
Basics of JAVA

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

The PYPL PopularitY of Programming Language Index is
created by analysing how often language tutorials are

searched on Google.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

What is Java

• Java is a programming language and a platform.

• Java is a high level, robust, object-oriented and secure programming

language.

• Platform: Any hardware or software environment in which a

program runs, is known as a platform.

• Since Java has a runtime environment (JRE) and API, it is called a

platform.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Types of Java Applications

• There are mainly 4 types of applications that can be created using
Java programming:

1) Standalone Application

• Standalone applications are also known as desktop applications or
window-based applications.

2) Web Application

• An application that runs on the server side and creates a dynamic
page is called a web application.

3) Enterprise Application

• An application that is distributed in nature, such as banking
applications, etc. is called enterprise application.

4) Mobile Application

• An application which is created for mobile devices is called a
mobile application.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java Platforms / Editions

1) Java SE (Java Standard Edition)

• It is a Java programming platform.

2) Java EE (Java Enterprise Edition)

• It is an enterprise platform which is mainly used to develop web and

enterprise applications.

3) Java ME (Java Micro Edition)

• It is a micro platform which is mainly used to develop mobile

applications.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

History of Java

• Java language project was initiated by James Gosling, Patrick

Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun

Microsystems, Inc. in 1991.

• This small team of sun engineers called Green Team.

• Primary motivation was the need for a platform-independent (that is,

architecture-neutral)language that could be used to create software to

be embedded in various consumer electronic devices, such as set-top

boxes, microwave ovens and remote controls.

• Firstly, it was called "Greentalk" by James Gosling, and the file

extension was .gt.

• After that, it was called Oak and was developed as a part of the Green

project.

• In 1995, Oak was renamed as "Java" because it was already a

trademark by Oak Technologies. E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Why Java Programming named "Java"

• The team gathered to choose a new name. The suggested words

were "dynamic", "revolutionary", "Silk", "jolt", "DNA", etc.

• Java name was chosen by James Gosling while having coffee near

his office.

• According to James Gosling, "Java was one of the top choices along

with Silk".

• Since Java was so unique, most of the team members preferred Java

than other names.

• Java is an island of Indonesia where the first coffee was produced

(called java coffee).

• Notice that Java is just a name, not an acronym.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java version history

– JDK 1.0 (January 23, 1996)

– JDK 1.1 (February 19, 1997)

– J2SE 1.2 (December 8, 1998)

– J2SE 1.3 (May 8, 2000)

– J2SE 1.4 (February 6, 2002)

– J2SE 5.0 (September 30, 2004)

– Java SE 6 (December 11, 2006)

– Java SE 7 (July 28, 2011)

– Java SE 8 (March 18, 2014)

– Java SE 9 (September 21, 2017)

– Java SE 10 (March 20, 2018)

– Java SE 11 (September 25, 2018)

As of 29 November 2019, both Java 8 ,11 and 13 are officially supported. Major release
versions of Java, along with their release dates:

– Java SE 12 (March 19, 2019)

– Java SE 13 (September 17, 2019)

Source wikipedia
E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Features of Java (Buzz Words)
• The primary objective of Java programming language creation was to

make it portable, simple and secure programming language

• The features of Java are also known as java buzzwords.

• A list of most important features of Java language is

– Simple

– Object-Oriented

– Portable

– Platform independent

– Secured

– Robust

– Architecture neutral

– Interpreted

– High Performance

– Multithreaded

– Distributed

– Dynamic

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Simple

• Java is very easy to learn, and its syntax is simple, clean and

easy to understand.

• According to Sun, Java language is a simple programming

language because:

– Java syntax is based on C++ (so easier for programmers to

learn it after C++).

– Java has removed many complicated and rarely-used

features, for example, explicit pointers, operator

overloading, etc.

– There is no need to remove unreferenced objects because

there is an Automatic Garbage Collection in Java.
E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Object-oriented
• Java is an object-oriented programming language.

• Everything in Java is an object.

• Object-oriented means we organize our software as a
combination of different types of objects that incorporates
both data and behavior.

• Object-oriented programming (OOPs) is a methodology that
simplifies software development and maintenance by
providing some rules.

• Basic concepts of OOPs are:
– Object

– Class

– Inheritance

– Polymorphism

– Abstraction

– Encapsulation
E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Platform Independent
• Java is platform independent because it is different from other

languages like C, C++, etc. which are compiled into platform

specific machines while Java is a write once, run anywhere

language.

• Java code can be run on multiple platforms, for example, Windows,

Linux, Sun Solaris, Mac/OS, etc.

• Java code is compiled by the compiler and converted into bytecode.

• This bytecode is a platform-independent code because it can be run

on multiple platforms, i.e., Write Once and Run Anywhere(WORA).

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

Secured
• Java is best known for its security. With Java, we can develop virus-

free systems. Java is secured because:

• No explicit pointer

• Java Programs run inside a virtual machine

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Robust

• Robust simply means strong.

• Java is robust because:It uses strong memory management.

• There is automatic garbage collection in java which runs on

the Java Virtual Machine to get rid of objects which are not

being used by a Java application anymore.

• There are exception handling and the type checking

mechanism in Java. All these points make Java robust.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Architecture-neutral

• Java is architecture neutral because there are no

implementation dependent features, for example, the size of

primitive types is fixed.

• In C programming, int data type occupies 2 bytes of memory

for 32-bit architecture and 4 bytes of memory for 64-bit

architecture.

• However, it occupies 4 bytes of memory for both 32 and 64-bit

architectures in Java.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Portable
• Java is portable because it facilitates you to carry the Java

bytecode to any platform.

• No implementation dependent features.

Interpreted and High-performance
• The Java bytecode was carefully designed so that it would be

easy to translate directly into native machine code for very
high performance by using a just-in-time compiler.

• Java is faster than other traditional interpreted programming
languages.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Distributed

• Java is designed for the distributed environment of the Internet

because it handles TCP/IP protocols.

• In fact, accessing a resource using a URL is not much

different from accessing a file.

• Java also supports Remote Method Invocation (RMI). This

feature enables a program to invoke methods across a

network.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Dynamic

• Java is a dynamic language.

• It supports dynamic loading of classes. It means

classes are loaded on demand.

• Java supports dynamic compilation and automatic

memory management (garbage collection).

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Multi Threaded

• Java multithreading feature makes it possible to write

program that can do many tasks simultaneously.

• Benefit of multithreading is that it utilizes same memory and

other resources to execute multiple threads at the same time,

like While typing, grammatical errors are checked along.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java Program Structure

public class MyProgram

{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java Program Structure

public class MyProgram

{

}

// comments about the class

public static void main (String[] args)

{

}

// comments about the method

method header
method body

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java Hello World! Program

public class Hello

{

}

public static void main (String[] args)

{

}

System.out.println ("Hello World program");

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• class : class keyword is used to declare classes in Java

• public : It is an access specifier. Public means this function is

visible to all.

• static : static is again a keyword used to make a function

static. To execute a static function you do not have to create an

Object of the class. The main() method here is called by JVM,

without creating any object for class.

• void : It is the return type, meaning this function will not

return anything.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• main : main() method is the most important method in a Java

program. This is the method which is executed, hence all the

logic must be inside the main() method.

• String[] args : This represents an array whose type is String

and name is args. We will discuss more about array in Java

Array section.

• System.out.println : This is used to print anything on the

console like printf in C language.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Steps to Compile and Run your first Java program

• Step 1: Open a text editor and write the code as above.

• Step 2: Save the file as Hello.java

• Step 3: Open command prompt and go to the directory where

you saved your first java program assuming it is saved in C:\

• Step 4: Type javac Hello.java and press Return(Enter KEY) to

compile your code. This command will call the Java Compiler

asking it to compile the specified file. If there are no errors in

the code the command prompt will take you to the next line.

• Step 5: Now type java Hello on command prompt to run your

program.

You will be able to see Hello world program printed on your

command prompt.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

1-28

How Java Works?

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Lexical Issues
• Java programs are a collection of whitespace, identifiers,

literals, comments, operators, separators, and keywords.

• Whitespace: space, tab, or newline.

• Identifiers: An identifier may be any descriptive sequence of

uppercase and lowercase letters, numbers, or the underscore

and dollar-sign characters.

They must not begin with a number

• Java is case-sensitive, so VALUE is a different identifier

than Value.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Some examples of valid identifiers are

Avg Temp count a4 $test this_is_ok

• Invalid identifier names include these:

2count high-temp Not/ok

• Literals

A constant value in Java

• For example, here are some literals:

100 98.6 'X' "This is a test"

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Separators

• In Java, there are a few characters that are used as separators.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Comments

• Comments in a program are called inline documentation

• They should be included to explain the purpose of the program
and describe processing steps

• They do not affect how a program works

• Java comments can take three forms:

// single line comment

/* Multiple

line

comment

*/

/** this is a javadoc comment */
E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

The Java Keywords
• There are 50 keywords currently defined in the Java language

• These keywords cannot be used as names for a variable, class,

or method.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Java reserves the following: true, false, and null.

• These are values defined by Java.

• You may not use these words for the names of variables,

classes and so on.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Data Types in Java
• Data types specify the different sizes and values that can be

stored in the variable.

• There are two types of data types in Java:

• Primitive data types: The primitive data types include

boolean, char, byte, short, int, long, float and double.

• Non-primitive data types: The non-primitive data types

include Classes, Interfaces, and Arrays.

•

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java Primitive Data Types
• Java defines eight primitive types of data: byte, short, int,

long, char, float, double, and boolean.

• The primitive types are also commonly referred to as simple

types

• These can be put in four groups:

• Integers This group includes byte, short, int and long, which

are for whole-valued signed numbers.

• Floating-point numbers This group includes float and double,

which represent numbers with fractional precision.

• Characters This group includes char, which represents

symbols in a character set, like letters and numbers.

• Boolean This includes boolean, which is a special type for

representing true/false values. E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Integers

• Java defines four integer types: byte, short, int, and long.

• All of these are signed, positive and negative values. Java does

not support unsigned, positive-only integers.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

byte

• The smallest integer type is byte.

• This is a signed 8-bit type that has a range from –128 to 127.

• Byte variables are declared by use of the byte keyword.

• Example: byte b, c;

Short

• short is a signed 16-bit type.

• It has a range from –32,768 to 32,767.

• It is probably the least-used Java type.

• Example: short s;

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

int

• The most commonly used integer type is int.

• It is a signed 32-bit type that has a range from

–2,147,483,648 to 2,147,483,647.

long

• long is a signed 64-bit type and is useful for those occasions

where an int type is not large enough to hold the desired value.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Floating-Point Types
• Floating-point numbers, also known as real numbers, are used

when evaluating expressions that require fractional precision.

• There are two kinds of floating-point types, float and double

• which represent single- and double-precision numbers

respectively

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

float

• The type float specifies a single-precision value that uses 32

bits of storage.

• Example: float hightemp, lowtemp;

double

• Double precision, as denoted by the double keyword, uses 64

bits to store a value.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Characters
• the data type used to store characters is char.

• char in Java is not the same as char in C or C++.

• In C/C++, char is 8 bits wide. This is not the case in Java.

• Java uses Unicode to represent characters.

• Unicode defines a fully international character set that can

represent all of the characters found in all human languages.

• In Java char is a 16-bit type. The range of a char is 0 to

65,536.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Booleans
• Java has a primitive type, called boolean, for logical values.

• It can have only one of two possible values, true or false.

• This is the type returned by all relational operators

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Literals
Integer Literals:

• Decimal integer: base 10 numbers

• Octal integer: base 8 numbers, Octal values are denoted in

Java by a leading zero.

• Ex:045, 0126

• Hexadecimal: base 16 numbers, Hexadecimal values are

denoted in Java by a leading zero-x(0x or 0X)

• Ex: 0x1ab, 0x459f, 0xfff

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• to specify a long literal, you will need to explicitly tell the

compiler that the literal value is of type long.

• You do this by appending an upper or lowercase L to the

literal.

• For example, 0x7ffffffffffffffL or 9223372036854775807L

Floating-Point Literals

• They can be expressed in either standard or scientific notation.

• Standard notation consists of a whole number component

followed by a decimal point followed by a fractional

component.

• For example: 2.0,3.14159, and 0.6667

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Scientific notation uses a standard-notation, floating-point

number plus a suffix that specifies a power of 10 by which the

number is to be multiplied.

• The exponent is indicated by an E or e followed by a decimal

number, which can be positive or negative.

• Examples: 6.022E23, 314159E–05 and 2e+100.

• Floating-point literals in Java default to double precision. To

specify a float literal, you must append an F or f to the

constant. You can also explicitly specify a double literal by

appending a D or d.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Boolean Literals

• Boolean literals are simple. There are only two logical values

that a boolean value can have, true and false.

• The values of true and false do not convert into any numerical

representation.

Character Literals

• Characters in Java are indices into the Unicode character set.

• Aliteral character is represented inside a pair of single quotes.

• All of the visible ASCII characters can be directly entered

inside the quotes, such as ‘a’, ‘z’, and ‘@’.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• For characters that are impossible to enter directly, there are

several escape sequences that allow you to enter the character

you need,

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

String Literals

• String literals in Java are specified like they are in most other

languages by enclosing a sequence of characters between a

pair of double quotes.

• Examples of string literals are

“Hello World”

“two\nlines”

“\”This is in quotes\”“

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Variables
• The variable is the basic unit of storage in a Java program.

• A variable is defined by the combination of an identifier, a

type, and an optional initializer.

Declaring a Variable:

• In Java, all variables must be declared before they can be used.

• The basic form of a variable declaration is shown here:

• type identifier [= value][, identifier [= value] ...] ;

• Ex:

• int a, b, c;

• int d = 3, e, f = 5;

• byte z = 22;

• double pi = 3.14159;
E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Dynamic Initialization

• Java allows variables to be initialized dynamically, using any

expression valid at the time the variable is declared.

• Ex:

int c=a+b;

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

public class PrimitiveDemo {

public static void main(String[] args) {

byte b =100;

short s =123;

int v = 123543;

int calc = -9876345;

long amountVal = 1234567891;

float intrestRate = 12.25f;

double sineVal = 12345.234d;

boolean flag = true;

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

boolean val = false;

char ch1 = 88; // code for X

char ch2 = 'Y';

System.out.println("byte Value = "+ b);

System.out.println("short Value = "+ s);

System.out.println("int Value = "+ v);

System.out.println("int second Value = "+calc);

System.out.println("long Value = "+ amountVal);

System.out.println("float Value = "+intrestRate);

System.out.println("double Value = "+ sineVal);

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

System.out.println("boolean Value = "+ flag);

System.out.println("boolean Value = "+ val);

System.out.println("char Value = "+ ch1);

System.out.println("char Value = "+ ch2);

}

}

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

The Scope and Lifetime of Variables
• A scope determines what objects are visible to other parts of your

program. It also determines the lifetime of those objects.

• Many other computer languages define two general categories of

scopes: global and local.

• In Java, the two major scopes are those defined by a class and those

defined by a method.

• The scope defined by a method begins with its opening curly brace.

• However, if that method has parameters, they too are included

within the method’s scope.

• variables declared inside a scope are not visible (that is, accessible)

to code that is defined outside that scope.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Scopes can be nested. For example, each time you create a block of

code, you are creating a new, nested scope.

• objects declared in the outer scope will be visible to code within the

inner scope. However, the reverse is not true.

• Objects declared within the inner scope will not be visible outside it.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

class Scope {

public static void main(String args[]) {

int x;

x = 10;

if(x == 10) {

int y = 20;

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100;

System.out.println("x is " + x);

}

}

// known to all code within main

// start new scope

// known only to this block
// x and y both known here.

// Error! y not known here

// x is still known here.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Within a block, variables can be declared at any point, but are valid

only after they are declared.

count = 100; //wrong!

int count;

• another important point to remember: variables are created when

their scope is entered, and destroyed when their scope is left.

• This means that a variable will not hold its value once it has gone

out of scope.

• Therefore, variables declared within a method will not hold their

values between calls to that method.

• Also, a variable declared within a block will lose its value when the

block is left. Thus, the lifetime of a variable is confined to its scope.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• If a variable is initialized, then that variable will be reinitialized each

time the block in which it is declared is entered.

class LifeTime {

public static void main(String args[]) {

int x;

for(x = 0; x < 3; x++) {

int y = -1;

System.out.println("y is: " + y);

y = 100;

System.out.println("y is now: " + y);

}

}

}

// y is initialized each time block is entered

// this always prints -1

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• Although blocks can be nested, you cannot declare a variable to

have the same name as one in an outer scope.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Type Conversion and Casting
• It is common to assign a value of one type to a variable of another

type.

• If the two types are compatible, then Java will perform the

conversion automatically.

• For example, it is always possible to assign an int value to a long

variable.

• However, not all types are compatible, and thus, not all type

conversions are implicitly allowed.

• It is possible to perform an explicit conversion between

incompatible types with type casting

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Java’s Automatic Conversions
• When one type of data is assigned to another type of variable, an

automatic type conversion will take place iff

• The two types are compatible.

• The destination type is larger than the source type.

• When these two conditions are met, a widening conversion takes

place.

• there are no automatic conversions from the numeric types to char

or boolean.

• char and boolean are not compatible with each other.

• Java also performs an automatic type conversion when storing a

literal integer constant into variables of type byte, short, long, or

char.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Casting Incompatible Types
• What if you want to assign an int value to a byte variable?

• This conversion will not be performed automatically, because a byte

is smaller than an int.

• This kind of conversion is sometimes called a narrowing

conversion,

• To create a conversion between two incompatible types, you must

use a cast.

• A cast is simply an explicit type conversion.

• general form:

(target-type) value

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• int a;

• byte b;

• // ...

• b = (byte) a;

• truncation occurs when a floating-point value is assigned to an

integer type

• if the size of the whole number component is too large to fit into the

target integer type, then that value will be reduced modulo the target

type’s range.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

System.out.println("\nConversion of double to

byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

Automatic Type Promotion in Expressions

• In an expression, the precision required of an intermediate value will

sometimes exceed the range of either operand.

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

• The result of the intermediate term a * b easily exceeds the range of

either of its byte operands.

• To handle this kind of problem, Java automatically promotes each

byte, short or char operand to int when evaluating an expression.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• For example, this seemingly correct code causes a problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

• The code is attempting to store 50 * 2, a valid byte value into a byte

variable.

• As the operands were automatically promoted to int when the

expression was evaluated, the result has also been promoted to int.

• Thus, the result of the expression is now of type int, which cannot

be assigned to a byte without the use of a cast.

• This is true even if the value being assigned would still fit in the

target type.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

• we should use an explicit cast to avoid error

byte b = 50;

b = (byte)(b * 2);

which yields the correct value of 100.

Type Promotion Rules

• Java defines several type promotion rules that apply to expressions.

• All byte, short, and char values are promoted to int

• If one operand is a long, the whole expression is promoted to long.

• If one operand is a float, the entire expression is promoted to float.

• If any of the operands is double, the result is double.

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println((f * b) + " + " + (i / c)

+ " - " + (d * s));

System.out.println("result = " + result);

}

}

E.Purushotham, Assoc.Prof., Dept of CSE SITAMS

