SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK 20ECE244– PULSE AND DIGITAL CIRCUITS

Question	Questions	PO		
INO.	UNIT _ 1	Attainment		
UNII – 1 PART A (2 Marks)				
1	Define is linear wave shaping?	PO1		
2	What are High pass circuit and Low pass circuit?	PO2		
3	Draw the outputs of High pass and Low pass circuits when step, ramp and exponential waveforms are given?	PO1		
4	What is rise time t _r for Low pass RC circuit in terms of time constant, 3db frequency and bandwidth?	PO1,PO2		
5	What is non linear wave shaping?	PO1		
6	What is a Clipper?	PO1		
7	Write the other names of clippers?	PO1		
8	Tabulate the values of R_f , R_r , V_{γ} for ideal diode?	PO1		
9	Write the applications of Clipper.	PO1,PO2		
10	Draw the circuit of Noise clipper	PO1,PO2,PO3		
12	What is a Clamper?.	PO1,PO2,PO3		
13	Write other names of clampers?	Po1		
14	What is Non-linear wave shaping?	Po1		
15	Define Clamping circuit theorem.	Po1		
	PART-B (10 Marks)			
1.	a)Derive an expression for the output voltage levels under steady state conditions of a low pass circuit excited by a ramp input. b)How an RC low pass circuit works as an integrator?	PO1,PO2		
2.	a)Derive an expression for the output voltage levels under steady state conditions of a high pass circuit excited by a pulse input. b.Explain how high pass RC circuit works as a differentiator	PO1,PO2		
3.	Prove that $et = T/2RC$ for ramp as input to the High pass RC-Circuit.	PO1,PO2,PO3		
4.	Derive the expression for percentage tilt P of a square wave output of a RC high pass circuit.	PO1,PO2,PO3		
5.	 Explain about attenuators and derive the condition for perfect compensation of an attenuator. a) Explain the working of attenuator as a CRO Probe? b) Explain the operation of double ended clipper 	PO1,PO2		
6.	Discuss the function of series diode and shunt diode clipping circuits? How can the clipping level shifted to reference voltage? Explain?	PO1,PO2		
7.	With the help of neat Circuit diagram, explain the working of Transistor Clipper? Explain the operation of diode comparator. Briefly mention various applications of comparators.	PO1,PO2		
8.	With the help of a neat circuit diagram, explain the working of emitter- coupled clipper?	PO1,PO2		
9.	 With the help of neat circuit explain the working of negative and positive clamping circuits. a) What is synchronized clamping? Draw the circuit and explain its operation. b) State and prove clamping circuit theorem. 	PO1,PO2		
10.	Discuss the effect of diode characteristics on clamping circuits.	PO1,PO2		
	UNIT – 2			
	PART A (2 Marks)			
1.	Define the following terms related to transistor switch. i. Rise time. ii. Fall time. iii. Delay time. iv. Storage time. v. Turn-on time and vi. Turn-off time.	PO1		

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

20ECE244-	PULSE	AND	DIGITAL	CIRCUITS
-----------	-------	-----	---------	----------

2.	What is a Multivibrator?	PO1
3.	Write the pulse width expression of an Astable multivibrator?	PO1
4.	List the others names of Astable multivibrator?	PO1
5.	Discuss the applications of Astable multivibrator?	PO1
6.	How many stable and quasi-stable states are there in an Astable multivibrator?	PO1
7.	Write is pulse width expression of a Monostable multivibrator?	PO1
8.	What are the other names of Monostable multivibrator?	PO1
9.	Mention the applications of Monostable multivibrator?	PO1
10.	Classify the types of triggering?	PO1,PO2
11.	What are the advantages of Collector triggering?	PO1
12.	Describe the type of feedback present in multivibrators?	PO1,PO2
13.	Tabulate are the other names of Bistable multivibrator?	PO1
14.	Write the applications of Bistable multivibrator?	PO1
15.	What are the stable states of Bistable multivibrator?	PO1
16.	Define UTP	PO1
17.	Define LTP	PO1
18.	What is Hysteresis voltage?	PO1
19.	Write the applications of Schmitt trigger	PO1
20.	How the Hysteresis can be eliminated.	PO1
-	PART-B (10 Marks)	DO1
1.	Write short note on junction switching times.	POI
2.	Describe about piece-wise linear diode characteristics.	PO1,PO2
3.	Explain the operation of transistor as a switch.	P01,P02
4.	Write short notes on (a) diode switching times (b) transistor switching times.	POI PO2
5.	multivibrator and derive an expression for pulse width	P01,P02
6.	Explain about Schmitt trigger circuit with neat diagram.	PO1,PO2
7.	Explain the operation of fixed bias bistable multivibrator with neat circuit diagram.	PO1,PO2
8.	Describe with neat circuit diagram and waveform of collector coupled astable multivibrator.	PO1,PO2
9.	Design an astable multivibrator to generate a square wave of 1KHz.	PO1,PO2,PO3
10	Explain with the help of a neat circuit diagram, the principle of operation of astable	PO1,PO2
10.	multivibrator and derive an expression for pulse width	
	UNIT – 3	
-	PART A (2 Marks)	DO1
1.	Write the conditions for UJT to be ON and OFF?	POI
2.	Define intrinsic stand off ratio?	POI
3.	Why it is called relaxation oscillator?	PO1,PO2
4.	Give the formula for seep time and frequency of oscillations	P01,P02
5.	Tabulate the applications of UJT Relaxation oscillator?	POI
6.	Describe the Time base generators?	P01,P02
7.	List other names of Time base generator?	POI
8.	What is the ideal gain of Bootstrap and Miller circuits?	POI
9.	Give the difference between Bootstrap and Miller circuits	POI
10.	Define Sweep time and Return Time	PO1
	PART-B (10 Marks)	DOI DO2
1.	Explain in brief about the Bootstrap sweep circuit?	PO1 PO2
2.	Derive the expression and define the following	PO1,PO2
	a) Sweep speed error b) Displacement error c) Transmission error	

PREPARED BY: K M HEMEMBARAN ASST. PROF

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

20ECE244– Pl	JLSE AND	DIGITAL	CIRCUITS
--------------	----------	---------	----------

3.	Describe the operation of miller sweep circuit?	PO1,PO2		
4	With the help of neat circuit diagram and waveforms explain transistor miller	PO1,PO2		
4.	time base generator.			
F	Explain the basic principles of Miller and Bootstrap time-base generators.	PO1,PO2		
5.	Give the comparison of both the generation methods.			
6	Illustrate the different methods of generating time-base waveforms? Explain	PO1,PO2,PO3		
0.	any one of it.			
7.	Summarize the working of a transistor bootstrap time base generator.	PO1,PO2		
8.	Develop a neat circuit diagram, and explain the working of a simple current	PO1,PO2		
	sweep.			
9.	What are the techniques used to improve the Linearity of current sweeps?	PO1,PO2		
10.	Discuss about Transistor Current Time Base Generator.	PO1,PO2		
	UNIT – 4			
-	PART A (2 Marks)	DO1		
1.	Write the basic gates?	POI		
2.	What are universal gates?	POI		
3.	Draw the truth table for EX-OR gate?	P01,P02,P03		
4.	Implement NOR gate by using OR, NOT and AND gates.	P01,P02		
5.	Analyse the NAND gate by using OR, NOT and AND gates.	P01,P02		
1	PARI-B (10 Marks)	DO1 DO2		
1.	Explain the operation of AND OR & NOT gates using transistors	PO1,PO2		
2.		DO1		
3.	(i) Fan out (ii) Noise margin (iii) Propagation delay (iv) Figure of Merit	POI		
4.	With the help of neat circuit diagram and truth table brief the working of (i) DTL NAND	PO1		
5	gate (11) RTL NAND gate	PO1 PO2 PO3		
S. Draw uit Thining Dragram for an uit gates 101,102,103				
	PART A (2 Marks)			
1.	Explain about CMOS transistor	PO1,PO2		
2.	Expand BICMOS	PO1,PO2		
3.	What is pull up transistor	PO1		
4.	What is pull down transistor	PO1		
5.	Describe the demarcation line in cmos implementation	PO1		
PART B (10 Marks)				
1.	Describe about CMOS NAND and NOR gate with neat circuit diagram.	POI		
2.	Write short notes on CMOS logic and explain about CMOS inverter.	PO1		
3.	Explain the operation of TTLGates	PO1,PO2		
4.	Explain the operation of ECL Gates	PO1,PO2		
5.	Explain the operation of IIL logic	PO1,PO2		
		PO1 PO2		
6.	Explain the operation of BICMOS Circuits.	101,F02		