
Pipelining

Pipelining

• A technique of decomposing a sequential process
into sub operations, with each sub process being
executed in a special dedicated segment that
operates concurrently with all other segments.

• Each segment performs partial processing in which
the task is partitioned.

• The result obtained in each segment is transferred to
the next segment in the pipeline.

• The final result is obtained after data have passed
through all segments.

Pipelining

• The simplest way to implement pipeline is to
imagine that each segment consist of input register
followed by combinational circuit.

• The register holds the data and combinational circuit
performs the sub operation in the particular segment.

• The output of the combinational circuit in a given
segment is applied to the input register of the next
segment.

• In this way the information flows through the
pipeline one step at a time.

Pipelining
• Ex: Suppose that we want to perform the combined

multiply and add operation with stream of numbers

Ai * Bi + Ci for i = 1, 2, 3, ... , 7

Segment1

Segment2

Segment3

Ai

R1 R2

Multiplier

R3 R4

Adder

R5

Memory
Bi Ci

Pipelining

• The register R1 to R5 that receive new data
with every clock pulse

• The multiplier & adder are the combinational
circuit

• The sub operation performed in each segment
of the pipeline are as follows:

R1 Ai, R2 Bi Load Ai and Bi
R3 R1 * R2, R4 Ci Multiply and load Ci
R5 R3 + R4 Add

OPERATIONS IN EACH PIPELINE STAGE

Clock
Pulse

Segment 1 Segment 2 Segment 3

Number R1 R2 R3 R4 R5
1 A1 B1 --- --- -------
2 A2 B2 A1 * B1 C1 -------
3 A3 B3 A2 * B2 C2 A1 * B1 + C1
4 A4 B4 A3 * B3 C3 A2 * B2 + C2
5 A5 B5 A4 * B4 C4 A3 * B3 + C3
6 A6 B6 A5 * B5 C5 A4 * B4 + C4
7 A7 B7 A6 * B6 C6 A5 * B5 + C5
8 A7 * B7 C7 A6 * B6 + C6
9 A7 * B7 + C7

General Consideration

• The segments are separated by register Ri that
holds the intermediate results between the
stages.

• The task is defined as the total operation
performed by going through all the segments
in the pipeline.

• The behavior of pipeline can be illustrated
with a space time diagram that shows the
segment utilization as a function of time.

General Consideration

• The above diagram shows 6 tasks T1 through T6 executed in 4
segments.

• Initially Task T1 is handled by segment 1.After the first clock
cycle segment 2 is busy with T1 while the segment 1 is busy
with T2, Continuing this manner the first task T1 is completed
after fourth clock cycle.

1 2 3 4 5 6 7 8 9
T1

T1
T1

T1

T2
T2

T2
T2
T3

T3 T4
T4

T4
T4 T5

T5
T5

T5 T6
T6

T6
T61

2
3
4

T3
T3

Clock cycles

Segment

PIPELINE SPEEDUP
– Consider the case where a k-segment pipeline used to execute n tasks.
 n = 6 in previous example
 k = 4 in previous example

• Pipelined Machine (k stages, n tasks)
 The first task t1 requires k clock cycles to complete its operation since

there are k segments
 The remaining n-1 tasks require n-1 clock cycles
 The n tasks clock cycles = k+(n-1) (9 in previous example)

• Conventional Machine (Non-Pipelined)
 Cycles to complete each task in nonpipeline = k
 For n tasks, nk cycles is required.

• Speedup (S)
 S = Nonpipeline time /Pipeline time
 For n tasks: S = nk/(k+n-1)

Example

- 4-stage pipeline

- 100 tasks to be executed

- 1 task in non-pipelined system; 4 clock cycles

Pipelined System : k + n - 1 = 4 + 99 = 103 clock cycles

Non-Pipelined System : n*k = 100 * 4 = 400 clock cycles

Speedup : S = 400 / 103 = 3.88

