STUDENT LAB MANUAL

PROERAMMING FOR PROBLEM SDLVING LAB

 18MCAII5

J SHEIK MDHAMED
Asst. Professar / MCA

MLA DEPARTMENT
 SREENIVASA INSTITUTE DF TECHNILIGY AND MANAGEMENT STUDIES
 (AUTDNDMDUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUA, Anantapuramu, Accredited by NAAC, Bangalore)
Chittoar - 517127

INSTITUTE VISIIN AND MISSICN

INSTITUTE VISILN
To emerge as a Centre of Excellence for Learning and Research in the damains of engineering, computing and management.

INSTITUTE MISSICN

- Provide congenial academic ambience with state-art of resources far learning and research.
- Ignite the students to acquire self-reliance in the latest technologies.
- Unleash and encourage the innate potential and creativity of students.
- Inculcate canfidence to face and experience new challenges.
- Foster enterprising spirit among students.
- Wark callabaratively with technical Institutes / Universities / Industries of National and International repute

DEPARTMENT VISICN AND MISSIDN

DEPARTMENT VISIIN

To become the Centre of excellence for skilled software professionals in Computer Applications.

DEPARTMENT MISSIDN

- Provide congenial academic ambiance with necessary infrastructure and learning resources.
- Inculcate canfidence to face and experience new challenge from industry and society
- Ignite the students to acquire self reliance in the State-of-the Art Technologies.
- Faster Enterprise spirit amang students

Post Graduates of Computer Applications shall

PEDI: Have Professional competency through the application of knowledge gained from fundamental and advanced concepts of structural and functional components in software. (Professional Competency)
PEDZ: Excel in one's career by critical thinking toward successful services and growth of the arganization or as an entrepreneur or through higher studies. (Successful Career Goals)
PED3: Enhance Knowledge by updating advanced technological concepts far facing the rapidly changing warld and contribute to saciety through innovation and creativity. (Continuing Education to Saciety)

PROERAMME DUTCDMES (PD's)

PII: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PDZ: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
Pロ3: Design/development of solutians: Design solutions far complex engineering problems and design system components or pracesses that meet the specified needs with apprapriate consideration far the public health and safety, and the cultural, sacietal, and environmental considerations.
PD4: Conduct investigations of camplex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PD5: Madern toal usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PRE: The engineer and saciety: Apply reasoning infarmed by the contextual knowledge to assess sacietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PD7: Environment and sustainability: Understand the impact of the professional engineering solutions in sacietal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
POB: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
POS: Individual and team wark: Function effectively as an individual, and as a member ar leader in diverse teams, and in multidisciplinary settings.
PDID: Communication: Communicate effectively on complex engineering activities with the engineering community and with saciety at large, such as, being able to comprehend and write effective reports and design dacumentation, make effective presentations, and give and receive clear instructians.
PDill: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PDIZ: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES. (AUTONOMOUS) MCA DEPARTMENT

I MCA - I Semester

18MCA 115

L	T	P	C
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1 . 5}$

PROGRAMMING FOR PROBLEM SOLVING LAB

PREREQUISITES: A Course on "Programming for Problem Solving"

Course Educational Objectives:

CEO1 To acquire knowledge about the basic concept of writing a C program.
CEO2 Know the role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.
CEO3 Use of conditional expressions and looping statements to solve problems associated with conditions and repetitions.
CEO4 Know the role of Functions involving the idea of modularity.
CEO5 Learn concept of Array and pointers dealing with memory management and files.

Syllabus:

Implement the Following by using C Language

1. To Calculate Area \& Circumference of a Circle.
2. To Swap Two numbers With \& Without using Temporary Variable.
3. To print the size of every Data type.
4. To Calculate Bill Amount for an item given its quantity sold, amount, discount \& tax.
5. To find biggest among 3 numbers.
6. To find sum of first n numbers.
7. To find multiplication table for a given input value.
8. To generate Odd or Even number upto 100 and super number from 1000 to 9999.
9. To generate Fibonacci series for a given input.
10. To obtain sum of the first 10 terms of the following series for any Positive integer value of $\mathrm{X}: \mathrm{X}+\mathrm{X} 3 / 3!+\mathrm{X} 5 / 5!!+\mathrm{X} 7 / 7!+\ldots$
11. To reverse the digits of a given number. For example, the number 9876 should be returned as 6789 .
12. To remove duplicates from an ordered array. For example, if input array contains $10,10,10,30,40,40,50,80,80,100$ then output should be $10,30,40,50,80$.
13. Apply recursive call to do the following:
a) Find the factorial of a given number.
b) Compute ${ }^{n} C_{r}$ value.
14. To convert uppercase string to lowercase string \& Vice Versa without using string function.
15. To convert the two-dimensional array into one-dimensional array.
16. To find Binary Equivalent of a given number.
17. To display the Floyed's Triangle pattern.
18. To display different number pattern
19. To perform addition of two given matrices.
20. To perform multiplication of two given matrices.
21. To find the transpose of a given matrix.
22. To calculate Salary for 5 Employees using Structure.
23. To copy the content from one file to another file.
24. To count the number of vowels present in a file

Course Outcomes:

At the end of the course, students will be able to

COURSE OUTCOMES		
CO1	Demonstrate the knowledge on basic usage of operators, datatypes, variable declaration, looping \& branching, arrays, strings, pointers, structures \& union and files	PO1
CO2	Analyse \& Develop an algorithm for every problem to be solved	PO2
CO3	Implement every program based logic involved in Algorithm	PO3
CO4	Test every program for different inputs to get effective solutions	PO4
CO5	Use appropriate software to implement program and to obtain solution	PO5
CO6	Relate programming principles to implement every program	PO8
CO7	Inspect every program individually for effective practice	PO9
CO8	The result and bugs of every program is observed and recorded in observation	PO10
CO9	Assess the technological changes in which it correlates to change and need	PO12

CO Vs PO Mapping

Course		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12
首	C106.1	3	-	-	-	-	-	-	-	-	-	-	-
	C106.2	-	3	-	-	-	-	-	-	-	-	-	-
	C106.3	-	-	3	-	-	-	-	-	-	-	-	-
	C106.4	-	-	-	3	-	-	-	-	-	-	-	-
	C106.5	-	-	-	-	3	-	-	-	-	-	-	-
	C106.6	-	-	-	-	-	-	-	3	-	-	-	-
	C106.7	-	-	-	-	-	-	-	-	3	-	-	-
	C106.8	-	-	-	-	-	-	-	-	-	3	-	-
	C106.9	-	-	-	-	-	-	-	-	-	-	-	3
	C106	3	3	3	3	3	-	-	3	3	3	-	3

TABLE : Rubrics for Programming far Problem Solving Lab

	Excellent(3)	$\operatorname{Good}(2)$	Fair(1)
Conduct Experiments (CDI)	Student successfully completes the experiment, records the data, analyzes the experiment's main topics, and explains the experiment concisely and well.	Student successfully completes the experiment, records the data, and analyzes the experiment's main topics	Student successfully completes the experiment, records the data, and unable to analyzes.
Analysis and Synthesis (CD2)	Thorough analysis of program developed	Reasonable analysis of program develaped	Improper analysis of pragram developed
Design (CD3)	Student understands what needs to be tested and designs an apprapriate experiment, and explains the experiment concisely and well	Student understands what needs to be tested and designs an appropriate experiment.	Student understands what needs to be tested and does not design an арргоргіate experiment.
Complex Analysis © Conclusion (CD4)	Thorough comprehension through analysis/synthesis	Reasonable comprehension through analysis/synthesis	Improper comprehension through analysis/synthesis
Use modern touls in executing the programs (CD5)	Student uses the tools to develop and execute the programs, and understands the limitations of the tool.	Student uses the tools correctly.	Student uses the tools correctly, unable to understand properly.
Report Writing (CDE)	Status report with clear and logical sequence of parameter using excellent language	Status report with logical sequence of parameter using understandable language	Status report not properly organized
Lab safety (CL7)	Student will demonstrate good understanding and follow lab safety	Student will demonstrate good understanding of lab safety	Students demonstrate a little knowledge of lab safety.
Ability to work in teams (CDI)	Performance on teams is excellent with clear evidence of equal distribution of tasks and Effort	Perfarmance on teams is good with equal distribution of tasks and effort	Performance on teams is acceptable with one or more members carrying a larger amount of the effort
Continuous learning (CDI)	Highly enthusiastic towards continuous learning	Interested in continuous learning	Inadequate interest in continuous learning

Course Dutcome Attainment (R18)

Day - To - Day Evaluation	Fair	Level I	If Student scored less than 80\% of the total mark allotted.
	Goad	Level 2	If Student scored greater than 80% and less than 90% of the total mark allotted.
	Excellent	Level 3	If Student scored greater than 90\% of the total mark allotted.
Term End Exam (TEE)	Fair	Level I	If Student scored less than 80\% of the total mark allotted.
	Goad	Level 2	If Student scored greater than 80% and less than 90% of the total mark allotted.
	Excellent	Level 3	If Student scored greater than 90\% of the total mark allotted.

Sl. No.	Date	Name of the Exercise	Page No.	Signature
$\mathbf{1}$		To Calculate Area \& Circumference of a Circle.		
$\mathbf{2}$		$\begin{array}{l}\text { To Swap Two numbers With \& Without using } \\ \text { Temporary Variable }\end{array}$		
$\mathbf{3}$		To print the size of every Data type.		
$\mathbf{4}$		$\begin{array}{l}\text { To Calculate Bill Amount for an item given its } \\ \text { quantity sold, amount, discount \& tax }\end{array}$		
$\mathbf{5}$		To find biggest among 3 numbers.		
$\mathbf{6}$		To find sum of first n numbers.	To find multiplication table for a given input value.	

$\mathbf{2 2}$		To calculate Salary for 5 Employees using Structure.		
$\mathbf{2 3}$		To copy the content from one file to another file.		
$\mathbf{2 4}$		To count the number of vowels present in a file		

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (AUTONOMOUS)
 Chittoor-517127

MCA DEPARTMENT

Table2: INDEX SHEET
Name:
Roll No.
Year \& Sem:I/I AY:

S.No	Exercise Name				10		TOTAL	Signature of the Faculty
1	To Calculate Area \& Circumference of a Circle. To Swap Two numbers With \& Without using Temporary Variable. To print the size of every Data type.							
2	To Calculate Bill Amount for an item given its quantity sold, amount, discount \& tax. To find biggest among 3 numbers. To find sum of first n numbers.							
3	To find multiplication table for a given input value. To generate Odd or Even number upto 100 and super number from 1000 to 9999.							
4	To generate Fibonacci series for a given input. To obtain sum of the first 10 terms of the following series for any Positive integer value of $\mathrm{X}: \mathrm{X}+\mathrm{X} 3 / 3!+\mathrm{X} 5 / 5$! ! $+\mathrm{X} 7 / 7!+\ldots$							
5	To reverse the digits of a given number. For example, the number 9876 should be returned as 6789 . To remove duplicates from an ordered array. For example, if input array contains $10,10,10,30,40,40,50,80,80,100$ then output should be $10,30,40,50,80$.							

$\mathbf{6}$	Apply recursive call to do the following: Find the factorial of a given number. Compute ${ }^{\text {C }} \mathrm{C}_{\mathrm{r}}$ value.							
$\mathbf{7}$	To conver uppercase string to lowercase string \& Vice Versa without using string function. To convert the two-dimensional array into one-dimensional array.							
$\mathbf{8}$	To find Binary Equivalent of a given number. To display the Floyd's Triangle pattern							
$\mathbf{9}$	To display different number pattern							
$\mathbf{1 0}$	To perform addition of two given matrices. To perform multiplication of two given matrices.							
$\mathbf{1 1}$	To find the transpose of a given matrix. To calculate Salary for 5 Employees using Structure.							
$\mathbf{1 2}$	To copy the content from one file to another file. To count the number of vowels present in a file							

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES (AUTONOMOUS)
 Chittoor - 517127

MCA DEPARTMENT

Table 3: ATTAINMENT SHEET

Name:
Roll No.
Year \& Sem : I/I AY:

		CO1	CO2	CO3	CO4	CO5	CO6	CO7	CO8	CO9
S.No	Exercise Name		$\begin{aligned} & \frac{n}{n} \\ & \frac{n}{n} \\ & \frac{\pi}{4} \end{aligned}$					$\begin{aligned} & \text { n } \\ & \cline { 1 - 4 } \end{aligned}$		
1	To Calculate Area \& Circumference of a Circle. To Swap Two numbers With \& Without using Temporary Variable. To print the size of every Data type.									
2	To Calculate Bill Amount for an item given its quantity sold, amount, discount \& tax. To find biggest among 3 numbers. To find sum of first n numbers.									
3	To find multiplication table for a given input value. To generate Odd or Even number upto 100 and super number from 1000 to 9999.									
4	To generate Fibonacci series for a given input. To obtain sum of the first 10 terms of the following series for any Positive integer value of X : $\mathrm{X}+\mathrm{X} 3 / 3!+\mathrm{X} 5 / 5!!+\mathrm{X} 7 / 7!+\ldots$									

5	To reverse the digits of a given number. For example, the number 9876 should be returned as 6789 . To remove duplicates from an ordered array. For example, if input array contains 10,10,10,30,40,40,50,80,80,100 then output should be $10,30,40,50,80$.										
6	Apply recursive call to do the following: Find the factorial of a given number. Compute ${ }^{n} \mathrm{C}_{\mathrm{r}}$ value.										
7	To convert uppercase string to lowercase string \& Vice Versa without using string function. To convert the two-dimensional array into one-dimensional array.										
8	To find Binary Equivalent of a given number. To display the Floyd's Triangle pattern										
9	To display different number pattern										
10	To perform addition of two given matrices. To perform multiplication of two given matrices.										
11	To find the transpose of a given matrix. To calculate Salary for 5 Employees using Structure.										
12	To copy the content from one file to another file. To count the number of vowels present in a file										
	ge of Day- to - Day evaluation (C1)										

Signature of the Faculty

Exercise 1

CALCULATE AREA \& CIRCUMFERENLE DF THE CIRCL

Aim
Ta implement a C Program to calculate Area and Circumference of the circle

Algorithm

Step 1: Start
Step 2: Declare the float variables pi and assign the value of pi $\leqslant 3.14$, area and cir Step 3: Declare the integer variable 'radius'
Step 4: Read the value for 'radius'
Step 5: Compute area<pi*radius*radius
Step B: Compute cir $<2^{*}$ pi ${ }^{*}$ radius
Step 7: Print area, cir
Step 8: Stap

Exercise 2

SWAP TWI NUMBERS WITH \& WITHDUT USING TEMPDRARY VARIABLES

Aim

To implement a 〔 Program to swap two numbers with \& without using temporary variables

Algorithm

Step 1: Start
Step 2: Declare the integer variable a,b,c,d,t
Step 3: Read the value for a \& b
Step 4: Print "Before swapping"
Step 5: Print a,b
Step B: Assign t \leftarrow a
Step 7: Assign a<b
Step 8: Assign b $<t$
Step 9: Print "After swapping with using temporary variables"
Step 1 1 : Print a,b
Step II: Assign the value $c<10, \mathrm{~d}<20$
Step I2: Print "Before swapping"
Step 13: Print c,d
Step 14: Compute c $\leftarrow(\mathrm{c}+\mathrm{d})-(\mathrm{d}=\mathrm{c})$
Step 15: Print "After swapping without using temporary variables"
Step IG: Print c,d
Step 17: Stop

Exercise 3

SHDW THE SIZE DF THE DATATYPES

Aim

To implement a C Program to show the size of the datatypes

Algorithm

Step 1: Start
Step Z: Declare the array variables belongs to data type in integer a[..5].
float b[1.5]. char c[1.5] double d[1..5]
Step 3: Print sizeVf(a)
Step 4: Print sizef(b)
Step 5: Print sizeUf(c)
Step B: Print sizeDf(d)
Step 7: Stop

Exercise 4

CALCULATE BILL AMDUNT FIR AN ITEM GIVEN ITS QUANTITY SOLD, AMDUNT, DISCDUNT \& TAX.

Aim

To implement a C Program to calculate bill amount for an item given its quantity sold, amount, discount and tax

Algorithm

Step 1: Start
Step Z: Declare variables as a double quantity,amount.price,discount
Step 3: Read quantity and price.
Step 4: amount=quantity*price
Step 4.1: if(amount>50
Step 4.II: discount=amount*2. 55
Step 4.I.2: amount=amount-discount
Step 5: Print amount
Step E: Stap

Exercise 5

GREATEST NUMBER AMDNG THREE NUMBERS

Aim:

To implement C program to find out biggest number among three numbers.

Algorithm:

Step 1: Start

Step 2 : Declare the variable a,b,c
Step 3 : Read the value for variable 'a' a 'b'
Step 4 : Compare a>b 8 a a>
4a : Print 'a' is biggest number
4.1: Сотраге b>a 8 \& b>c
4.1.a: Print 'b' is biggest number
4.I.b Print ' c ' is biggest number

Step 5: Stop

Exercise 6

SUM DF 'N' NUMBERS

Aim:
To implement C program to find the sum of ' N ' natural numbers.

Algorithm:

Step 1: Start
Step 2 : Declare the variable sum, n
Step 3 : Assign the variable sum $<\square$
Step 4 : Read the value for variable ' n '
Step 5 : Compute sum< $n^{*}(n-1) / 2$
Step 5 : Print sum
Step 7 : Stap

Exercise 7

MULTIPLICATICN TABLE GENERATICN

Aim

To implement C program to generate multiplication tables for given table number.

Algorithm

Step 1: Start
Step 2 : Declare the variable i,tv
Step 3 : Read the value for the variable 'tv'
Step 4 : Assign the variable i<1
Step 5 : Print "the multiplication table п"
Step 5 : Repeat i until $i<=10$
6.1 : Print i, tv, i ${ }^{*}$ tv

Step 7 : Stop

Exercise 8

generate IDD, EVEN AND SUPER NUMBER

Aim

To implement \lceil program to generate odd, even and super number.

Algorithm

Step 1: Start
Step Z: Declare the integer variable l, , r, r,m, п
Step 3: Print "The even numbers are"
Step 4: Assign the value i<0
Step 5 : Repeat i until $i<=100$
Step 5.l: if(i \bmod Z==0)
Step 5.1.1: Print i
Step 5.2: Compute i<i+1
Step 6: Print "The odd numbers are"
Step 7: Assign the value i<0
Step 8: Repeat i untili<=100
Step 8.1 : if(i $\operatorname{mad} 2!=\square)$
Step 8.1.1: Print i
Step 8.2: Compute i<i+1
Step 9: Print "Super number are:"
Step ID: Assign the value i<100]
Step II: Repeat i until $<=$ = 9899
Step III.: Compute q < i/IID
Step II.2: Compute $\Gamma \leftarrow$ imadIIC
Step II. 3 :Compute $m \leftarrow \mathrm{q}+\mathrm{r}$
Step II.4: Compute $n \leftarrow \mathrm{~m}^{*}$ m
Step II.5: if(n==i)
Step II.5.I: Print i
Step II.E: Compute $i<i+1$
Step IZ: Stop

Exercise 9

TO geNERATE FIBCNACLI SERIES FDR A EIVEN INPUT.

Aim

To implement C program to generate Fibonacci series for a given input

Algorithm

Step I: Start

Step 2: Declare the integer variable fl.f2,f3,count,n
Step 3: fl<-1, f2<-1,count<-1
SteP 4: Read the value for variable ' \quad '
Step 5: Print "The Fibonacci series are"
SteP E : Repeat count until count $<=$ n
G.1: Compute $\ddagger 3<-f 1+f 2$
6.2: Print f3
6.3: fl<-f2
6.4: f2<-f3
B.5: Compute count<-count+|

Step 7: Stap

Exercise 1D

SUM DF 'N' TERMS

Aim

To implement $[$ program to calculate the sum of ' n ' terms.

Algorithm

Step 1: Start
step 2 : Declare the double variable x,sum
Step 3: Declare integer variable n,i,j
Step 4: Declare the long integer variable fact

Step G : Read the value of ' x^{\prime}
Step 7: Read the value of ' n '
Step 8: Repeat i until i<=n
8.1: fact<-1
8.2: Repeat juntil $j<=i$
8.2.1: fact<-fact* ${ }^{*}$
8.2.2: j -j+1
8.3: Compute sum<-sum+(pow(x,i)/fact)
8.4: $\ll-i+2$

Step 9: Print sum
Step 10: Stap

Exercise I/

REVERSE OF A GIVEN 4 DIEIT NUMBER

Aim

To implement C program to reverse the given four digit number.

Algorithm

Step 1: Start
Step 2 : Declare the variable 'n,d,rev'
Step 3 : Read the value for variable ' n '
Step 4 : Assign the variable rev $<\square$
Step 5 : Repeat step 5.1 to 5.3 until n! $=\square$
5.1 : Compute $d<\pi \bmod 10$
5.2 : Compute rev \leftarrow rev+d*ld
5.3 : Compute $п \leftarrow п / \mathbb{I}$

Step 5 : Print 'rev'
Step 7 : Stop

Exercise 12

DUPLICATE VALUE REMDVAL FRDM ARRAY

Aim

To implement C program to remove duplication from an ordered array.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable i, j, k, n
Step 3 : Declare and assign the integer variable
$\operatorname{arr}[]=\{10,10,10,30,40,40,50,80,80,100\}$
Step 4 : Compute n $\leftarrow \operatorname{sizeaf(arг)/~sizeaf(arг[[])~}$
Step 5 : Assign the variable $i \leftarrow \square, j \leftarrow i+1$
Step 6 : Repeat i until i п
G.I : Repeat juntil j<n
G.1.1 : if (arг[j] equals arr[i])
$6.1 .2: k<j$
6.1.3 : Repeat k until k<n
E.1.3.1: aгг $[k]<a г г[k+1]$
6.1.4 : Computen<п-I
6.1.5: else compute $j<j+1$

Step 7 : Assign the variable $i \leftarrow \square$
Step 8 : Repeat i until i<n
Step 8 : Printa
гг[j]
Step II: Stap

Exercise 13

FACTIRIAL NUMBER USING RECURSIVE FUNCTIDN

Aim

To implement \lceil pragram ta find factarial of given number using recursive function.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable x, f
Step 3 : Declare the function fact(int) with return type integer
Step 4 : Read the value for the variable 'x'
Step 5: Compute f \leftarrow fact (x)
Step 5 : Print f
Step 7 : Stap
Fact():
Step 1: Start
Step 2 : Declare the integer variable f, m
Step $3: f \leftarrow 1$
Step 4 : if (m equals I)
4.1: return I
4.2: else
4.3 : Compute $\mathrm{f} \leftarrow \mathrm{m}^{*}$ fact(m-1)
4.4 : геturn f

Step 5 : Stop

${ }^{n} \Gamma_{r}$ Calculation

Aim

To implement C program to compute ${ }^{\mathrm{C}} \mathrm{C}_{\text {r }}$ value.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable p.r.п
Step 3 : Read the value for the variable ' n ' \& 'r'
Step 4 : $\boldsymbol{p} \leftarrow$ fact $(n) /($ (fact $(п-\Gamma) * f a c t(\Gamma))$
Step 5 : Print п.г.р
Step 6 : Stop
Algorithm far function definition fact(г):
Step 1:Start
Step 2 : Declare integer variable c, п
Step 3 : Assign the variable $f<1$
Step 4 : if (c greater than C$)$
4.1: Compute $f<f^{*} \mathrm{c}$
4.2: c $\leftarrow \mathrm{c}-1$

Step 5 : return f
Step 5 : Stop

Exercise 14

CASE CINVERSIDN OF STRING

Aim

Ta implement C program to convert given string from upper case to lower case and vice versa without using string function.

Algorithm

```
Step 1:Start
Step 2: Declare integer variable i and character variables |[1..15],ch
Step 3: Read the value for the variable "ch"
Step 4: if (ch equals '1')
    4.1: Read the lower case string for the variable 'l'
    4.2 : Assign the variable i<<
    4.3 : Repeat i until l[i]!='\\''
    4.4: Print taascii (l[i])-32)
    4.5: Compute i<i+1
Step 5: if (ch equals 'u')
    5.1: Read the upper case string for the variable 'I'
    5.2:Assign the variable i<\square
    5.3: Repeat i until l[i]!='\\'
    5.4: Print toascii (l[i])+32)
    5.5: Compute i<i+1
Step 6: Stop
```


Exercise 15

CZNVERSIIN OF TWD DIMENSIDNAL ARRAY IN TO ONE DIMENSIDNAL ARRAY

Aim

To implement C program to convert two dimensional array to one dimensional array.

Algorithm

Step 1: Start

Step 2 : Declare the variable i, j, k, a[l..2][1..3],b[1..6]
Step 3 : Assign the variable a[$][] \leftarrow\{\{2,3,4\},\{5,6,7\}\}, i \leftarrow 0, j \leftarrow 0$
Step 4 : Repeat i until i<2
4.1: Repeat juntil j<3
4.I.I: Assign $b[k]<a[i][j]$
4.1.2 : Print one dimensional array k, b[k]
4.1.3: Compute $k<k+1$
4.1.4: Compute $\mathrm{j}<\mathrm{j}+1$
4.2 : Compute $i<i+1$

Step 5 : Stop

Exercise If

DECIMAL TI BINARY CONVERSIDN

Aim

To implement C program to convert binary equivalent to a given number.

Algorithm

Step 1: Start
Step 2 : Declare the int variable a[1..20], dec, i, j, r
Step 3 : Assign the variable $i<\square$
Step 4 : Read the value for the variable 'dec'
Step 5 : Assign the value $\Gamma<$ dec
Step $\overline{5}$: Repeat Γ until $\Gamma>\square$
G.1 : Compute a[i] $<\Gamma \operatorname{mad} 2$
6.2: Compute $i<i+1$
6.3 : Compute $г<г / 2$

Step 7 : Repeat step 7.1 to 7.2 until $j>=\square$
7.1: Print a[j]
$7.2: \mathrm{j} \leqslant \mathrm{j}-1$
Step 8 : Stop

Exercise 17

FLDYD TRIANGLE NUMBER PATTERN

Aim

To implement C program to generate Floyd triangle number pattern.

Algorithm

Step I: Start

Step 2: Declare the integer variable i, j, n
Step 3 : Assign the variables $n<1, j<1, i<1$
Step 4 : Repeat i until $\mathrm{i}=5$
4.1: Repeat juntil $\mathrm{j}=1$
4.1.1: Print n
4.1.2: Compute $\mathrm{j}<\mathrm{j}+1$
4.2 : Print "\n"
4.3 : Compute $i<i+1$

Step 5 : Stop

Exercise 18

NUMBER PATTER GENERATICN I

Aim

To implement C program to generate number pattern.

Algorithm

Step 1: Start

Step 2 : Declare the variable i, j
Step 3 : Assign the variable $i<1, j<1$
Step 4 : Repeat i until $\mathrm{i}=5$
4.1: Repeat juntil $\mathrm{j}<=i$
4.2 : Compute $j<j+1$
4.3 : Compute i<i+1
4.4 : Print 'i'
4.5 : Print "\n"

Step 5 : Stop

NUMBER PATTER GENERATILN 2

Aim
To implement C program to generate number pattern.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable i, j
Step 3 : Assign the variable $i<1, j<1$
Step 4 : Repeat i until $i<=5$
4.1: Repeat juntil j<=i
4.2 : Print j
4.3: $\mathrm{j}<\mathrm{j}+1$
4.4 : Print "\n"
4.5: i<i+1

Step 5 : Stop

NUMBER PATTERN GENERATICN 3

Aim

To implement \lceil program to generate reverse number pattern.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable i, j
Step 3 : Assign the variables $i<5, j<1$
Step 4 : Repeat i until i>=1
4.1: Repeat juntil $j<=1$
4.2 : Print j
4.3: Compute j<j+1
4.4 : Print "\n"
4.5: Compute i<i-l

Step 5 : Stop

Exercise 19

ADDITIDN OF TWD MATRICES

Aim

To implement \complement program to add two matrices.

Algorithm

Step 1 : Start
Step 2 : Declare the integer variable a[1. .3][1. .3], b[1. .3][1. .3], c[1. .3][1. .3], i, j
Step 3 : Assign the variable $i<\square, j<\square$
Step 4 : Repeat i until $\ll 2$
4.1 : Repeat juntil j<2
4.1.1: Read the value for the variable a[ij[j]
4.1.2: $\mathrm{j}<\mathrm{j}+1$
$4.2: i<i+1$
Step 5 : Assign the variable $i<\square, j<\square$
Step 5 : Repeat i until i<2
B.I : Repeat juntil j<2
B.I. : Read the value for the variable b[ij[j]
$6.1 .2: j<j+1$
6.2 : $\mathrm{i}<\mathrm{i}+1$

Step 7 : Print "matrix addition"
Step 8 : Assign the variable $i \leftarrow 0, j<\square$
Step 8 : Repeat i until i Z
9.1 : Repeat j until j<2
9.I.1 : Compute c[ij[j]<a[i][j]+b[i][j]
$9.1 .2: j<j+1$
$9.2: i<i+1$
Step 10: Assign the variable $i<\square, j<\square$
Step II: Repeat i until i <2
II.I: : Repeat j until j<2
III.I. : Print c[i][j]
$111.2: j<j+1$
$11.2: i<i+1$
Step 12: Stop

Exercise 20

MULTIPLICATIDN DF TWD MATRICES

Aim

To implement C program to multiply two matrices.

Algorithm

Step 1: Start
Step Z: Declare the integer variable a[1..5][1..5], b[1.5][1..5], c[1..5][1.5],i,j,k,r|,cl
Step 3: Read the value for variable rl and cl

Step 5: Repeat i until i< Γ
5.1: Repeat j until j<cl
5.1.1: Read the value for variable a[i][j]
5.1.2: $<-j+1$
5.2: $\mathrm{k}-\mathrm{i}+1$

Step B: i - D, j - D
Step 7: Repeat i until i<rl
7.1: Repeat j until j<cl
7.1.1: Read the value for variable b[i][j]
7.1.2: $<-j+1$
7.2: $\mathrm{k}-\mathrm{i}+1$

Step 8: Print "Matrix Multiplication"

Step II: Repeat i until iril
10.1: Repeat juntil j<cl
10.1.1: $:[i][j]<-1$
10.I.2: Repeat k until k<cl

ID.I.2.1: Compute c[i][j]-c[i][j]+a[i][k]*6[k][j]
10.I.2.2: $k<-k+1$
10.2: print c[ij[j]
10.3: $\mathrm{j}<-\mathrm{j}+1$
10.4: $\mathrm{i}-\mathrm{i}+1$

Step II: Stap

Exercise 21

TRANSPDSE DF MATRIX

Aim

To implement C program to transpose a given matrix.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable a[I. I[I][1. . ID], i, j,m,n
Step 3 : Read the value for the variable m,n
Step $4: i<0, j<0$
Step 5 : Repeat iuntil i m
5.1 : Repeat juntil j j п

Step 6 : Assign the variables $i<0, j<0$
Step 7 : Print "The given matrix is"
Step 8 : Repeat i until i<m
8.1 : Repeat juntil j<n
8.2 : Printa[i][j]
8.3 : Print " $\backslash n$ "

Step 8 : Print "Transpose of given matrix is"
Step $10: i \leftarrow \square, j \leftarrow \square$
Step II: Repeat juntil j<n
II.I: Repeat i until i<m
II.2: Print a[ij[j]
II.3: Print "\n"

Step 12: Stop

Exercise 27

EMPLOYEE SALARY USING ARRAY DF STRUCTURE

Aim

To implement \complement program to calculate employee salary using array of structure.

Algorithm

Step 1: Start
Step 2 : Declare the integer variable i
Step 3 : Define the structure with tag name 'compute' along with Internal members.
Step 4 : Declare the character variable name[1. IIT], integer variable
Basic, hrap, float variable, hra \& total
Step 5 : Define structure variable sal[1. .2]
Step E : i<1
Step 7 : Repeat i until $\mathrm{i}=2$
7.1 : Read the value for the variable

Sal[i].name, sal[i].basic, sal[i].hrap
7.2: Compute sal[i].hra<sal[i].basic* sal[i].hrap/I[I]
7.3 : Compute sal[i].tatal<sal[i].basic+sal[i].hra
7.4 : Compute i<i+1

Step 8: Assign the variable i<1
Step 8 : Repeat i until $i<=2$
9.1 : Print sal[i].name, sal[i].basic, sal[i].hrap, sal[i].hra, sal[[i].total
9.2 : Print "\n"
$9.3: i<i+1$
Stepll: Stop

Exercise 23

CIPY THE CINTENT FRDM ONE FILE TD ANDTHER FILE

Aim

To implement C program to copy the content from one file to another file

Algorithm

Step l: Start
Step Z: Declare the file pointer variable '*fip,',*fop' and integer variable 'c'.
Step 3: Upen the text file with read mode and assign to 'fip'.
Step 4: Dpen the text file with write mode and assign to 'fop'.
Step 5: Check whether 'fip' exist or not.
Step 5.1: If not exist, program terminated.
Step 6: Read the content from 'fip' character by character until EDF.
Step B.I: Write the content to 'fop' character by character.
Step 7: Close fip and fop.
Step 8: Stap

Exercise 24

COUNT THE NUMBER DF BLANK SPALE IN THE CDNTENT DF THE FILE

Aim

To implement C program to count the number of blank space in the content of the file

Algorithm

Step 1: Start
Step 2: Declare the file pointer variable 'fp' and character variable c and integer variable count Step 3: Read File name
Step 4: Open the text file with read mode and assign to 'fp'
Step 5: Print "Read the content of the file"
Step G : while((c=fgetc(fp))!!EGF)
Step F.1: if(c==')
Step 5.I.I compute count<- count + 1
Step 7: Print "the number of blank space is" count
Step 8: Close fp
Step 8: Stap

ADDITICNAL EXERCISE

Write the algorithm and implement the same by using \subset for the following problems

1. Accept any 5 digit number and print the remainder after dividing it by 3
2. Accept the marks for 5 subjects and calculate the percentage obtained
3. Accept any number n and print the cube of all number from I to n which is divisible by 3
4. Accept the money value and print how many notes from each denomination has to be fetched
5. Find out the roots of quadratic equation
6. Print given number in words using recursion. If number is 234 , it prints twa three four
7. Accept n numbers and display the sum of highest and lowest number
8. Accept $m \times n$ matrix and count the occurrence of a number in matrix
9. Declare the pointer variable for all datatypes and check the number of address allocated for each pointer variable

ID. Accept any string, Reverse the string, find the length of the string with out using predefined function
II. Accept name and arrival time of five trains and display the name with rail time format

