Publishing Platform, 2014
- 2. Caifeng Shan (Editor), Fatih Porikli (Editor), Tao Xiang (Editor), Shaogang Gong (Editor) Video Analytics for Business Intelligence, Springer, 2012.

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO.1	3	3	-	-	-	-	-	-	-	-	-	-
CO.2	2	3	3	-	-	-	-	-	-	-	-	-
CO.3	2	3	3	-	-	-	-	-	-	-	-	-
CO.4	2	3	3	2	2	-	-	-	-	-	-	-
CO.5	2	3	3	2	2	-	-	-	-	-	_	-
CO*	2.2	3	3	2	2	-	-	-	-	-	-	-

IV B.Tech - VII Semester

20CSE473C

VIRTUAL REALITY AND AUGMENTED REALITY (Common to CSE,CSE (DS))

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To demonstrate knowledge on the fundamental concepts and hardware of virtual reality medium.
- 2. To develop virtual reality modules using Oculus SDK and WebVR API to provide simulated experience.
- 3. To analyze the augmented reality display environment, applications and tracking methods for spatial measurement and alignment of objects.
- 4. To analyze optical tracking and scene reconstruction algorithms for electronically perceiving imagery from camera sensors.
- 5. Investigate interaction, authoring, navigation and collaboration methods for providing human computer interaction in augmented reality systems.

UNIT -1: INTRODUCTION TO VIRTUAL REALITY

Stereoscopic displays, Motion tracking hardware, Input devices, Computing platforms, Virtual reality applications, Virtual reality hardware - Oculus Rift, Crescent Bay, Samsung Gear VR, Google Cardboard; 3D graphics basics - Coordinate systems, Meshes, Polygons, Vertices, Materials, Textures, Lights, Transforms, Matrices, Cameras, Perspective, Viewports and Projections, Stereoscopic Rendering; Unity 3D, Setting up the Oculus SDK, Example VR Application.

UNIT -2: GEAR VR AND WEBVR IN VIRTUAL REALITY

Gear VR - Gear VR user interface and Oculus Home, Oculus Mobile SDK, Developing for Gear VR using Unity3D, Deploying applications for Gear VR; WebVR – WebVR API, Creating WebVR application, Tools and techniques for creating WebVR.

UNIT -3: INTRODUCTION TO AUGMENTED REALITY

History of augmented reality, Examples, Related fields - Mixed reality, Virtual reality, Ubiquitous computing; Displays - Multimodal displays, Visual perception, Requirements and characteristics, Spatial display model, Visual displays.

UNIT -4: COMPUTER VISION FOR AUGMENTED REALITY

Tracking - Tracking, calibration and registration, Coordinate systems, Characteristics of tracking technology, Stationary tracking systems, Mobile sensors, Optical tracking, Sensor fusion; Marker Tracking, Multiple-camera Infrared tracking, Natural feature tracking by detection, Incremental tracking, Outdoor tracking.

UNIT -5: HUMAN COMPUTER INTERACTION FOR AUGMENTED REALITY

Interaction - Input modalities, Output modalities, Haptic interaction, Multimodal interaction; Authoring - Requirements of AR authoring, Elements of authoring, Stand- alone authoringsolutions, Plug-In approaches; Navigation - Foundations of human navigation, Routevisualization, Viewpoint guidance, Multiple perspectives; Collaboration - Co-located collaboration, Remote collaboration.

Total Hours: 45

204

(9)

(9)

LTPC

3003

(9)

(9)

COURSE OUTCOMES:

On suc	cessful completion of the course, students will be able to	POs
CO1	Evaluate various fundamental concepts and hardware of virtual reality medium.	PO1, PO2
CO2	Obtain Virtual reality modules using Oculus and WebVR	PO1, PO2
СОЗ	Analyze the augmented reality display environment, applications and tracking methods for spatial measurement and alignment of objects.	PO1, PO2, PO3
CO4	Analyze optical tracking and scene reconstruction algorithms for electronically perceiving imagery from camera sensors.	PO1, PO2, PO3
CO5	Investigate interaction, authoring, navigation and collaboration methods for providing human computer interaction in augmented reality systems.	PO1, PO2

TEXT BOOKS:

- 1. Tony Parisi, Learning Virtual Reality: Developing Immersive Experiences and Applications for Desktop, Web and Mobile, O'Reilly, 2015.
- 2. Dieter Schmalstieg, Tobias Hollerer, Augmented Reality: Principles and Practice, Addison Wesley, 2016.

REFERENCE BOOKS:

- 1. Helen Papagiannis, Augmented Human: How Technology Is Shaping the New Reality, O'Reilly, 2017.
- 2. Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, 2nd Edition, Wiley, 2006.

REFERENCE WEBSITE:

1. https://nptel.ac.in/courses/106106138/

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO.1	3	3	-	-	-	-	-	-	-	-	-	-
CO.2	3	3	-	-	-	-	-	-	-	-	-	-
CO.3	3	3	2	-	-	-	-	-	-	-	-	-
CO.4	3	3	2	-	-	-	-	-	-	-	-	-
CO.5	3	3	-	-	-	-	-	-	-	-	-	-
CO*	3	3	2	-	-	-	-	-	-	-	-	-

200HSM471

IV B.Tech. - VII Semester NANO SCIENCE AND TECHNOLOGY (Open Elective - 3)

L	Т	Ρ	С
3	0	0	3

(9)

(9)

(9)

PRE-REQUISITES: NIL

COURSEEDUCATIONALOBJECTIVES:

- 1. To Understand the basic scientific concepts of Nanoscience, and various types of Nano materials.
- 2. To study various methods of synthesising Nanomaterials
- 3. To identify different characterisation techniques for Nanomaterials
- 4. To Understand the properties of Nanomaterials and the applications of Nano materials in various fields
- 5. To study various carbon Nanomaterials

UNIT-I: INTRODUCTION TO NANO SCIENCE AND TECHNOLOGY

Definition of nano scale,-Significance of nano scale–Surface to volume ratio-Quantum confinement effect-Types of Nano materials: Zero, one and two dimensional nano materials with examples.

UNIT-II: PREPARATION OF NANOMATERIALS

Top-Down and Bottom-Up approaches- Methods of preparation: Sol-gel method - Chemical vapour deposition- Plasma arching - Ball milling - Electro-chemical deposition.

UNIT-III: STRUCTURE AND SURFACE CHARACTERIZATION OF NANO MATERIALS

(9) X- Ray diffraction - Ultraviolet–Visible Spectroscopy – Fourier Transform Infrared Spectroscopy –Scanning Electron Microscopy – Transmission electron microscopy – Scanning Tunneling Microscope -Atomic force microscopy.

UNIT-IV: PROPERTIES AND APPLICATIONS OF NANO MATERIALS (9)

Physical Properties - Chemical Properties - Mechanical properties - Electrical properties - Thermal properties - Magnetic properties - Optical Properties - Applications in Material science, Biology and Medicine, Surface science, Energy, Environment, Industry, Sports& Consumer products.

UNIT-V : CARBON NANOTUBES

Allotropes of carbon - Graphene- Fullerences - Types of Carbon Nanotubes -Single walled carbon nanotubes- Multiwalled carbon nanotubes- Fabrication of carbon nanotubes using Plasma Arching Method- Properties and Applications of Carbon nanotubes.

TOTAL HOURS: 45

COURSE OUTCOMES:

On su	ccessful completion of the course the student will be able to,	POs related to COs
CO1	Acquire the basic knowledge on Nanoscience, and various types of Nano materials.	PO1, PO12
CO2	Identify appropriate method for the preparation of Nano materials	PO1, PO12
СОЗ	Develops skill to characterize Nanomaterials by various techniques	PO1, PO4, PO12
CO4	Analyze the different properties of Nanomaterials and identify their applications in various fields	PO1, PO12
CO5	Develop Knowledge on carbon Nano materials	PO1, PO12

TEXT BOOKS:

- 1. M.R. Srinivasan, New Age International, "Engineering Physics", Chennai 2011
- 2. K. Thyagarajan, "Engineering Physics", Mc Graw Hill Publishers, First Edition, NewDelhi, 2014.
- 3. Er. Rakesh Rathi, S. Chand, "Nanotechnology-Technology Revolution" of 21stCentury Publications

REFERENCE BOOKS:

- 1. Nanotechnology- A Gentle Introduction to the Next Big Idea. Kindersely, India.Pvt., New Delhi, 2003,Dorling
- Nano- The Essentials Understanding Nano Science and Nanotechnology), TataMcGraw
 Hill Publication 2010,

CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	3	-	-	2	I	-	-	-	-	-	-	1
CO4	3	-	-	I	I	-	-	-	-	-	-	1
CO5	3	-	-	-	-	-	-	-	-	-	-	1
CO*	3	-	-	2	-	-	-	-	-	-	-	1

208

200CIV471

DISASTER MITIGATION AND MANAGEMENT (OPEN ELECTIVE - 3)

IV B.Tech. - VII Semester

LTPC 3 - - 3

PRE-REQUISITES: A Course on Environmental Studies.

COURSE OUTCOMES:

- 1. To explain the disaster phenomenon and disaster preparedness.
- 2. To demonstrate the roles and responsibilities of different agencies.
- 3. To explain the disaster management techniques
- 4. To explain concept of disaster mitigation strategies
- 5. To demonstrate the different case studies on disaster management

UNIT I: INTRODUCTION TO DISASTER PREPAREDNESS

Disaster Management- Prevention-Preparedness and Mitigation-Disaster Preparedness-Concept & Nature-Disaster Preparedness Plan-Disaster Preparedness for People and Infrastructure · Community based Disaster Preparedness Plan. Mitigation process- disaster management techniques, disaster management aspects.

UNIT II: ROLES & RESPONSIBILITIES OF DIFFERENT AGENCIES (9)

Roll of Information-Education-Communication & Training-Role and Responsibilities of Central-State-District and local administration-Role and Responsibilities of Armed Forces- Police-Paramilitary Forces-Role and Responsibilities of International Agencies-NGOs- Community Based Org. (CBO s), disaster management quality control.

UNIT III: TECHNOLOGIES FOR DISASTER MANAGEMENT

Role of IT in Disaster Preparedness-Remote Sensing-GIS and GPS-Use and Application of Emerging Technologies-Application of Modern Technologies for the Emergency Communication-Application and use of ICST for different disasters

UNIT IV: DISASTER MITIGATION

Meaning and concept-Disaster Mitigation Strategies-Emerging Trends in Disaster Mitigation · Mitigation Management-Role of Team and Coordination

UNIT V: DISASTER MANAGEMENT

Applications and case studies and field works-Landslide Hazard Zonation-Case Studies-Earthquake Vulnerability Assessment of Buildings and Infrastructure-Case Studies-Drought Assessment-Case Studies-Coastal Flooding-Storm Surge Assessment-Floods-Fluvial and Pluvial Flooding-Case Studies-Forest Fire-Case Studies-Man Made Disasters-Case Studies-Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL HOURS: 45

(9)

(9)

(9)

COURSE OUTCOMES:

On s to,	On successful completion of the course the student will be able to,								
C01	Explain the disaster phenomenon and disaster preparedness	PO1							
CO2	Demonstrate the roles and responsibilities of different agencies	PO6							
CO3	Analyse the techniques for disaster management	PO2							
CO4	Demonstrate the disaster mitigation strategies	P06 P07							
CO5	Apply the knowledge gained to manage the disasters.	PO1, PO12							

TEXTBOOKS:

1. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.

2. Roy, P.S "Space Technology for Disaster management" A Remote Sensing & GIS Perspective, Indian Institute of Remote Sensing (NRSA) Dehradun,. (2000)

REFERENCES:

1. Singh B.K., 2008, "Handbook of Disaster Management", Techniques & Guidelines, Rajat Publication.

2. Ghosh G.K., 2006, "Disaster Management", APH Publishing Corporation

3. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June2003

4. Inter Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC

REFERENCE BOOKS:

1. <u>https://nptel.ac.in/courses/105/104/105104183/</u>

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO.1	2	-	-	-	-	-	-	-	-	-	-	-
CO.2	-	-	-	-	-	3	-	-	-	-	-	-
CO.3	-	3	-	-	-	-	-	-	-	-	-	-
CO.4	-	-	-	-	-	3	2	-	-	-	-	-
CO.5	2	-	-	-	-			-	-	-	-	2
CO*	2	3	-	2	-	3	2	-	-	-	-	2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Data Science)

IV B.Tech. - VII Semester

200EEE471

PLC AND APPLICATIONS (Open Elective-3)

L	Т	Ρ	С
3	-	-	3

Pre-Requisites: NIL

COURSE EDUCATIONAL OBJECTIVES:

On successful completion of the course, students will be able to,

- Gain the Knowledge of various skills necessary for Industrial applications
- 1. of Programmable logic controller (PLC).
- Understand the basic programming concepts and various logical
- 2. Instructions used in Programmable logic controller (PLC).
- 3. Gain the Knowledge on PLC Timers and Counters. Solve the problems related to I/O module, Data Acquisition System and
- 4. Communication Networks using Standard Devices.
- 5. Provide knowledge on DLC and its applications.

UNIT-1: INPUT AND OUTPUTMODULES

PLC Basics: PLC system - I/O modules and interfacing - CPU processor - programming Equipment - programming formats - construction of PLC ladder diagrams - Devices connected to I/O modules.PLC Programming: Input instructions - outputs - operational procedures - programming examples using contacts and coils. Drill press operation.

UNIT-2: DESIGN AND PROGRAMMING

Digital logic gates - programming in the Boolean algebra system - conversion examples. Ladder Diagrams for process control: Ladder diagrams & sequence listings - ladder diagram construction and flowchart for spray process system.

UNIT-3: PLC REGISTERS

PLC Registers: Characteristics of Registers - module addressing - holding registers - Input Registers - Output Registers.PLC Functions: Timer functions & Industrial applications counter function & industrial applications - Arithmetic functions -Number comparison functions - number conversion functions

UNIT-4: PLC APPLICATIONS

Data handling functions: SKIP - Master control Relay - Jump - Move - FIFO - FAL - ONS - CLR & Sweep functions and their applications. Bit Pattern and changing a bit shift register - sequence functions and applications - controlling of two-axis & three axis Robots with PLC - Matrix functions.

UNIT-5: DCS AND ITS APPLICATIONS

Distributed Control System (DCS) - Evolution - Different Architectures - Logical Control Unit - Operator Interface - Display - Engineering Interface.DCS Applications to Power Plant – Iron and Steel Plants – Chemical Industries – Paper and Pulp Industries.

Total Hours: 45

210

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
C01	Have knowledge of Programmable Logic Controller domain on various Logical Operation and Various Advanced Logical Instruction, I/O Module, Sensor, Actuator, Communication and Measurement System.	P01,P02
CO2	Understand the basic programming concepts and various logical Instructions used in Programmable logic controller (PLC).	PO1,PO2,PO3
СОЗ	Understand the operation of Timers and Counters in Programmable logic controller (PLC).	PO1,PO2,PO3
CO4	Compute the extent and nature of electronic circuitry in Programmable logic controller (PLC) and SCADA including monitoring and control circuits for Communication and Interfacing.	P01,P02,P03
CO5	Provide knowledge on DLC and its applications	PO1,PO2,PO3

TEXT BOOKS

- 1. W. Bolton "Programmable Logic Controllers" 5th Edition Elsevier 2010
- 2. John W. Webb & Ronald A. Reiss "Programmable Logic Controllers- Principles andApplications" - Fifth Edition - PHI

REFERENCE BOOKS

- 1. Programmable Logic Controllers- Programming Method and Applications JR.Hackworth &F.D Hackworth Jr. –Pearson 2004.
- Distributed Computer Control of Industrial Automation by Popovic D and Bhatkar V. P
 Marcel Dekkar Inc. 1990.
- 3. Distributed Control Systems by Michal P. Lucas Vann strand Reinhold Co. 1986.

REFERENCE WEBSITE LINK:

https://nptel.ac.in/courses/117/106/117106086

CO/PO	P01	P02	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	3	-	-	-	-	-	-	-	-	-	-
CO.2	3	3	2	-	-	-	-	-	-	-	-	-
CO.3	3	3	2	-	-	-	-	-	-	-	-	-
CO.4	3	3	2	-	-	-	-	-	-	-	-	-
CO.5	3	3	2	-	-	-	-	-	-	-	-	-
CO *	3	3	2	-	-	-					-	-

200MEC471

PRODUCT DESIGN AND INNOVATION (Open Elective - 3)

L	Т	Ρ	С
3	-	-	3

PRE-REQUISITES: Nil.

COURSEEDUCATIONALOBJECTIVES:

- 1. To develop the Characteristics of successful product design and development in an organization
- 2. To evaluate the product planning and product specification of a product
- 3. To understand the generation, selection and testing of a concept in the product design.
- 4. To develop product architecture and design for manufacturing new product
- 5. To understand the prototypes and principles.

UNIT-1: INTRODUCTION TO PRODUCT DESIGN AND INNOVATION (9)

Characteristics and challenges of successful product development – Product development concept – Generic product development– Process flow and organization structure – Opportunity identification and process – Establish a charter – Generate many opportunities – Screening and develop of promising opportunities – Select exceptional opportunities.

UNIT-2: PRODUCT PLANNING AND PRODUCT SPECIFICATION (9)

Product planning process – Identification of opportunities – Evaluation and prioritization of projects – Allocation of resources and timing – Pre-project planning – Identification of customer needs – Collection and Interpretation of raw data from customers – Organization of the needs – Establishment of relative importance of needs–Product specifications–Target specifications–Setting-up of final specifications.

UNIT-3: CONCEPT GENERATION, SELECTION, TESTING

Concept generation – Clarification of the problem – Searching externally and internally – Systematic exploration – Concept selection – Concept screening and concept scoring – Concept testing – Survey population and format – Measuring the customer response.

UNIT-4: PRODUCT ARCHITECTURE AND DESIGN FOR MANUFACTURE (9)

Product architecture, modularity and implications – Delayed differentiation– Platform planning–System-level – Quality of industrial design – Design for environment process – Potential environmental impacts – DFE guidelines to the product design – Assessing and elimination of environmental impacts –Design for manufacturing– Estimation of manufacturing costs – Reduction of costs of components, assembly, supporting production– Impact decisions of DFM.

UNIT-5: PRODUCT DEVELOPMENT ECONOMICS AND MANAGING PROJECTS (9)

Planning of prototypes – Robust design process –Identify the performance metrics, and noise factors – Objective function and experimental plan – Run the experiment – Repeat and confirm factor – Overview, formulation, strategy and utility of patents– Prior inventions– Refine claims – Product development economics and analysis – Financial model – Use of sensitivity analysis – Project success – Managing projects – Baseline project planning – Project execution.

Total Hours: 45

COURSEOUTCOMES:

On suc	cessful completion of the course, students will be able to	POs and COs Mapping
C01	Describe the Characteristics of successful product development in an organization	PO1, PO2, PO3
CO2	Evaluate the product planning and product specification of a product	P01, P02, P03
СО3	Understand the generation, selection and testing of a product concept	P01, P02, P03
CO4	Develop product architecture and design for manufacturing new product	P01, P02, P03
C05	Understand the principles of prototypes, economics and project management	PO1, PO2, PO3, PO11

TEXTBOOKS:

- 1. UlrichK.T.andEppingerS.D.,"ProductDesignandDevelopment",McGraw-HillEducation, 6/e, 2015.
- 2. KevinOtto and Kristin Wood, "Product Design: Techniques in Reverse Engineering andNew Product Development", Pearson Education, 1/e, 2003.

REFERENCEBOOKS:

- 2. Paul Trott, "Innovation Management and New Product Development", PearsonEducation, 6/e, 2016.
- 3. Chitale.A. KandGupta.R.C, "Product Design and Manufacturing", Prentice Hall of India,NewDelhi, 2011.
- 4. Mukesh Chaturvedi, Aseem Kumar and Rahul Manmohan, "Managing Innovations andNew Product Development: Concepts and Cases", PHI Learning, 2009.
- 5. James M. Morganand Jeffrey K.Liker, "Designing the Future", McGraw-Hill Education, 1/e, 2019.
- 6. James M. Morgan and Jeffrey K.Liker, "Designing the Future", McGraw-Hill Education, 1/e, 2019.

REFERENCEWEBSITE:

- 1. https://nptel.ac.in/courses/112/107/112107217/
- 2. https://nptel.ac.in/courses/112/104/112104230/

CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
CO.1	3	2	1	-	-	-	-	-	-	-	-	-
CO.2	3	2	1	-	-	-	-	-	-	-	-	-
CO.3	3	2	1	-	-	-	-	-	-	-	-	-
CO.4	3	2	1	-	-	-	-	-	-	-	-	-
CO.5	3	2	1	-	-	-	-	-	-	-	1	-
CO*	3	2	1	-	-	-	-	-	-	I	1	-

(Data Science)

IV B.TECH.-VII SEMESTER

200ECE471

MEDICAL ELECTRONICS (Open Elective – 3)

L	Т	Ρ	С
3	-	-	3

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To gain knowledge and analyze the various physiological parameters and its recording methods, signal characteristics.
- 2. To understand the respiratory, Blood pressure, temperature measurements etc.
- 3. To study about the various assist devices used in the hospitals.
- 4. To gain knowledge about equipment used for physical medicine and the various recently developed diagnostic and therapeutic techniques.
- 5. To know the recent trends in Tele-medicine and laser in medicine.

UNIT -1: ELECTRO-PHYSIOLOGY AND BIO-POTENTIAL RECORDING (9)

The origin of Bio-potentials; bio potential electrodes, biological amplifiers, ECG, EEG, EMG, PCG, lead systems and recording methods, typical waveforms and signal characteristics.

UNIT -2: BIO-CHEMICALANDNONELECTRICALPARAMETERMEASUREMENT (9)

pH, PO2, PCO2, colorimeter, Auto analyzer, Blood flow meter, cardiac output, respiratory measurement, Blood pressure, temperature, pulse, Blood cell counters.

UNIT -3: ASSIST DEVICES	(9)

Cardiac pacemakers, DC Defibrillator, Dialyzer, Heart lung machine

UNIT -4: PHYSICAL MEDICINE AND BIOTELEMETRY

Diathermies- Shortwave, ultrasonic and microwave type and their applications, Surgical Diathermy Telemetry principles, frequency selection, biotelemetry, radiopill, electrical safety

UNIT -5: RECENT TRENDS IN MEDICAL INSTRUMENTATION (9)

Thermograph, endoscopy unit, Laser in medicine, cryogenic application, Introduction toTelemedicine.

Total Hours: 45

COURSE OUTCOMES:

On suc	POs	
CO1	Distinguish and analyze the various physiological parameters and its recording methods, signal characteristics.	P01, P02
CO2	Describe the respiratory, Blood pressure, temperature measurements etc.	PO1, PO2
СО3	Analyze function of various assist devices used in the hospitals.	PO1, PO2
CO4	Demonstrate knowledge about equipment used for physical. Medicine and the various recently developed diagnostic and therapeutic techniques.	P01, P02
CO5	Extend knowledge on recent trends in telemedicine and laser in medicine.	P01, P02

TEXT BOOKS:

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Prentice Hall of India, New Delhi, 2007.
- John G.Webster, "Medical Instrumentation Application and Design" Wiley India 3rd, Edition, 2007.

REFERENCE BOOKS:

- 1. Khandpur, R.S, "Handbook of Biomedical Instrumentation" TATA McGraw-Hill, New Delhi, 2003.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical equipment Technology", John Wiley and Sons, New York, 2004.

REFERENCE WEBSITE:

1. https://onlinecourses.nptel.ac.in/noc21_ee105

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	3	-	-	-	-	-	-	-	-	-	-
CO.2	3	3	-	-	-	-	-	-	-	-	-	-
CO.3	3	3	-	-	-	-	-	-	-	-	-	-
CO.4	3	3	-	-	-	-	-	-	-	-	-	-
CO.5	3	3	-	-	-	-	-	-	-	-	-	-
CO*	3	3	-	-	-	-	-	-	-	-	-	-

IV B.TECH. - VII SEMESTER

200HSM472

TOTAL QUALITY MANAGEMENT (OPEN ELECTIVE - 4)

L T P C 3 - - 3

PRE-REQUISITES: NIL

COURSE EDUCATIONAL OBJECTIVES:

- 1. To understand the concepts of total quality management, and Contributions of TQM
- 2. To learn TQM principles and impact of 5s, Kaizen, PDSA cycles in continuous process improvement.
- To study the basic need of quality control and process control in an organization
- 4. To learn the traditional and modern TQM tools and techniques
- 5. To study the quality standard, requirements and elements in Quality management system

UNIT -1: INTRODUCTION ON TOTAL QUALITY MANAGEMENT

Introduction – Need for quality – Evolution of quality – Definition of quality – Dimensions of manufacturing and service quality – Basic concepts of TQM – Definition of TQM – TQM frame work – Contributions of Deming, Juran and Crosby – Barriers to TQM.

UNIT -2: TQM PRINCIPLES

Leadership – Strategic quality planning – Quality statements – Customer focus, customer orientation, customer satisfaction, customer complaints and retention – Employee involvement – Motivation – Empowerment – Teams and teamwork – Recognition and reward – Performance appraisal – Continuous process improvement – PDSA cycle, 5s, Kaizen – Supplier partnership, partnering, supplier selection and supplier rating.

UNIT -3: QUALITY CONTROL

Control chart for attributes – Control chart for non-conforming – p chart and np chart – Control chart for nonconformities: C and U charts – Control chart for variables: X chart, R chart and σ chart – State of control and process out of control identification in charts, pattern study and process capability studies.

UNIT -4: TQM TOOLS AND TECHNIQUES

The seven traditional tools of quality – New management tools – Six-sigma: Concepts, methodology, applications to manufacturing, service sector – Bench marking – Bench marking process – FMEA – Stages – Types – Quality circles – Quality function development (QFD) – Taguchi quality loss function – TPM – Reliability fundamentals and concepts.

UNIT -5: QUALITY SYSTEMS AND STANDARDS

Need for ISO 9000 – ISO 9001-2008 Quality System – Benefits of ISO registration – ISO 9000 standards – AS 9100, TS16949 and TL 9000 – ISO 9001 Requirements – Implementation – Documentation – Internal and external audits – Registration – TQM implementation in manufacturing and service sectors. **Environmental Management System:** ISO 14000 Series Standards – Concepts and Requirements of ISO 14001.

Total Hours: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs and COs Mapping
CO1	Describe the concepts of total quality management, and Contributions of TQM	P01, P011, P012
CO2	Understand the TQM principles and impact of 5s, Kaizen, PDSA cycles in continuous process improvement.	P01, P011, P012
соз	Illustrate the basic need of quality control and process control in an organization	PO1, PO2, PO11, PO12
CO4	Summarize the traditional and modern TQM tools and techniques	PO1, PO3, PO11, PO12
CO5	Realize the quality standard, requirements and elements in Quality management system	P01,P011, P012

TEXT BOOKS:

- 1. Bester field Dale H, Bester field Carol, Bester field Glen H, Bester field Mary, Urdhwareshe Hemant and Urdhwareshe Rashmi, "Total Quality Management", Pearson Education, 5/e, 2018, New Delhi.
- Douglas.C. Montgomery, John Wiley, "Introduction to Statistical Quality Control", 7/e, 2013,.

REFERENCE BOOKS:

- 1. D.R. Kiran, Butterworth-Heinemann, "Total Quality Management", 1/e, 2016, .
- Poornima M. Charantimath, "Total Quality Management", Pearson Education, New Delhi, 3/e,2017,
- 3. Tapan K. Bose,"Total Quality of Management", Pearson Education India 2010,.
- 4. Bedi Kanishka, "Quality Management", Oxford University Press, India 2006,.
- 5. Ramasamy Subbura, "Total Quality Management", McGraw Hill Education 2011,

REFERENCE WEBSITE:

- 1. <u>https://nptel.ac.in/courses/110/104/110104085/</u>
- 2. <u>https://nptel.ac.in/courses/110/104/110104080/</u>
- 3. https://nptel.ac.in/courses/112/107/112107259/
- 4. <u>https://nptel.ac.in/courses/110/101/110101150/</u>

CODES/TABLES:

1. Use of approved statistical table permitted in the examination.

CO-PO MAPPING

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	P012
CO.1	3	2	2	2	-	-	-	-	-	-	-	-
CO.2	3	2	2	2	-	-	-	-	-	-	-	-
CO.3	3	2	2	2	-	-	-	-	-	-	-	-
CO.4	3	2	2	2	-	-	-	-	-	-	-	-
CO.5	3	2	2	2	-	-	-	-	-	-	-	-
CO*	3	2	2	2	-	-	-	-	-	-	-	-

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Data Science)

IV B.Tech. - VII Semester

200CIV472

INDUSTRIAL WASTE TREATMENT AND DISPOSAL (OPEN ELECTIVE - 4)

L T P C 3 - - 3

PRE-REQUISITES: A Course on Environmental Engineering

COURSE OUTCOMES:

- 1. To make the students understand about industrial waste characteristics and effects on sewer land and streams.
- 2. To provide knowledge about waste management approach through cleaner production
- 3. To make the students understand about pollution from major industries
- 4. To gain knowledge about various treatment technologies regarding industrial wastewater.
- 5. To provide knowledge about hazardous waste management and disposal

UNIT I: INTRODUCTION

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes

UNIT II:CLEANER PRODUCTION

Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications.

UNIT III: POLLUTION FROM MAJOR INDUSTRIES

Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertiliser, thermal power plants – Wastewater reclamation concepts

UNIT IV:TREATMENT TECHNOLOGIES

Equalisation – Neutralisation – Removal of suspended and dissolved organic solids -Chemical oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and municipal wastes – Residue management – Dewatering - Disposal

UNIT V:HAZARDOUS WASTE MANAGEMENT

Hazardous wastes - Physico chemical treatment – solidification – incineration – Secured landfills

TOTAL HOURS: 45

(9)

(9)

(9)

(9)

COURSE OUTCOMES:

On su to	ccessful completion of the course the student will be able	POs related to COs
CO1	Understand the nature and characteristics of industrial wastewater	P01, P02
CO2	Understand the waste management approach adopting cleaner production technology	PO1, PO2
CO3	Analyse the pollution from major industries	P01, P02, P03
CO4	Understand the various treatment technologies regarding industrial wastewater	PO3, PO6
CO5	Understand the hazardous waste management and disposal	P01, P02, P03

TEXTBOOKS:

- 1. M.N.Rao&A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1999.
- 2. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi, 2000.

REFERENCES:

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Handbook", Lewis Publisher, New Yark, 1998

REFERENCE WEBSITES:

1. <u>https://nptel.ac.in/courses/105/106/105106056/https://nptel.ac.in/courses/105/105/1</u> 05105169/

CO-PO MAPPING:

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO.1	3	2	-	-	-	-	-	-	-	-	-	-
CO.2	2	3	-	-	-	-	-	-	-	-	-	-
CO.3	1	2	3	-	-	-	-	-	-	-	-	-
CO.4	-	-	2	-	-	2	-	-	-	-	-	-
CO.5	1	2	3	-	-	-	-	-	-	-	-	-
CO*	1.66	2.25	2.66		-	2	-	-	-	-	-	-

IV B.Tech-VII Semester

200EEE472

ELECTRIC VEHICLE TECHNOLOGY (Open Elective-4)

Т С L 3

3

(9)

(9)

(9)

(9)

(9)

COURSE EDUCATIONAL OBJECTIVES:

On successful completion of the course, students will be able to,

- Understand Electric and Hybrid Electric Vehicles 1
- Study and analyze the Energy Storage for EV and HEV 2
- 3 Study and understand the concept of Electric Propulsion
- 4 Analyze and design the Electric and Hybrid Electric Vehicles
- Study operation of Power Electronic Converter for Battery Charging. 5

UNIT-I: ELECTRIC AND HYBRID ELECTRIC VEHICLES

Configuration of Electric Vehicles, Performance of Electric Vehicles, Traction motor characteristics,TractiveeffortandTransmissionrequirement,Vehicleperformance,Tractiveeffortinn ormaldriving, Energy consumption Concept of Hybrid Electric Drive Trains, Architecture of Hybrid ElectricDriveTrains,SeriesHybridElectricDriveTrains,Parallelhybridelectricdrivetrains.

UNIT-II: ENERGY STORAGE FOR EV AND HEV

Energy storage requirements, Battery parameters, Types of Batteries, Modeling of Battery, Fuel Cellbasic principle and operation, Types of FuelCells, PEMFCanditsoperation, SuperCapacitors.

UNIT-III: ELECTRICPROPULSION

EV consideration, DC motor drives and speed control, Induction motor drives, Permanent MagnetMotor Drives, Switch Reluctance Motor Drive for Electric Vehicles, Configuration and control ofDrives.

UNIT-IV: DESIGN OF ELECTRIC AND HYBRID ELECTRIC VEHICLES

Series Hybrid Electric Drive Train Design: Operating patterns, control strategies, Sizing of majorcomponents, powerrating of traction motor, powerrating of engine/generator, and design of PPS. Parallel Hybrid Electric Drive Train Design: Control strategies of parallel hybrid drive train, design of engine power capacity, design of electric motor drive capacity, transmission design, and energy storaged esign.

UNIT-V: POWER ELECTRONIC CONVERTER FOR BATTERY CHARGING

Charging methods for battery, Termination methods, charging from grid, The Z-converter, Isolated bidirectional DC-DC converter, Design of Z-converter for battery charging, Highfrequency transformer based isolated charger topology, Transformer less topology.

TOTAL HOURS: 45

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
CO1	Understand Electric and Hybrid Electric Vehicles	PO1,PO2,PO3
CO2	Study and analyze the Energy Storage for EV and HEV	PO1,PO2,PO3
CO3	Study and understand the concept of Electric Propulsion	PO1,PO2,PO3
CO4	Analyze and design the Electric and Hybrid Electric Vehicles	PO1,PO2,PO3
CO5	Study operation of Power Electronic Converter for Battery Charging.	PO1,PO2,PO3

TEXTBOOKS:

- 1. M.Ehsani, Y.Gao, S.Gayand AliEmadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles "Fundamentals, Theory and Design", CRC Press, 2005
- 2. Iqbal Husain, Electric and Hybrid Vehicles" Design Fundamentals", CRC Press, 2003.

REFERENCES:

- 1. Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in HybridElectric Vehicles, Springer, 2013.
- 2. C.C.Chanand K.T. Chau, Modern Electric Vehicle Technology, OXFORD University Press,2001.ChrisMi, M.Abul Masrur, David Wenzhong Gao, Hybrid Electric Vehicles Principles and Applications With Practical Perspectives, Wiley Publication, 2011.

CO-PO MAPPING:

CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	2	2	-	-	-	-	-	-	-	-	-
CO2	3	2	2	-	-	-	-	-	-	-	-	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-
CO4	3	2	2	-	-	-	-	-	-	-	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-
СО	3	2	2									

(Data Science)

200MEC472

IV B.TECH.-VII SEMESTER SOLAR ENERGY TECHNOLOGY (Open Elective - 4)

L T P C 3 -- 3

(9)

(9)

(9)

PRE-REQUISITES: NIL

COURSE EDUCATIONALOBJECTIVES:

- 1. Describing the solar radiation and various solar collectors.
- 2. Explaining the various solar thermal energy technologies and their applications.
- 3. Analyzing the various solar PV cell materials and conversion techniques.
- 4. Discussing various solar SPV systems designs and their applications.
- 5. Applying solar passive building techniques for cooling and heating applications.

UNIT-1: SOLAR RADIATION AND COLLECTORS

Introduction to the sources of energy – Solar angles – Sunpath diagrams– Radiation–extra terrestrial characteristics - measurement and estimation on horizontal and tilted surfaces - flat plate collector thermal analysis - testing methods- evacuated tubular collectors-concentrator collectors-classification-design and performance parameters-tracking systems-compound parabolic concentrators - parabolic trough concentrators - concentrators with point focus - Heliostats–performance of the collectors.

UNIT-2: SOLAR THERMAL TECHNOLOGIES

Principle of working, types, design and operation of - Solar heating and cooling systems – Thermal Energy storage systems–Solar Desalination–Solar cooker: domestic, community–Solar pond – Solar drying – solar chimney-solar thermal electricity conversion.

UNIT-3: SOLAR PV FUNDAMENTALS

Semiconductor – properties - energy levels - basic equations of semiconductor devices physics. Solar cells - p-n junction: homo and hetero junctions - metal-semiconductor interface - dark and illumination characteristics - figure of merits of solar cell – efficiency limits - variation of efficiency with band-gap and temperature - efficiency measurements –high efficiency cells – Solar thermophotovoltaics.

UNIT-4: SPV SYSTEM DESIGN AND APPLICATIONS

Solar cell array system analysis and performance prediction- Shadow analysis: reliability -solar cell array design concepts - PV system design - design process and optimization -detailed array design - storage autonomy - voltage regulation - maximum tracking –centralized and decentralized SPV systems-standalone-hybrid and grid connected system - System installation - operation and maintenances - field experience - PV market analysis and economics of SPV systems.

UNIT-5: SOLAR PASSIVE ARCHITECTURE

Thermal comfort - bioclimatic classification – passive heating concepts: direct heat gain -indirect heat gain - isolated gain and sunspaces - passive cooling concepts: evaporativecooling - Radiative cooling- application of wind, water and earth for cooling; shading -paints and cavity walls for cooling– roofradiation traps - earth air-tunnel– energy efficient landscape design- thermal comfort.

Total Hours: 45

(9)

COURSE OUTCOMES:

On su	ccessful completion of the course, students will be able to	POs
C01	Describe the solar radiation and various solar collectors.	P01,P02, P03
CO2	Explainthevarioussolarthermalenergytechnologiesandtheirappli cations.	P01,P02, P03
СОЗ	Analyze the various solar PV cell materials and conversion techniques.	PO1, PO2, PO3
CO4	Discuss various Solar SPV systems designs and their applications.	P01,P02, P03
C05	Apply solar passive building techniques for cooling and heating applications.	P01,P02, P03

TEXTBOOKS:

- 1. G.D.Rai, "Non-Conventional Energy Sources", Khanna Publishers, NewDelhi, 2014.
- 2. Twidell, J.W. & Weir. A., "Renewable Energy Resources", EFN Spon Ltd., UK, 2015.

REFERENCEBOOKS:

- Chetan Singh Solanki, "Solar Photovoltatics Fundamentals, Technologies and 1. Applications", PHI Learning Private limited, 2011.
- John A.Duffie, William A.Beckman, "Solar Engineering of Thermal Processes", John 2. Wiley & Sons, 2013.
- LovegroveK., SteinW., "Concentrating Solar Power Technology", Wood head Publishing 3. Series in Energy, Elsevier, 1/e, 2012.
- 4. "Solar Energy International, Photovoltaic-Design and Installation Manual", New Society Publishers, 2006.

PO11

_

-

-

-

-

_

PO12

_

_

-

-

-

_

Sukhatme SP, Nayak JK, "Solar Energy-Principle of Thermal Storage and collection", 5. Tata McGrawHill, 2008.

REFERENCEWEBSITE:

- 1. https://nptel.ac.in/courses/112/104/112104300/
- 2. https://nptel.ac.in/courses/115/103/115103123/

1

CC	о-ро мар	PING:									
	CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010
	CO.1	3	2	1	-	-	-	-	-	-	-
	CO.2	3	2	1	-	-	-	-	-	-	-
	CO.3	3	2	1	-	-	-	-	-	-	-
	CO.4	3	2	1	-	-	-	-	-	-	-
	CO.5	3	2	1	-	-	-	-	-	-	-

-

CO*

3

2

_

PATTERN RECOGNITION L T P C (Open Elective – 4) 3 - - 3

PRE-REQUISITES: NIL

200ECE472

COURSE EDUCATIONAL OBJECTIVES:

- 1. To provide knowledge on Basics Pattern Recognition.
- 2. To acquire knowledge on various methods of statistical Pattern Recognition.
- 3. To be able to solve dimensionality problem.
- 4. To understand the linear discriminant functions and neural network classifier.
- 5. To gain the principle of time varying pattern recognition and unsupervised classification.

UNIT -1: INTRODUCTION TO PATTERN RECOGNITION

Linear Discriminant, Multiple Discriminant Analysis, Feature extraction and Pattern Representation Concept of Supervised and Unsupervised classification Introduction to Application Areas.

UNIT -2: STATISTICAL PATTERN RECOGNITION

Bayes Decision Theory, Minimum Error and Minimum Risk Classifiers, Discriminant Function and Decision Boundary Normal Density, Discriminant Function, Discrete Features, Parameter estimation.

UNIT -3: DIMENSIONALITY PROBLEM

Dimension and accuracy, Computational Complexity, Dimensionality Reduction, Fisher Density Estimation, Nearest Neighbor Rule, Fuzzy Classification.

UNIT -4: LINEAR DISCRIMINANT FUNCTIONS

Separability, Two Category and Multi Category Classification, Linear Discriminators, Perceptron Criterion, Relaxation Procedure, Minimum Square Error Criterion, Widrow-Hoff Procedure, Ho-Kashyap Procedure, Kesler"s Construction.

Neural Network Classifier:

Single and Multilayer Perceptron, Back Propagation Learning, Hopfield Network, Fuzzy Neural Network

UNIT -5:TIME VARYING PATTERN RECOGNITION

First Order Hidden Markov Model, Evaluation, Decoding, Learning.

Unsupervised Classification:

Clustering, Hierarchical Clustering, Graph Based Method, Sum of Squared Error Technique Iterative Optimization.

Total Hours: 45

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (Autonomous) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Data Science)

IV B.Tech. - VII Semester

(9)

(9)

(9)

COURSE OUTCOMES:

On suc	cessful completion of the course, students will be able to	POs and COs Mapping
C01	Demonstrate knowledge on Basics of pattern recognition and analysis of unsupervised classification with application areas.	P01, P02
CO2	Demonstrate the knowledge on statistical pattern recognition with analytical skills.	P01, P02, P04
CO3	Ability to understand the dimensionality problem	P01, P02, PO4
CO4	Acquire the basic knowledge on linear discriminant function and neural network classifier.	P01, P02
C05	Understand the need for and use of time varying pattern recognition and unsupervised classification	P01, P02, P04

TEXT BOOKS:

- 1. Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John Wiley & Sons Inc., New York, 1992.
- 2. Tou and Gonzales, "Pattern Recognition Principles", Wesley Publication Company, London, 1974.

REFERENCE BOOKS:

- 1. Duda R.O and Har P.E., "Pattern Classification and Scene Analysis", Wiley, NewYork, 1973.
- Morton Nadier and Eric Smith P, "Pattern Recognition Engineering", John Wiley & Sons, New York, 1993.

REFERENCE WEBSITE:

- 1. https://en.wikipedia.org/wiki/Pattern_recognition
- 2. https://www.journals.elsevier.com/pattern-recognition
- 3. https://www.sciencedirect.com/journal/pattern-recognition

CO\PO	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO.1	3	1	-	-	-	-	-	-	-	-	-	-
CO.2	3	3	-	2	-	-	-	-	-	-	-	-
CO.3	3	3	-	2	-	-	-	-	-	-	-	-
CO.4	3	3	-	-	-	-	-	-	-	-	-	-
CO.5	3	3	-	1	-	-	-	-	-	-	-	-
CO*	3	2.6	-	1.67	-	-	-	-	-	-	-	-

CO-PO MAPPING:

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (Autonomous)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Data Science)

IV B.Tech-VII Semester

20CSD473

NOSQL USING MONGO DB

LTPC 2103

(SAC)

PRE-REQUISITES: A Course on DBMS, Basic knowledge of Data Science

COURSE EDUCATIONAL OBJECTIVES:

- 1. To Learn what is a MongoDB database
- 2. To Learn to create an Aggregation Pipeline and explore the use of Compass utility for visualizing MongoDB data.
- 3. To Learn to create and manipulate documents in MongoDB
- 4. To Learn to import, export and guery
- 5. To get hands- on experience in working with NoSQL and Mongodb.

UNIT -1:

(6)

Documents, Introduction: Getting Started-Collections, Databases, Getting and Starting MongoDB ,Introduction to MongoDB Shell, Data Types, Using the MongoDB Shell **Creating, Updating, and Deleting Documents:** Inserting and Saving Documents, Updating

Documents, Setting a write concern

UNIT -2:

(6) **Indexing:** Introduction to Indexing, Using explain () and hint(), When Not to use Index, Types of Indexes, Index Administration

Special Index and Collection Types: Capped Collections, Time-To-Live Indexes, Full-TextIndexes, Geospatial Indexing, Storing Files with GridFS

UNIT -3: (6) Aggregation: The Aggregation Framework, Pipeline Operations, MapReduce,

Aggregation Commands

Application Design: Normalization versus Denormalization, Optimizations for Data Manipulation, Planning Out Databases and Collections, Managing Consistency, Migrating, Schemas, When Not to use MongoDB

Setting Up a Replica Set: Introduction to Replication, A One-minute Test Setup, configuringa ReplicaSet, changing your ReplicaSet Configuration, How to design a Set, Member Configuration Options

UNIT-4:

Administration: Starting Members Standalone ReplicaSet in Mode, Configuration, Manipulating Member State, Monitoring Replication, Master-Slave

Sharding Administration: Seeing the Current State, Tracking Network Connections, Server Administration, Balancing Data

Data Administration: Setting Up Authentication, Creating and Deleting Indexes, PreheatingData, Compacting Data, Moving Collections, Pre-allocating Data Files

UNIT-5:

Starting and Stopping MongoDB: Starting from the Command Line, Stopping MongoDB, Security ,Logging

Monitoring MongoDB: Monitoring Memory Usage, Calculating the Working Set, Tracking Performance, Monitoring Replication

Making Backups: Backing Up a server, Backing Up a Replica Set, Backing Up a Sharded Cluster, Cresting Incremental Backups with mongoopolog.

Designing the System, Virtualization, Configuring System Settings, Configuring your network, System House Keeping.

(6)

(6)

LIST OF DEMO/EXPERIMENTS

- 1. Install MongoDB
- 2. Install MongDB Shell and Practice
- 3. Connect to a MobgoDB Deployment
- 4. Perform CRUD operations
- 5. Run Aggregation pipeline
- 6. Perform Client side Field level encryption
- 7. Write scripts to modify data and perform some administrative operations

PROJECTS

- 1. Build a Content Management System using MongoDB
- 2. Build a File sharing application similar to Dropbox and Google drive using MongoDB

Total Hours:45

COURSE OUTCOMES:

On su to,	ccessful completion of the course the student will be able	POs related to COs
CO1	Understand the working of NoSQL, Mongodb, its features	PO1, PO2
CO2	Explain and compare different types of Data	PO1, PO2, PO3
CO3	Demonstrate the detailed architecture and performance tune of Document-oriented databases	PO1,PO2, PO3, PO4
CO4	Explain performance tune of Key-Value Pair NoSQL databases.	PO1, PO2,PO3, PO4
CO5	Apply NoSQL development tools on MongoDB	PO1,PO2 PO3, PO4

TEXT BOOKS:

- 1. "MongoDB: The Definitive Guide", SECOND EDITION by Kristina Chodorow, Publishedby O'Reilly Media, Inc.
- 2. "The Definitive Guide to MongoDB: The NoSQL Database for Cloud and DesktopComputing", by EelcoPlugge, Peter Membrey and Tim Hawkins, Apress

REFERENCE BOOKS:

1. MongoDB Complete Guide: Develop Strong Understanding of Administering MongoDB, CRUD Operations, MongoDB Commands 2021

REFERENCEWEBSITE:

1. What Is NoSQL? NoSQL Databases Explained | MongoDB

CO- PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO *	3	3	2	2	-	-	-	-	-	-	-	-

CO-PO MAPPING:

(15)

IV B. Tech - VII Semester

20CSE475

INDUSTRIAL / RESEARCH INTERNSHIP

L T P C 0 0 0 3

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES:

- 1. Objective is to give an opportunity to the student to get hands on training from industry / research and development center.
- 2. The course is designed so as to expose the students to industry environment / research environment and to take up on-site assignment as trainees or interns.

INTERNSHIP SCHEME:

- 1. At the end of the Industrial Internship, the candidate shall submit a certificate from the organization where he/she has undergone industrial training and also a brief report.
- 2. An industry internship report to be submitted by the individual and along with the internship certificate provided by the organization, which will be reviewed and evaluated by a Committee constituted by the Head of the Department.
- 3. The evaluation for 100 marks will be carried out internally based on this internship report and a Viva-Voce Examination will be conducted by a Departmental Committee constituted by the Head of the Department/Institution.

COURSE OUTCOMES	:
------------------------	---

Or	successful completion of the course, students will be able to	POs
C01	Demonstrate in-depth knowledge on the project topic	PO1
CO2	Identify, analyze and formulate complex problem chosen for project work to attain substantiated conclusions.	PO2
СО3	Design solutions to the chosen project problem.	PO3
CO4	Undertake investigation of project problem to provide valid conclusions	PO4
C05	Use the appropriate techniques, resources and modern engineering tools necessary for project work	PO5
CO6	Apply project results for sustainable development of the society.	PO6
C07	Understand the impact of project results in the context of environmental sustainability.	P07
C08	Understand professional and ethical responsibilities while executing the project work.	PO8
CO9	Function effectively as individual and a member in the project team	PO9
CO10	Develop communication skills, both oral and written for preparing and presenting project report.	P010
CO11	Demonstrate knowledge and understanding of cost and time analysis required for carrying out the project.	P011
CO12	Engage in lifelong learning to improve knowledge and competence in the chosen area of the project.	P012

CO-PO MAPPING

CO\PO	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	3	-	-	-	-	-	-
C07	-	-	-	-	-	-	3	-	-	-	-	-
CO8	-	-	-	-	-	-	-	3	-	-	-	-
CO9	-	-	-	-	-	-	-	-	3	-	-	-
CO10	-	-	-	-	-	-	-	-	-	3	-	-
C011	-	-	-	-	-	-	-	-	-	-	3	-
CO12	-	-	-	-	-	-	-	-	-	-	-	3
СО	3	3	3	3	3	3	3	3	3	3	3	3

IV B.Tech - VIII Semester

20CSD481

PROJECT WORK

L	Т	Ρ	С
0	0	0	10

PRE-REQUISITES: Project Skills Lab

COURSE EDUCATIONAL OBJECTIVES:

- 1. Discovering potential research areas in the field of Mechanical Engineering.
- 2. Comparing and contrast the several existing solutions for the problem identified.
- 3. Formulating and propose a plan for creating a solution for the research plan identified.
- 4. Conducting the experiments as a team and interpret the results.
- 5. Reporting and presenting the findings of the work conducted.

PROJECT WORK SCHEME:

- The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be the design / fabrication / analysis for a specific application, a research project with a focus on an application needed by the industry / society, a computer project, a management project or a design and analysis project. A project topic must be selected by the students in consultation with their guides.
- 2. A candidate may, however, in certain cases, be permitted to work on projects in an Industrial / Research Organization, on the recommendations of the Head of the Department Concerned. In such cases, the Project work shall be jointly supervised by a supervisor of the department and an expert, as a joint supervisor from the organization and the student shall be instructed to meet the supervisor periodically and to attend the review committee meetings for evaluating the progress.
- 3. To train the students in preparing project reports and to face reviews and viva voce examination. The progress of the project is evaluated based on a minimum of three reviews.
- 4. As per the guidelines given the project report must be prepared and submitted to the Head of the department before the Viva-Voce Examination.
- 5. The student shall make presentation on the progress made before the Committee.
- 6. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

COURSE OUTCOMES:

On	successful completion of the course, students will be able to	POs
CO1	Demonstrate in-depth knowledge on the project topic	P01
CO2	Identify, analyze and formulate complex problem chosen for project work to attain substantiated conclusions.	PO2
СОЗ	Design solutions to the chosen project problem.	PO3
CO4	Undertake investigation of project problem to provide valid conclusions	PO4
CO5	Use the appropriate techniques, resources and modern engineering tools necessary for project work	PO5
CO6	Apply project results for sustainable development of the society.	PO6
C07	Understand the impact of project results in the context of environmental sustainability.	P07
CO8	Understand professional and ethical responsibilities while executing the project work.	PO8
СО9	Function effectively as individual and a member in the project team	PO9
CO10	Develop communication skills, both oral and written for preparing and presenting project report.	P010
C011	Demonstrate knowledge and understanding of cost and time analysis required for carrying out the project.	P011
CO12	Engage in lifelong learning to improve knowledge and competence in the chosen area of the project.	P012

CO-PO MAPPING

CO/PO	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	-	3	-	-	-	-	-	-	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	-	-	-	-	3	-	-	-	-	-	-
C07	-	-	-	-	-	-	3	-	-	-	-	-
CO8	-	-	-	-	-	-	-	3	-	-	-	-
CO9	-	-	-	-	-	-	-	-	3	-	-	-
CO10	-	-	-	-	-	-	-	-	-	3	-	-
CO11	-	-	-	-	-	-	-	-	-	-	3	-
CO12	-	-	-	-	-	-	-	-	-	-	-	3
СО	3	3	3	3	3	3	3	3	3	3	3	3