
SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

1 / 29

Syllabus : Unit – II : Introduction To Uml
Why we model – Conceptual model of UML – Architecture - Classes - Relationships - Common

mechanisms - Diagrams – Class diagrams - Object diagrams

Introducing the UML

 A modeling language is a language whose vocabulary and rules focus on the

conceptual and physical representation of a system.

 The UML is a language for
 Visualizing

 Specifying

 Constructing

 Documenting the artifact of a software-intensive system.

o Visualizing

o Some things are best modeled textually; others are best

modeled graphically. In all interesting system, there are

structures that transcend what can be represented in a

programming language.

o Specifying

o Specifying means building models that are precise,

unambiguous and complete. The UML addresses the

specification of all the important analysis, design and

implementation decision.

o Constructing

o The UML is not a visual programming language, but its models

can be directly connected to a variety of programming language

(Java, C++, ...)

o Documenting

o A software solution is made up by all sorts of artifacts in

addition to raw executable code. These artifacts include:

o Requirements

o Architecture

o Design

o Source code

o Project Plans

o Tests

o Prototypes

o Releases

 Benefits of UML

 Enterprise information systems

 Banking and financial services

 Telecommunications

 Transportation

 Defense/aerospace

 Retail

 Medical electronics

 Scientific

 Distributed Web-based services

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

2 / 29

Why we model

 The UML models act as an architectural blueprint for software development.

 Good models:

 Identify requirements and communicate information.

 Allows focus on how system components interact.

 Allows you to see relationships among design components

 Improves communication across your team through the use of common

graphical language

Conceptual model of the UML

Conceptual Model of UML

Building Blocks Rules Common Mechanisms

Things Relationships Diagrams

Structural

Things

*Classes

*Interfaces

*Collaborations

*Use Case

*Component

*Node

1. Association

2. Dependency

3. Generalization

4. Realization

1. Class Diagram

2. Object Diagram

3. Use Case Diagram

4. Sequence Diagram

5. Collaboration Diagram

6. State Chart Diagram

7. Activity Diagram

8. Component Diagram

9. Deployment Diagram

1. Specifications

2. Adornments

3. Common Divisions

4. Extensibility

 Mechanisms

i. Stereotypes

ii. Tagged Values

iii. Constraints

1. Names

2. Scope

3. Visibility

4. Integrity

5. Execution

Behavioral

Things

*Interaction

*State machines

Grouping

Things

*State machines

Annotational

Things

*notes

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

3 / 29

 Conceptual model of the UML cover three major elements:

1. Things

2. Relationships

3. Diagrams

 Things in the UML

 There are four kinds of things in the UML:

o Structural things

o Behavioral things

o Grouping things

o Annotational things

o

 Structural things

o Structural things are the nouns of UML models. These are the mostly
static parts of a model, representing elements that are either conceptual

or physical. In all, there are seven kinds of structural things.

1. Classes

2. Interfaces

3. Collaborations

4. Use cases

5. Active classes

6. Components

7. Nodes

o Class

o Class is a description of a set of objects that share the same

attributes, operations, relationships, and semantics.

o A class implements one or more interfaces. Graphically, a class

is rendered as a rectangle, usually including its name, attributes,

and operations.

o Interface

o Interface is a collection of operations that specify a service of a

class or component.

o An interface therefore describes the externally visible behavior

of that element.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

4 / 29

o Collaboration

o Collaboration defines an interaction and is a society of roles

and other elements that work together to provide some

cooperative behavior that's bigger than the sum of all the

elements. Therefore, collaborations have structural, as well as

behavioral, dimensions. A given class might participate in

several collaborations.

o Graphically, a collaboration is rendered as an ellipse with

dashed lines, usually including only its name

o Usecase

o Use case is a description of set of sequence of actions that a

system performs that yields an observable result of value to a

particular actor

o Use case is used to structure the behavioral things in a model.

o A use case is realized by collaboration.

o Graphically, a use case is rendered as an ellipse with solid

lines, usually including only its name

o Active class

o Active class is just like a class except that its objects represent

elements whose behavior is concurrent with other elements.

Graphically, an active class is rendered just like a class, but

with heavy lines, usually including its name, attributes, and

operations

o Component

o Component is a physical and replaceable part of a system that

conforms to and provides the realization of a set of interfaces.

o Graphically, a component is rendered as a rectangle with tabs.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

5 / 29

o Node

o Node is a physical element that exists at run time and

represents a computational resource, generally having at least

some memory and, often, processing capability.

o Graphically, a node is rendered as a cube, usually including

only its name.

 Behavioral Things

o Behavioral things are dynamic part of system

1. Interaction

2. State machine

o Interaction

o Interaction is a behavior that comprises a set of messages

exchanged among a set of objects within a particular context to

accomplish a specific purpose.

o An interaction involves a number of other elements, including

messages, action sequences and links.

o Graphically a message is rendered as a directed line, almost

always including the name of its operation.

o State Machine

o State machine is a behavior that specifies the sequences of

states an object or an interaction goes through during its

lifetime in response to events, together with its responses to

those events.

o State machine involves a number of other elements, including

states, transitions, events and activities.

o Graphically, a state is rendered as a rounded rectangle, usually

including its name and its sub states.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

6 / 29

 Grouping Things

o They are the organizational parts of UML models. These are the boxes

into which a model can be decomposed.

o There is one primary kind of grouping thing, namely, packages.

o Package

o A package is a general-purpose mechanism for organizing

elements into groups. Structural things, behavioral things, and

even other grouping things may be placed in a package.

 Annotational things

o Annotational things are the explanatory parts of UML models. These

are the comments you may apply to describe about any element in a

model.

o Note

o Note is simply a symbol for rendering constraints and

comments attached to an element or a collection of elements.

o Graphically, a note is rendered as a rectangle with a dog-eared

corner, together with a textual or graphical comment

 Relationships

 There are four kinds of relationships in the UML:

 Dependency

 Association

 Generalization

 Realization

 Dependency

o Dependency is a semantic relationship between two things in which a

change to one thing may affect the semantics of the other thing

o Graphically a dependency is rendered as a dashed line, possibly

directed, and occasionally including a label.

 Association

o Association is a structural relationship that describes a set of links, a

link being a connection among objects.

o Graphically an association is rendered as a solid line.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

7 / 29

o Aggregation

o Aggregation is a special kind of association,

representing a structural relationship between a whole

and its parts. Graphically, a generalization relationship

is rendered as a solid line with a hollow arrowhead

pointing to the parent

 Generalization

o It is a specialization/generalization relationship in which the

specialized element (the child) builds on the specification of the

generalized element (the parent).

o The child shares the structure and the behavior of the parent.

o Graphically, a generalization relationship is rendered as a solid line

with a hollow arrowhead pointing to the parent.

 Realization

o Realization is a semantic relationship between classifiers, wherein one

classifier specifies a contract that another classifier guarantees to carry

out.

o Graphically a realization relationship is rendered as a cross between a

generalization and a dependency relationship

 Diagrams in the UML

 A diagram is the graphical presentation of a set of elements, most often

rendered as a connected graph of vertices (things) and paths (relationships).

 We draw diagrams to visualize a system from different perspectives, so a

diagram is a projection into a system.

 In theory, a diagram may contain any combination of things and relationships.

 UML includes the following nine diagrams:

o Structural Diagrams

 The structural diagrams represent the static aspect of the system.

These static aspects represent those parts of a diagram, which

forms the main structure and are therefore stable.

1. Class diagram

 Class diagrams are the most common diagrams used in
UML.

 Class diagram consists of classes, interfaces, associations,

and collaboration.

 Class diagrams basically represent the object-oriented view
of a system, which is static in nature.

 Active class is used in a class diagram to represent the
concurrency of the system.

http://umlguide2.uw.hu/gloss01.html#gloss01entry75

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

8 / 29

2. Object diagram

 Object diagrams are a set of objects and their relationship is
just like class diagrams. They also represent the static view

of the system.

 Object diagrams can be described as an instance of class

diagram. Thus, these diagrams are more close to real-life

scenarios where we implement a system.

 The usage of object diagrams is similar to class diagrams
but they are used to build prototype of a system from a

practical perspective.

3. Component diagram

 Component diagrams represent a set of components and
their relationships.

 These components consist of classes, interfaces, or
collaborations.

 Component diagrams represent the implementation view of

a system.

4. Deployment Diagram

 Deployment diagrams are a set of nodes and their
relationships. These nodes are physical entities where the

components are deployed.

 Deployment diagrams are used for visualizing the
deployment view of a system.

 This is generally used by the deployment team.

o Behavioral Diagrams

 Behavioral diagrams basically capture the dynamic aspect of a

system. Dynamic aspect can be further described as the

changing/moving parts of a system.

5. Use case diagram

 Use case diagrams are a set of use cases, actors, and their
relationships. They represent the use case view of a system.

 A use case represents a particular functionality of a system.

 Use case diagram is used to describe the relationships
among the functionalities and their internal/external

controllers. These controllers are known as actors.

6. Sequence diagram

 A sequence diagram is an interaction diagram.

 The diagram deals with some sequences, which are the
sequence of messages flowing from one object to another.

 Sequence diagram is used to visualize the sequence of calls
in a system to perform a specific functionality.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

9 / 29

7. Collaboration diagram

 Collaboration diagram is another form of interaction
diagram.

 It represents the structural organization of a system and the

messages sent/received.

 Structural organization consists of objects and links.

 The purpose of collaboration diagram is similar to sequence
diagram.

8. State chart diagram

 A state diagram shows a state machine, consisting of states,
transitions, events, and activities.

 State chart diagram is used to represent the event driven

state change of a system. It basically describes the state

change of a class, interface, etc.

 State chart diagram is used to visualize the reaction of a
system by internal/external factors.

9. Activity Diagram

 Activity diagram describes the flow of control in a system.
It consists of activities and links. The flow can be

sequential, concurrent, or branched.

 Activity diagrams are used to visualize the flow of controls

in a system. This is prepared to have an idea of how the

system will work when executed.

 Rules

 UML has a number of rules so that the models are semantically self-consistent

and related to other models in the system harmoniously. UML has semantic

rules for the following −

o Names - What you can call things, relationships, and diagrams

o Scope - The context that gives specific meaning to a name

o Visibility - How those names can be seen and used by others

o Integrity - How things properly and consistently relate to one another

o Execution - What it means to run or simulate a dynamic model

 Common Mechanisms

 UML has four common mechanisms:

o Specifications

o Adornments

o Common Divisions

o Extensibility Mechanisms

 Specifications

o In UML, behind each graphical notation, there is a textual statement

denoting the syntax and semantics. The specifications provide a

semantic backplane that contains all the parts of a system and the

relationship among the different paths.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

10 / 29

 Adornments

o Adornments are textual or graphical items that are added to the

elements basic notation to specify extra information. When using

UML, always start with the basic notation of elements and add

adornments to specify new information.

o Example: adornments of an association.

 Common Divisions

o Object-oriented systems can be divided in many ways. The two

common ways of division are:

o Division of classes and objects: A class is an abstraction of a

group of similar objects. An object is the concrete instance that

has actual existence in the system.

o Division of Interface and Implementation: An interface

defines the rules for interaction. Implementation is the concrete

realization of the rules defined in the interface.

 Extensibility Mechanisms

o UML is an open-ended language. It is possible to extend the

capabilities of UML in a controlled manner to suit the requirements of

a system. The extensibility mechanisms are

o Stereotypes:

o It extends the vocabulary of the UML, through which

new building blocks can be created out of existing ones.

(or)

o UML provides basic notations for structural things,

behavioral things, grouping things and annotational

things. Sometimes we may need to extend i.e., create

new vocabulary and look like primitive building blocks.

o A stereotype allows us to create new building blocks.

Using stereotypes we can use the basic elements but

with special properties, semantics and notation.

o Stereotypes are rendered as text inside guillemets(<<

>>) or we can create new icons for stereotypes.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

11 / 29

o Tagged Values:

o It extends the properties of UML building blocks. (or)

o Every element in UML has its own properties. For

example a class has its own attributes and operations.

o Using tagged values, we can represent new properties

also called as metadata.

o These properties apply to the element itself rather than

its instance.

o Tagged values are enclosed in braces { } and are written

under the element name.

o Constraints :

o It extends the semantics of UML building blocks. (or)

o A constraint is used to add new semantics or change

existing rules.

o The constraints specify rules that must be followed by

the elements in the model.

o Represented as text inside braces { } and placed near to

the associated element.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

12 / 29

Architecture

 Visualizing, specifying, constructing, and documenting a software-intensive system

demands.

 system be viewed from a number of perspectives

 Different stakeholders, end users, analysts, developers, system integrators, testers,

technical writers, and project managers

 each bring different agendas to a project

 each looks at the system in different ways at different times over the project's

life

 The most important artifact that can be used to manage these different viewpoints and
so control development of a system throughout its life cycle.

 Concerned with structure, behavior, usage, functionality, performance, resilience,
reuse, comprehensibility, economic and technology constraints and trade-offs, and

aesthetic concern.

 The architecture of a software-intensive system can best be described by five
interlocking views. Each view is a projection into the organization and structure of the

system, focused on a particular aspect of that system

 Use-Case View:

 This view showing the behavior of the system as perceived by the external

actors.

 It exposes the requirements of the system.

 With UML,

o The static aspects of this view are captured in use case diagrams

o The dynamic aspects of this view are captured in interaction diagrams,

statechart diagrams, and activity diagrams.

 Design View:

 This view showing how the functionality is designed inside the system, in

terms of the static structure and dynamic behaviour.

 It captures the vocabulary of the problem space and solution space.

 With UML,

o The static aspects of this view are captured in class and object

diagrams

o The dynamic aspects of this view are captured in interaction diagrams,

statechart diagrams, and activity diagrams.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

13 / 29

 Implementation View:
 The implementation view of a system encompasses the artifacts that are used

to assemble and release the physical system.

 This view primarily addresses the configuration management of the system's

releases.

 With UML,

o The static aspects of this view are captured in component diagrams

o The dynamic aspects of this view are captured in interaction diagrams,

statechart diagrams, and activity diagrams.

 Interaction view (Process View):

 The interaction view of a system shows the flow of control among its various

parts, including possible concurrency and synchronization mechanisms.

 It encompasses the threads and processes that form the system's concurrency

and synchronization mechanisms.

 This view primarily addresses the performance, scalability, and throughput of
the system.

 With UML,

o The static and dynamic aspects of this view are captured in same way

as design view, but with a focus on the active classes that represent

these threads and processes

 Deployment View:

 This view showing the deployment of the system in terms of the physical

architecture.

 It encompasses the nodes that form the system's hardware topology on which

the system executes.

 This view primarily addresses the distribution, delivery, and installation of the

parts that make up the physical system.

 With UML,

o The static aspects of this view are captured in deployment diagrams

o The dynamic aspects of this view are captured in interaction diagrams,

statechart diagrams, and activity diagrams.

http://umlguide2.uw.hu/gloss01.html#gloss01entry79
http://umlguide2.uw.hu/gloss01.html#gloss01entry90
http://umlguide2.uw.hu/gloss01.html#gloss01entry90

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

14 / 29

Classes

 Classes are the most important building block of any object-oriented system.

 A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics.

 A class implements one or more interfaces.

 We use classes to capture the vocabulary of the system we are developing. These

classes may include abstractions that are part of the problem domain, as well as

classes that make up an implementation.

 We can use classes to represent software things, hardware things, and even things that

are purely conceptual.

 Graphically, a class is rendered as a rectangle.

 This notation permits we to visualize an abstraction apart from any specific

programming language and in a way that lets you emphasize the most important parts

of an abstraction: its name, attributes, and operations.

 Terms and Concepts

 Names

o Every class must have a name that distinguishes it from other classes.

o A name is a textual string.

o That name alone is known as

 a simple name

 a qualified name is the class name prefixed by the name of the

package in which that class lives.

o A class may be drawn showing only its name, as Figure shows.

 Attributes

o An attribute is a named property of a class that describes a range of

values that instances of the property may hold.

o A class may have any number of attributes or no attributes at all.

o An attribute represents some property of the thing we are modeling
that is shared by all objects of that class.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

15 / 29

o Graphically, attributes are listed in a compartment just below the class

name. Attributes may be drawn showing only their names, as shown

in Figure

o Attributes with Signatures:

 Operations

o An operation is the implementation of a service that can be requested

from any object of the class to affect behavior.

o A class may have any number of operations or no operations at all.

o Graphically, operations are listed in a compartment just below the class

attributes. Operations may be drawn showing only their names, as

in Figure.

o We can specify an operation by stating its signature, which includes

the name, type, and default value of all parameters and a return type, as

shown in Figure.

 Organizing Attributes and Operations

o To better organize long lists of attributes and operations, you can also

prefix each group with a descriptive category by using stereotypes, as

shown in Figure

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

16 / 29

 Responsibilities

o A responsibility is a contract or an obligation of a class.

o When you create a class, we are making a statement that all objects of

that class have the same kind of state and the same kind of behavior.

o At a more abstract level, these corresponding attributes and operations

are just the features by which the class's responsibilities are carried out.

o A Wall class is responsible for knowing about height, width, and
thickness;

o A TemperatureSensor class is responsible for measuring temperature

and raising an alarm if the temperature reaches a certain point.

 Common Modeling Techniques

 Modeling the Vocabulary of a System
o We use classes most commonly to model abstractions that are drawn

from the problem or from the technology.

o Each of these abstractions is a part of the vocabulary of the system;

they represent the things that are important to users and to

implementers.

o For users, most abstractions are not that hard to identify.

o They are drawn from the things that users already use to describe their

system.

o Techniques such as CRC cards and use case-based analysis are

excellent ways to help users find these abstractions.

o For implementers, these abstractions are typically just the things in the

technology that are parts of the solution.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

17 / 29

o To model the vocabulary of a system,

 Identify those things that users or implementers use to describe

the problem or solution. Use CRC cards and use case-based

analysis to help find these abstractions.

 For each abstraction, identify a set of responsibilities. Make

sure that each class is crisply defined and that there is a good

balance of responsibilities among all your classes.

 Provide the attributes and operations that are needed to carry

out these responsibilities for each class.

 Example

 Figures show a set of classes drawn from a retail system,

including Customer, Order, and Product.

 This figure includes a few other related abstractions drawn from

the vocabulary of the problem, such as Shipment (used to track

orders), Invoice (used to bill orders), and Warehouse (where

products are located prior to shipment). There is also one solution-

related abstraction, TRansaction, which applies to orders and

shipments.

 Modeling the Distribution of Responsibilities in a System
o Abstractions provide a balanced set of responsibilities. i.e. don't want

any one class to be too big or too small.

 If abstract classes that are too big, we will find that the models

are hard to change and are not very reusable.

 If abstract classes that are too small, we can reasonably manage

or understand.

o To model the distribution of responsibilities in a system,

 Identify a set of classes that work together closely to carry out

some behavior.

 Identify a set of responsibilities for each of these classes.

 Look at this set of classes as a whole, split classes that have too

many responsibilities into smaller abstractions, collapse tiny

classes that have trivial responsibilities into larger ones, and

reallocate responsibilities so that each abstraction reasonably

stands on its own.

 Consider the ways in which those classes collaborate with one

another, and redistribute their responsibilities accordingly so

that no class within collaboration does too much or too little.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

18 / 29

 Example

 Modeling Nonsoftware Things

o Modeling abstractions are human or hardware classes

o To model nonsoftware things,

 Model the thing we are abstracting as a class.

 If we want to distinguish these things from the UML's defined

building blocks, create a new building block by using

stereotypes to specify these new semantics and to give a

distinctive visual cue.

 If the thing we are modeling is some kind of hardware that

itself contains software, consider modeling it as a kind of node

as well, so that we can further expand on its structure.

o Example

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

19 / 29

Relationships
 A relationship is a connection among things.

 In object oriented modeling, there are three kinds of relationships:

 Dependency

 Association

 Generalization
 Graphically, a relationship is rendered as a path, with different kinds of lines used to

distinguish the kinds of relationships.

 The UML provides a graphical representation for each of these kinds of relationships,

as Figures shows.

 Terms and Concepts

 Dependency

o Dependency is a semantic relationship between two things in which a change

to one thing may affect the semantics of the other thing.

o Graphically a dependency is rendered as a dashed line, possibly directed, and

occasionally including a label.

o Example

 Most often, you will use dependencies between classes to show that one

class uses operations from another class or it uses variables or arguments

typed by the other class; see Figure

 Generalization

o It is a specialization/generalization relationship in which the specialized

element (the child) builds on the specification of the generalized element (the

parent).

o The child shares the structure and the behavior of the parent, but not the

reverse.

http://umlguide2.uw.hu/gloss01.html#gloss01entry140
http://umlguide2.uw.hu/ch05lev1sec2.html#ch05fig02
http://umlguide2.uw.hu/gloss01.html#gloss01entry75

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

20 / 29

o Graphically, a generalization relationship is rendered as a solid line with a

hollow arrowhead pointing to the parent.

o Example

 Association

o Association is a structural relationship that describes a set of links, a link being

a connection among objects.

o The link to other objects of the same class. An association that connects

exactly two classes is called a binary association.

o The links to more than two classes; these are called n-ary associations.

o Graphically an association is rendered as a solid line.

o

o Beyond this basic form, there are four adornments that apply to associations.

o Name

o An association can have a name, and we use that name to

describe the nature of the relationship and we can give a

direction to the name by providing a direction triangle that

points in the direction we intend to read the name, as shown

in Figure

o Role

o When a class participates in an association, it has a specific role

that it plays in that relationship; a role is just the face the class

at the far end of the association presents to the class at the near

end of the association.

http://umlguide2.uw.hu/gloss01.html#gloss01entry107

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

21 / 29

o Multiplicity

o In many modeling situations, it's important for to state how

many objects may be connected across an instance of an

association. This "how many" is called the multiplicity of an

association's role.

o It represents a range of integers specifying the possible size of

the set of related objects.

o It is written as an expression with a minimum and

maximum value, which may be the same; two dots are used

to separate the minimum and maximum values.

o The number of objects must be in the given range.

We can show a multiplicity of exactly one (1), zero

or one (0..1), many (0..*), or one or more (1..*).

o For example, in Figure, each company object has as employee

one or more person objects (multiplicity 1..*); each person

object has as employer zero or more company objects

(multiplicity *, which is equivalent to 0..*).

o Aggregation

o Aggregation is a special kind of association, representing a

structural relationship between a whole and its parts.

Graphically, a generalization relationship is rendered as a solid

line with a hollow arrowhead pointing to the parent.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

22 / 29

Common Mechanisms
 UML has four common mechanisms:

o Specifications – It is a textual statement denoting the syntax and semantics.

o Adornments - textual or graphical items that are added to the elements basic

notation to specify extra information.

o Common Divisions – Object-oriented systems can be divided in many ways.

o Extensibility Mechanisms - extend the capabilities of UML.

 Terms and Concepts

 Notes

o A note is a graphical symbol for rendering constraints or comments attached to an

element or a collection of elements. Graphically, a note is rendered as a rectangle

with a dog-eared corner.

 Other Adornments

o Adornments are textual or graphical items that are added to the elements basic

notation to specify extra information. When using UML, always start with the

basic notation of elements and add adornments to specify new information.

o Example: adornments of an association.

 Stereotypes:

o It extends the vocabulary of the UML, through which new building blocks can be

created out of existing ones. (or)

o UML provides basic notations for structural things, behavioral things, grouping

things and annotational things. Sometimes we may need to extend i.e., create new

vocabulary and look like primitive building blocks.

http://umlguide2.uw.hu/gloss01.html#gloss01entry112

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

23 / 29

o A stereotype allows us to create new building blocks. Using stereotypes we can

use the basic elements but with special properties, semantics and notation.

o Stereotypes are rendered as text inside guillemets(<< >>) or we can create new

icons for stereotypes.

 Tagged Values:

o It extends the properties of UML building blocks. (or)

o Every element in UML has its own properties. For example a class has its own

attributes and operations.

o Using tagged values, we can represent new properties also called as metadata.

o These properties apply to the element itself rather than its instance.

o Tagged values are enclosed in braces { } and are written under the element name.

 Constraints :
o It extends the semantics of UML building blocks. (or)

o A constraint is used to add new semantics or change existing rules.

o The constraints specify rules that must be followed by the elements in the model.

o Represented as text inside braces { } and placed near to the associated element.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

24 / 29

Class Diagrams

 Class diagrams are the most common diagram found in modeling object-oriented

systems.

 A class diagram shows a set of classes, interfaces, and collaborations and their

relationships.

 We use class diagrams to model the static design view of a system.

 Most part of class diagram involves modeling the vocabulary of the system, modeling

collaborations, or modeling schemas.

 Class diagrams are also the foundation for component diagrams and deployment

diagrams.

 Class diagrams are important not only for visualizing, specifying, and documenting

structural models, but also for constructing executable systems through forward and

reverse engineering.

 Example Class Diagram:

Terms and Concepts for class diagram:

 A class diagram is a diagram that shows a set of classes, interfaces, and collaborations

and their relationships.
 Graphically, a class diagram is a collection of vertices and arcs.

 Common Properties

 A class diagram is just a special kind of diagram and shares the same common

properties as do all other diagrams that is, a name and graphical content that

are a projection into a model. What distinguishes a class diagram from other

kinds of diagrams is its particular content.

http://umlguide2.uw.hu/gloss01.html#gloss01entry31

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

25 / 29

 Contents

 Class diagrams commonly contain the following things:
o Classes

o Interfaces

o Dependency, generalization, and association relationships

 Common Uses

 To model the vocabulary of a system

 To model simple collaborations

 To model a logical database schema

Common Modeling Techniques for class diagram:

 Modeling Simple Collaborations

 Identify the mechanism we had like to model.

 For each mechanism, identify the classes, interfaces, and other collaborations

that participate in this collaboration.

 Use scenarios to walk through these things.

 To populate these elements with their contents. For classes, start with getting a
good balance of responsibilities. Then, over time, turn these into concrete

attributes and operations.

 For example,

o Figure shows a set of classes drawn from the implementation of an

autonomous robot.

o The figure focuses on the classes involved in the mechanism for

moving the robot along a path.

o We find one abstract class (Motor) with two concrete

children, SteeringMotor and MainMotor. Both of these classes inherit

the five operations of their parent, Motor. The two classes are, in turn,

shown as parts of another class, Driver. The class PathAgent has a one-

to-one association to Driver and a one-to-many association

to CollisionSensor. No attributes or operations are shown

for PathAgent, although its responsibilities are given.

http://umlguide2.uw.hu/ch08lev1sec3.html#ch08fig02

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

26 / 29

o Class PathAgent collaborates with at least two other classes

Environment and GoalAgent in a higher-level mechanism for

managing the conflicting goals the robot might have at a given

moment. Similarly, the classes CollisionSensor and Driver

collaborate with another class FaultAgent in a mechanism responsible

for continuously checking the robot's hardware for errors.

 Modeling a Logical Database Schema

 Identify those classes in your model whose state must transcend the lifetime of
their applications.

 Create a class diagram that contains these classes. We can define our own set

of stereotypes and tagged values to address database-specific details.

 Expand the structural details of these classes.

 Watch for common patterns that complicate physical database design.

 Consider also the behavior of these classes by expanding operations that are
important for data access and data integrity.

 Use tools to help we transform our logical design into a physical design.

 Example
o Figure shows a set of classes drawn from an information system for a

school.

 Forward and Reverse Engineering

 Forward engineering:
o It is the process of transforming a model into code through a mapping

to an implementation language.

o To forward engineer a class diagram,

 Identify the rules for mapping to your implementation language

or languages of choice.

http://umlguide2.uw.hu/ch08lev1sec3.html#ch08fig03
http://umlguide2.uw.hu/gloss01.html#gloss01entry73

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

27 / 29

 Depending on the semantics of the languages we choose, we

may want to constrain our use of certain UML features.

 Use tagged values to guide implementation choices in our

target language.

 Use tools to generate code.

 Example

o Figure shows a simple class diagram specifying an

instantiation of the chain of responsibility pattern.

o Forward engineering the class EventHandler yields the

following code.

public abstract class EventHandler {

 EventHandler successor;

 private Integer currentEventID;

 private String source;

EventHandler() {}

 public void handleRequest() {}

}

 Reverse engineering:
o It is the process of transforming code into a model through a mapping

from a specific implementation language.

o To reverse engineer a class diagram,

 Identify the rules for mapping from your implementation

language or languages of choice.

 Using a tool, point to the code we had like to reverse engineer.

Use your tool to generate a new model or modify an existing

one that was previously forward engineered.

 Using our tool, create a class diagram by querying the model.

 Manually add design information to the model to express the

intent of the design that is missing or hidden in the code.

http://umlguide2.uw.hu/gloss01.html#gloss01entry144

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

28 / 29

Object Diagrams

 Object diagrams model the instances of things contained in class diagrams.

 An object diagram shows a set of objects and their relationships at a point in time.

 We use object diagrams to model the static design view or static process view of a

system. This involves modeling a snapshot of the system at a moment in time and

rendering a set of objects, their state, and their relationships.

 Object diagrams are not only important for visualizing, specifying, and documenting

structural models, but also for constructing the static aspects of systems through

forward and reverse engineering.

 Example Object Diagram:

Terms and Concepts for object diagram:

 An object diagram is a diagram that shows a set of objects and their relationships at a

point in time.

 Graphically, an object diagram is a collection of vertices and arcs.

 Common Properties

 An object diagram is a special kind of diagram and shares the same common
properties as all other diagrams that is, a name and graphical contents that are

a projection into a model. What distinguishes an object diagram from all other

kinds of diagrams is its particular content.

 Contents

 Object diagrams commonly contain
o Objects

o Links

 Common Uses

 To model object structures.

http://umlguide2.uw.hu/gloss01.html#gloss01entry115

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – II

29 / 29

Common Modeling Techniques for class diagram:

 Modeling Object Structures

 Identify the mechanism we had like to model.

 Create a collaboration to describe a mechanism.

 For each mechanism, identify the classes, interfaces, and other elements that
participate in this collaboration; identify the relationships among these things.

 Consider one scenario that walks through this mechanism.

 Expose the state and attribute values of each such object, as necessary, to
understand the scenario.

 Similarly, expose the links among these objects, representing instances of

associations among them.

 For example,
o The figure shows a set of objects drawn from the implementation of

an autonomous robot.

o This figure focuses on some of the objects involved in the mechanism

used by the robot to calculate a model of the world in which it moves.

o There are many more objects involved in a running system, but this

diagram focuses on only those abstractions that are directly involved in

creating this world view.

 Reverse Engineering

 It is the process of transforming code into a model through a mapping from a
specific implementation language.

 To reverse engineer a object diagram,
o Chose the target we want to reverse engineer.

o Using a tool or simply walking through a scenario, stop execution at a

certain moment in time.

o Identify the set of interesting objects that collaborate in that context

and render them in an object diagram.

o As necessary to understand their semantics, expose these object's

states.

o As necessary to understand their semantics, identify the links that exist

among these objects.

o We will usually have to manually add or label structure that is not

explicit in the target code. The missing information supplies the design

intent that is only implicit in the final code.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

1 / 28

Syllabus: Unit – III: Structural And Behavioral Modeling
Advance Classes - Advanced Relationships - Interfaces - Types &Roles - Packages - Interactions -

Usecases - Usecase diagrams.

Advance Classes
 Class

 The fundamental building block in a object-oriented system is an object or
class.

 However, in UML,

 Class is not the only general building block.

 It is only one of the general building blocks in UML, called as

classifiers.

 Classifier

 A classifier is a mechanism which describes structural and behavioral features.
 Class is the frequently used classifier.

 Every classifier represents structural aspects in terms of properties and

behavioral aspects in terms of operations.

 Beyond these basic features, there are several advanced features like

multiplicity, visibility, signatures, polymorphism and others.

 In general, all the modeling elements that can have instances are called
classifiers.

 Class, Instance, Datatype, Signal, Component, Node, Use case, Subsystem are
classifiers. (packages are not.)

 Special properties of attributes and operations

 Visibility

 Public[+]: any outside classifier with visibility to the given classifier

can use this feature.

 Protected[#]: any descendant of the classifier can use the feature.

 Private[-]: only the classifier itself can use the feature.

+move()

+resize()

+display()

-origin

Shape IUnknow<<datatype>>

Int

kernel32.dll
egb_ server <<subsystem>>

Customer Service subsystem

Process loan

class interfacedatatype

<<signal>>

OffHook

signal

use case

component node subsystem

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

2 / 28

 Scope
 The owner scope of a feature specifies whether the feature appears in

each instance of the classifier or whether there is just a single instance

of feature for all instances of the classifier.

 Instance: each instance holds its own value.

 Classifier: just one value for all instances. [static]

 Abstract, Root, Leaf and Polymorphic Elements

 Multiplicity
 It’s reasonable to assume that there may be any number of instances of

classes.

 The number of instances a class may have is called multiplicity.

 Attributes

 The syntax of an attribute in the UML is

[visibility] name [multiplicity][: type][= initial-value][{property-

string }]

 There are three defined properties

 changeable : no restrictions on modifying the attribute’s value

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

3 / 28

 addOnly : additional value may be added for attributes with a

multiplicity > 1, but once created, a value may not be removed

or altered.

 frozen : the attribute’s value may not be changed after object is

initialized. [const]

 Example:

 Operations
 The syntax of an operation in UML is

[visibility] name [(parameter-list)][: return-type][{ property-string}]

[direction] name : type [= default-value]

in, out, inout : means parameter may be modified or not.

 There are five defined properties

 leaf : may not be overridden

 isQuery : leave the state of subsystem unchanged.

 sequential : only one flow is in the object at a time.

 guarded : sequentializing all calls.

 concurrent : treating the operation as atomic.

 Note : 3. 4. 5. are for concurrence.

 Example:

 Template Classes

 Like template classes in C++ and Ada.

 Cannot use a template directly; you have to instantiate it first.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

4 / 28

template<class Item, class value, int Buckets>

Class Map

{

public:

 virtual Boolean bind(const Items, const Values&);

 virtual Boolean isBound(const Item&) const;

….

} // explicit binding

M: Map<Customer, Order, 3>; // implicit binding

 Standard elements
 Metaclass : specify the classifier whose objects are all classes.

 Powertype : whose objects are the children of a given parent.

 Stereotype : may be applied to other elements.

 Utility : whose attributes and operations are all class scoped.

Advanced Relationships
 A relationship is a connection among things. There are four most important

relationships in object-oriented modeling:

 Dependencies

 Generalizations

 Associations

 Realizations

 Dependency

 Specifying a change in the specification of one thing may affect another thing,
but not necessarily the reverse.

 Rendering as a dashed line []

 UML defines a number of stereotypes.

 There are eight stereotypes that apply to dependency relationships among
classes and objects in class diagrams.

 «bind» – Specifies that the source instantiates the target template using

the given actual parameters.

 «derive» – Specifies that the source may be computed from the target.

 «friend» – Specifies that the source is given special visibility into the

target.

 «instanceOf» – Specifies that the source object is an instance of the

target classifier.

 «instantiate» – Specifies that the source creates instances of the target.

 «powertype» – Specifies that the target is a powertype of the source; a

powertype is a classifier whose objects are all the children of a given

parent.

 «refine» – Specifies that the source is at a finer degree of abstraction

than the target.

 «use» – Specifies that the semantics of the source element depends on

the semantics of the public part of the target.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

5 / 28

 There are two stereotypes that apply to dependency relationships among
packages.

 «access» – Specifies that the source package is granted the right to

reference the elements of the target package.

 «import» – A kind of access that specifies that the public contents of

the target package enter the flat namespace of the source, as if they had

been declared in the source.

 Two stereotypes apply to dependency relationships among use cases:

 «extend» – Specifies that the target use case extends the behavior of

the source.

 «include» – Specifies that the source use case explicitly incorporates

the behavior of another use case at a location specified by the source.

 There are three stereotypes when modeling interactions among objects.
 «become» – Specifies that the target is the same object as the source

but at a later point in time and with possibly different values, state, or

roles.

 «call» – Specifies that the source operation invokes the target

operation.

 «copy» – Specifies that the target object is an exact, but independent,

copy of the source.

 There is one stereotype when modeling state machine among objects.
 «send» – Specifies that the source operation sends the target event

 There is one stereotype when modeling system into sub system among objects.
 «trace» – Specifies that the target is an historical ancestor of the

source.

 Generalizations

 A generalization relationship represents generalization-specialization

relationship between classes.

 The class with the general structure and behavior is known as the parent or
superclass and the class with specific structure and behavior is known as the

child or subclass.

 Rendering as a dashed line []

 Consider the below class hierarchy:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

6 / 28

 UML defines one stereotype and four constraints that may be applied to
generalization relationships.

 «implementation» – Specifies that the child inherits the

implementation of the parent but does not make public nor support its

interfaces, thereby violating substitutability.

 {complete} – Specifies that all children in the generalization

have been specified in the model and that no additional children

are permitted.

 {incomplete} – Specifies that not all children in the

generalization have been specified and that additional children

are permitted.

 {disjoint} – Specifies that objects of the parent may have no

more than one of the children as a type.

 {overlapping} – Specifies that objects of the parent may have

more than one of the children as a type.

 Associations

 Association is a structural relationship which denotes a connection between
two or more things.

 The association relationship can represent either physical or logical

connections between things.

 Rendering as a dashed line []

 The four basic adornments for an association relationship are: name, role at
each end of the association, multiplicity at each end of the association and

aggregation.

 Over these basic features, there are other advanced features like: navigation,

visibility, qualification, composition and association classes.

 Navigation: Unless otherwise specified, navigation across an

association is bidirectional. Unidirectional navigation is also possible

where reverse navigation is not desirable such as where security

concern is an important thing. A Unidirectional navigation is shown in

Figure

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

7 / 28

 Visibility: Objects at that end are not accessible to any objects outside

the association

 Three levels of visibility for an association possible in UML.

 Public visibility indicates that objects can access any

one. (default)

 Private visibility indicates that objects at that end are

not accessible to any objects outside the association;

 Protected visibility indicates that objects at that end are

not accessible to any objects outside the association,

except for children of the other end.

 Qualification: This is an attribute whose values partition the set of

objects related to an object across an association.

 Composition: A form of an aggregation with strong ownership and

coincident lifetime of the parts by the whole

 Association Classes: In an association between two classes, the

association itself might have properties. An association class can be

seen as an association that also has class properties, or as a class that

also has association properties. We render an association class as a

class symbol attached by a dashed line to an association.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

8 / 28

 Five constraints that can be applied to association

relationships.

 {implicit} – Specifies that the relationship is not

manifest but, rather, is only conceptual.

 {ordered} – Specifies that the set of objects at one end

of an association are in an explicit order.

 Constraints that relate to the changeability of the instances of

an association.

 {changeable} – Links between objects may be added,

removed, and changed freely.

 {addOnly} – New links may be added from an object

on the opposite end of the association.

 {frozen} – A link, once added from an object on the

opposite end of the association, may not be modified or

deleted.

 Constraint for managing related sets of associations.

 {xor} – Specifies that, over a set of associations, exactly

one is manifest for each associated object.

 Realizations

 A realization is a semantic relationship between classifiers in which one
classifier specifies a contract that another classifier guarantees to carry out

 Used in two circumstances
 In the context of interfaces

 In the context of collaborations

 Graphically rendered as dashed directed line with a large open arrowhead

[]

 Realization of an Interface

 Realization of a Use Case

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

9 / 28

Interfaces - Types &Roles
 Interface

 An interface is a collection of operations that are used to specify a service of a

class or a component.

 Type

 A type is a stereotype of a class used to specify a domain of objects, together
with the operations (but not the methods) applicable to the object.

 Role

 A role is the behavior of an entity participating in a particular context. An
interface may be rendered as a stereotyped class in order to expose its

operations and other properties.

 Names

 Every interface must have a name that distinguishes it from other interfaces.

 A name is a textual string. That name alone is known as a simple name;

 A path name is the interface name prefixed by the name of the package.

 Operations

 An interface is a named collection of operations used to specify a service of a
class or of a component.

 Unlike classes or types, interfaces do not specify any structure, nor do they
specify any implementation

 These operations may be adorned with visibility properties, concurrency

properties, stereotypes, tagged values, and constraints.

 We can render an interface as a stereotyped class, listing its operations in the
appropriate compartment. Operations may be drawn showing only their name,

or they may be augmented to show their full signature and other properties.

 Relationships

 Like a class, an interface may participate in generalization, association, and

dependency relationships. In addition, an interface may participate in

realization relationships.

 An interface specifies a contract for a class or a component without dictating
its implementation. A class or component may realize many interfaces.

 We can show that an element realizes an interface in two ways.
 First, you can use the simple form in which the interface and its

realization relationship are rendered as a lollipop sticking off to one

side of a class or component.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

10 / 28

 Second, you can use the expanded form in which you render an

interface as a stereotyped class, which allows you to visualize its

operations and other properties, and then draw a realization

relationship from the classifier or component to the interface.

 Understanding an Interface

 In the UML, you can supply much more information to an interface in order to

make it understandable and approachable.

 First, you may attach pre- and postconditions to each operation and invariants
to the class or component as a whole. By doing this, a client who needs to use

an interface will be able to understand what the interface does and how to use

it, without having to dive into an implementation.

 We can attach a state machine to the interface. You can use this state machine
to specify the legal partial ordering of an interface's operations.

 We can attach collaborations to the interface. You can use collaborations to

specify the expected behavior of the interface through a series of interaction

diagrams.

 Types and Roles

 A role names a behavior of an entity participating in a particular context.
Stated another way, a role is the face that an abstraction presents to the world.

 For example, consider an instance of the class Person. Depending on the
context, that Person instance may play the role of Mother, Comforter,

PayerOfBills, Employee, Customer, Manager, Pilot, Singer, and so on.

 When an object plays a particular role, it presents a face to the world, and
clients that interact with it expect a certain behavior depending on the role that

it plays at the time.

 An instance of Person in the role of Manager would present a different set of

properties than if the instance were playing the role of Mother.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

11 / 28

 In the UML, you can specify a role an abstraction presents to another
abstraction by adorning the name of an association end with a specific

interface.

 Common Modeling Techniques

 Modeling the Seams in a System modeling the Seams in a System

 Modeling Static and Dynamic Types modeling Static and Dynamic Types

Packages
 A package is a general-purpose mechanism for organizing elements into groups.

 Graphically, a package is rendered as a tabbed folder.

 Names

 Every package must have a name that distinguishes it from other packages. A
name is a textual string. That name alone is known as a simple name; a path

name is the package name prefixed by the name of the package in which that

package lives

 We may draw packages adorned with tagged values or with additional
compartments to expose their details.

 Owned Elements

 A package may own other elements, including classes, interfaces, components,
nodes, collaborations, use cases, diagrams, and even other packages.

 Owning is a composite relationship, which means that the element is declared
in the package. If the package is destroyed, the element is destroyed. Every

element is uniquely owned by exactly one package.

 Elements of different kinds may have the same name within a package. Thus,

you can have a class named Timer, as well as a component named Timer,

within the same package.

 Packages may own other packages. This means that it's possible to decompose
your models hierarchically.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

12 / 28

 We can explicitly show the contents of a package either textually or
graphically.

 Visibility

 We can control the visibility of the elements owned by a package just as you

can control the visibility of the attributes and operations owned by a class.

 Typically, an element owned by a package is public, which means that it is
visible to the contents of any package that imports the element's enclosing

package.

 Conversely, protected elements can only be seen by children, and private
elements cannot be seen outside the package in which they are declared.

 We specify the visibility of an element owned by a package by prefixing the
element's name with an appropriate visibility symbol.

 Importing and Exporting

 In the UML, you model an import relationship as a dependency adorned with

the stereotype import.

 Actually, two stereotypes apply here
 import and access and both specify that the source package has access

to the contents of the target.

 Import adds the contents of the target to the source's namespace

 Access does not add the contents of the target

 The public parts of a package are called its exports.

 The parts that one package exports are visible only to the contents of those

packages that explicitly import the package.

 Import and access dependencies are not transitive.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

13 / 28

 Generalization

 There are two kinds of relationships you can have between packages: import and

access dependencies used to import into one package elements exported from
another and generalizations, used to specify families of packages

 Generalization among packages is very much like generalization among classes

 Packages involved in generalization relationships follow the same principle of

substitutability as do classes. A specialized package (such as Windows GUI) can

be used anywhere a more general package (such as GUI) is used.

 Standard Elements

 All of the UML's extensibility mechanisms apply to packages. Most often, you'll

use tagged values to add new package properties (such as specifying the author of

a package) and stereotypes to specify new kinds of packages (such as packages
that encapsulate operating system services).

 The UML defines five standard stereotypes that apply to packages:

 facade - Specifies a package that is only a view on some other package.

 Framework - Specifies a package consisting mainly of patterns.

 Stub - Specifies a package that serves as a proxy for the public contents of

another package.

 Subsystem - Specifies a package representing an independent part of the

entire system being modelled.

 System - Specifies a package representing the entire system being

modelled.

 Common Modeling Techniques

 Modeling Groups of Elements

 The most common purpose for which you'll use packages is to organize

modeling elements into groups that you can name and manipulate as a set.

 There is one important distinction between classes and packages:

 Packages have no identity (meaning that you can't have instances of
packages, so they are invisible in the running system);

 Classes do have identity (classes have instances, which are elements of a

running system).

 To model groups of elements,

 Scan the modeling elements in a particular architectural view and

look for clumps defined by elements that are conceptually or
semantically close to one another.

 Surround each of these clumps in a package.

 For each package, distinguish which elements should be

accessible outside the package. Mark them public, and all others

protected or private. When in doubt, hide the element.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

14 / 28

 Explicitly connect packages that build on others via import
dependencies

 In the case of families of packages, connect specialized packages
to their more general part via generalizations

 Modeling Architectural Views

 We can use packages to model the views of architecture.

 Remember that a view is a projection into the organization and structure
of a system, focused on a particular aspect of that system.

 This definition has two implications. First, you can decompose a system

into almost orthogonal packages, each of which addresses a set of

architecturally significant decisions.(design view, a process view, an
implementation view, a deployment view, and a use case view)

 Second, these packages own all the abstractions germane to that
view.(Implementation view)

 To model architectural views,

 Identify the set of architectural views that are significant in the

context of your problem. In practice, this typically includes a

design view, a process view, an implementation view, a
deployment view, and a use case view.

 Place the elements (and diagrams) that are necessary and

sufficient to visualize, specify, construct, and document the
semantics of each view into the appropriate package.

 As necessary, further group these elements into their own
packages.

 There will typically be dependencies across the elements in

different views. So, in general, let each view at the top of a system
be open to all others at that level.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

15 / 28

Interactions
 An interaction is a behavior that contains a set of messages exchanged among a set of

objects within a context to accomplish a purpose. A message is specification of a

communication between objects that conveys information with the expectation that

the activity will succeed.

 In UML, the dynamic aspects of a system can be modeled using interactions.

Interactions contain messages that are exchanged between objects.

 A message can be an invocation of an operation or a signal. The messages may also

include creation and destruction of other objects.

 We can use interactions to model the flow of control within an operation, a class, a

component, a use case or the system as a whole.

 Using interaction diagrams, we can model these flows in two ways: one is by focusing

on how the messages are dispatched across time and the second is by focusing on the

structural relationships between objects and then consider how the messages are

passed between the objects.

 Graphically a message is rendered as a directed line with the name of its operation as

show below:

 Objects and Roles

 The objects that participate in an interaction are either concrete things or

prototypical things. As a concrete thing, an object represents something in the

real world. For example, p an instance of the class Person, might denote a

particular human. Alternately, as a prototypical thing, p might represent any

instance of Person.

 Links

 A link is a semantic connection among objects. In general, a link is an instance
of association. Wherever, a class has an association with another class, there

may be a link between the instances of the two classes. Wherever there is a

link between two objects, one object can send messages to another object. We

can adorn the appropriate end of the link with any of the following standard

stereotypes:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

16 / 28

 Messages

 A message is the specification of communication among objects that conveys

information with the expectation that activity will succeed. The receipt of a

message instance may be considered an instance of an event.

 When a message is passed, the action that results is an executable statement
that forms an abstraction of a computational procedure. An action may result

in a change of state. In UML, we can model several kinds of actions like:

 Sequencing

 When an object passes a message to another object, the receiving object might

in turn send a message to another object, which might send a message to yet a

different object and so on.

 This stream of messages forms a sequence. So, we can define a sequence as a
stream of messages. Any sequence must have a beginning. The start of every

sequence is associated with some process or thread.

 To model the sequence of a message, we can explicitly represent the order of
the message relative to the start of the sequence by prefixing the message with

a sequence number set apart by a colon separator.

 Most commonly, we can specify a procedural or nested flow of control,

rendering using a filled solid arrowhead. Less common but also possible, you

can specify a flat flow of control, rendered using a stick arrowhead.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

17 / 28

 We will use flat sequences only when modeling interactions in the context of
use cases that involve the system as a whole, together with actors outside the

system.

 In all other cases, we will use procedural sequences, because they represent

ordinary, nested operation calls of the type we find in most programming

languages.

 Representation

 When we model an interaction, we typically include both objects and
messages.

 We can visualize those objects and messages involved in an interaction in two
ways: by emphasizing the time ordering of messages and by emphasizing the

structural organization of the objects that send and receive messages.

 In UML, the first kind of representation is called a sequence diagram and the

second kind of representation is called a collaboration diagram. Both sequence

and collaboration diagrams are known as interaction diagrams.

 Sequence diagrams and collaboration diagrams are isomorphic, meaning that
we can take one and transform it into the other without loss of information.

Sequence diagram lets us to model the lifeline of an object.

 An object’s lifeline represents the existence of the object at a particular time.
A collaboration diagram lets us to model the structural links that may exist

among the objects in the interaction.

 Common Modeling Techniques

 Modeling a flow of control

 Set the context for the interaction, whether it is the system as a whole,

a class or an individual operation.

 Identify the objects and their initial properties which participate in the

interaction.

 Identify the links between objects for communication through

messages.

 In time order, specify the messages that pass from object to object. Use

parameters and return values as necessary.

 To add semantics, adorn each object at every moment in time with its

state and role.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

18 / 28

 Consider the following example of railway reservation system’s sequence
diagram:

 Consider the following example of railway reservation system’s collaboration
diagram:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

19 / 28

Interaction diagrams
 An interaction diagram represents an interaction, which contains a set of objects and

the relationships between them including the messages exchanged between the

objects.

 A sequence diagram is an interaction diagram in which the focus is on time ordering

of messages.

 Collaboration diagram is another interaction diagram in which the focus is on the

structural organization of the objects.

 Both sequence diagrams and collaboration diagrams are isomorphic diagrams.

 Common Properties

 Interaction diagrams share the properties which are common to all the

diagrams in UML. They are: a name which identifies the diagram and the

graphical contents which are a projection into the model.

 Contents

 Interaction diagrams commonly contain:
 Objects

 Links

 Messages

 Sequence Diagrams

 A sequence diagram is one of the two interaction diagrams. The sequence
diagram emphasizes on the time ordering of messages.

 In a sequence diagram, the objects that participate in the interaction are

arranged at the top along the x-axis.

 Generally, the object which initiates the interaction is placed on the left and
the next important object to its right and so on.

 The messages dispatched by the objects are arranged from top to bottom along
the y-axis. This gives the user the detail about the flow of control over time.

 Sequence diagram has two features that distinguish them from collaboration
diagrams.

 First, there is the object lifeline, which is a vertical dashed line that

represents the existence of an object over a period of time. Most of the

objects are alive throughout the interaction. Objects may also be

created during the interaction with the receipt of the message

stereotyped with create. Objects may also be destroyed during the

interaction with the receipt of the message stereotyped with destroy.

 Second, there is focus of control which is represented as a thin

rectangle over the life line of the object. The focus of control

represents the points in time at which the object is performing an

action. We can also represent recursion by using a self message.

 Consider the following example of railway reservation system’s sequence

diagram:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

20 / 28

 Collaboration Diagrams

 A collaboration diagram is one of the two interaction diagrams. The

collaboration diagram emphasizes on the structural organization of the objects

in the interaction.

 A collaboration diagram is made up of objects which are the vertices and these
are connected by links. Finally, the messages are represented over the links

between the objects. This gives the user the detail about the flow of control in

the context of structural organization of objects that collaborate.

 Collaboration diagram has two features that distinguish them from the
sequence diagrams.

 First, there is a path which indicates one object is linked to another.

 Second, there is a sequence number to indicate the time ordering of a

message by prefixing the message with a number.

 Consider the following example of railway reservation system’s collaboration

diagram:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

21 / 28

 Common Uses

 To model flows of control by time ordering

 To model flows of control by organization

 Common Modeling Techniques

 Modeling flow of control by time ordering

 Set the context for the interaction, whether it is a system, subsystem,

operation or class or one scenario of a use case or collaboration.

 Identify the objects that take part in the interaction and lay them out at

the top along the x-axis in a sequence diagram.

 Set the life line for each object.

 Layout the messages between objects from the top along the y-axis.

 To visualize the points at which the object is performing an action, use

the focus of control.

 To specify time constraints, adorn each message with the time and

space constraints.

 To specify the flow of control in a more formal manner, attach pre and

post conditions to each message.

 Modeling flow of control by organization

 Set the context for the interaction, whether it is a system, subsystem,

operation or class or one scenario of a use case or collaboration.

 Identify the objects that take part in the interaction and lay them out in

a collaboration diagram as the vertices in a graph.

 Set the initial properties of each of these objects.

 Specify the links among these objects.

 Starting with the messages that initiate the interaction, attach each

subsequent message to the appropriate link, setting its sequence

number, as appropriate. Use Dewey numbering system to specify

nested flow of control.

 To specify time constraints, adorn each message with the time and

space constraints.

 To specify the flow of control in a more formal manner, attach pre and

post conditions to each message.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

22 / 28

Use cases
 The use cases represent aspects of the behavior of the class.

 A use case involves the interaction of actors and the system or other subject.

 An actor represents a coherent set of roles that users of use cases play when

interacting with these use cases. Actors can be human or they can be automated

systems.

 For example, in modelling a bank, processing a loan involves, among other things, the

interaction between a customer and a loan officer.

 The UML provides a graphical representation of a use case and an actor.

 Terms and Concepts

 A use case is a description of a set of sequences of actions, including variants
that a system performs to yield an observable result of value to an actor.

 Graphically, a use case is rendered as an ellipse.

 Name:

 Every use case must have a name that distinguishes it from other use

cases. A name is a textual string. That name alone is known as a simple

name; a qualified name is the use case name prefixed by the name of

the package in which that use case lives.

 Actors:

 An actor represents a coherent set of roles that users of use cases play

when interacting with these use cases.

 Typically, an actor represents a role that a human, a hardware device,

or even another system plays with a system.

 Actors are not actually part of the software application. They live

outside the application within the surrounding environment.

 Example: bank_customer, bank_manager and load_officer

 Graphically represented as stick man

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

23 / 28

 Flowevents:
 A flow of events is a textual description embodying sequence of

events with regards to the use case and is part of the use case

specification.

 Flow of events is understood by the customer.

 Flow of events describes how and when the use case starts and ends,

when the use case interacts with the actors, and the information

exchanged between an actor and the use case.

 Types Flow of Events

 Main flow of events

 The use case starts when the system prompts

the Customer for a PIN number. The Customer can now

enter a PIN number via the keypad.

The Customer commits the entry by pressing the Enter

button. The system then checks this PIN number to see

if it is valid. If the PIN number is valid, the system

acknowledges the entry, thus ending the use case.

 Exceptional flow of events

 1. The Customer can cancel a transaction at any time by

pressing the Cancel button, thus restarting the use case.

No changes are made to the Customer's account.

 2. The Customer can clear a PIN number anytime

before committing it and re-enter a new PIN number.

 3. If the Customer enters an invalid PIN number, the

use case restarts. If this happens three times in a row,

the system cancels the entire transaction, preventing

the Customer from interacting with the ATM for 60

seconds.

 Collaborations

 A use case captures the intended behavior of the system (or subsystem,

class, or interface) we are developing, without having to specify how

that behavior is implemented.

 That's an important separation because the analysis of a system should,

as much as possible, not be influenced by implementation issues.

 Ultimately, however, we have to implement our use cases, and we do

so by creating a society of classes and other elements that work

together to implement the behavior of this use case.

 This society of elements, including both its static and dynamic

structure, is modelled in the UML as collaboration.

 As figure shows, you can explicitly specify the realization of a use case

by collaboration.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

24 / 28

 Organizing Use Cases
 We can also organize use cases by specifying generalization, include,

and extend relationships among them.

 Generalization among use cases is just like generalization among

classes. Here it means that the child use case inherits the behavior and

meaning of the parent use case; the child may add to or override the

behavior of its parent; and the child may be substituted any place the

parent appears.

 For example, in a banking system, we might have the use case Validate

User, which is responsible for verifying the identity of the user. You

might then have two specialized children of this use case (Check

password and Retinal scan).

 As shown in Figure generalization among use cases is rendered as a

solid directed line with a large triangular arrowhead, just like

generalization among classes.

 <<include>> Specifies that the source use case explicitly incorporates

the behaviour of another use case at a location specified by the source

 <<extend>> Specifies that the target use case extends the behaviour of

the source.

 Common Modeling Techniques

 Modeling the Behavior of an Element
 Identify the actors that interact with the element. Candidate actors

include groups that require certain behavior to perform their tasks or

that are needed directly or indirectly to perform the element's

functions.

 Organize actors by identifying general and more specialized roles.

 For each actor, consider the primary ways in which that actor interacts

with the element. Consider also interactions that change the state of the

element or its environment or that involve a response to some event.

 Consider also the exceptional ways in which each actor interacts with

the element.

 Organize these behaviors as use cases, applying include and extend

relationships to factor common behavior and distinguish exceptional

behavior.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

25 / 28

Use case diagrams

 A use case diagram is a diagram that shows a set of use cases, actors and their

relationships.

 Use case diagrams to visualize the behavior of a system, subsystem, or class so that

users can comprehend how to use that element, and so that developers can implement

that element.

 As Figure shows, we can provide a use case diagram to model the behavior of a

cellular phone.

 Terms and Concepts

 Common Properties

 A use case diagram is just a special kind of diagram and shares the

same common properties as do all other diagrams a name and

graphical contents that are a projection into a model.

 Contents

 Use case diagrams commonly contain

 Subject

 Use cases

 Actors

 Dependency, generalization, and association relationships

 Common Uses

 To model the context of a subject

 To model the requirements of a subject

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

26 / 28

 Example for Use case diagram for Hospital Management System

 Common Modeling Techniques

 Modeling the Context of a System
 Identify the boundaries of the system by deciding which behaviors is

part of it and which are performed by external entities. This defines the

subject.

 Identify the actors that surround the system by considering which

groups require help from the system to perform their tasks, which

groups are needed to execute the system's functions, which groups

interact with external hardware or other software systems, and which

groups perform secondary functions for administration and

maintenance.

 Organize actors that are similar to one another in a generalization-

specialization hierarchy.

 Where it aids understand ability, provide a stereotype for each such

actor.

 For example, Figure shows the context of a credit card validation

system, with an emphasis on the actors that surround the system. We

will find Customers, of which there are two kinds (Individual

customer and corporate customer). These actors are the roles that

humans play when interacting with the system. In this context, there

are also actors that represent other institutions, such as Retail

institution (with which a Customer performs a card transaction to buy

an item or a service) and sponsoring financial institution (which serves

as the clearinghouse for the credit card account). In the real world,

these latter two actors are likely software-intensive systems

themselves.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

27 / 28

 Modeling the Requirements of a System

 Establish the context of the system by identifying the actors that

surround it.

 For each actor, consider the behavior that each expects or requires the

system to provide.

 Name these common behaviors as use cases.

 Factor common behavior into new use cases that are used by others;

factor variant behavior into new use cases that extend more main line

flows.

 Model these use cases, actors, and their relationships in a use case

diagram.

 Adorn these use cases with notes or constraints that assert

nonfunctional requirements; you may have to attach some of these to

the whole system.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – III

28 / 28

 Forward Engineering
 Identify the objects that interact with the system. Try to identify the

various roles that each external object may play.

 Make up an actor to represent each distinct interaction role.

 For each use case in the diagram, identify its flow of events and its

exceptional flow of events.

 Depending on how deeply you choose to test, generate a test script for

each flow, using the flow's preconditions as the test's initial state and

its postconditions as its success criteria.

 As necessary, generate test scaffolding to represent each actor that

interacts with the use case. Actors that push information to the element

or are acted on by the element may either be simulated or substituted

by its real-world equivalent.

 Use tools to run these tests each time you release the element to which

the use case diagram applies.

 Reverse Engineering

 Identify each actor that interacts with the system.

 For each actor, consider the manner in which that actor interacts with

the system, changes the state of the system or its environment, or

responds to some event.

 Trace the flow of events in the executable system relative to each

actor. Start with primary flows and only later consider alternative

paths.

 Cluster related flows by declaring a corresponding use case. Consider

modeling variants using extend relationships, and consider modeling

common flows by applying include relationships.

 Render these actors and use cases in a use case diagram, and establish

their relationships.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

1 / 24

Syllabus: Unit – IV: Advanced Behavioral And Architectural Modeling

Activity diagrams - Events and Signals – State chart diagrams - Components and Component

diagrams - Deployment and Deployment diagrams.

Activity diagrams
 An activity diagram shows the flow from activity to activity.

 An activity is an ongoing non-atomic execution within a state machine.

 The execution of an activity ultimately expands into the execution of

individual actions, each of which may change the state of the system or communicate

messages.

 Actions encompass calling another operation, sending a signal, creating or destroying

an object, or some pure computation such as evaluating an expression.

 Graphically, an activity diagram is a collection of nodes and arcs.

 Contents

 Activity diagrams commonly contain

 Actions

 Activity nodes

 Flows

 Object values

 Actions

 We might evaluate some expression that sets the value of an attribute or that
returns some value.

 Activity nodes

 An activity node is an organizational unit within an activity. In general,

activity nodes are nested groupings of actions or other nested activity nodes.

 Control Flows

 When an action or activity node completes execution, flow of control passes
immediately to the next action or activity node. You specify this flow by using

flow arrows to show the path of control from one action or activity node to the

next action or activity node.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

2 / 24

 Forking and Joining

 In the UML, we use a synchronization bar to specify the forking and joining of
these parallel flows of control.

 A synchronization bar is rendered as a thick horizontal or vertical line.

 Swimlanes

 To partition the activity states on an activity diagram into groups, each group
representing the business organization responsible for those activities.

 In the UML, each group is called a swimlane because, visually, each group is
divided from its neighbor by a vertical solid line,

 Object Flow

 Objects may be involved in the flow of control associated with an activity

diagram.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

3 / 24

 Common Uses

1. To model a workflow
2. To model an operation

 Example for ATM Machine

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

4 / 24

 Common Modeling Techniques

 Modeling a Workflow

 Establish a focus for the workflow. For nontrivial systems, it's

impossible to show all interesting workflows in one diagram.

 Select the business objects that have the high-level responsibilities for

parts of the overall workflow. These may be real things from the

vocabulary of the system, or they may be more abstract. In either case,

create a swimlane for each important business object or organization.

 Identify the preconditions of the workflow's initial state and the post

conditions of the workflow's final state. This is important in helping

you model the boundaries of the workflow.

 Beginning at the workflow's initial state, specify the actions that take

place over time and render them in the activity diagram.

 For complicated actions or for sets of actions that appear multiple

times, collapse these into calls to a separate activity diagram.

 Render the flows that connect these actions and activity nodes. Start

with the sequential flows in the workflow first, next consider

branching, and only then consider forking and joining.

 If there are important object values that are involved in the workflow,

render them in the activity diagram as well. Show their changing

values and state as necessary to communicate the intent of the object

flow.

 Modeling an Operation

 Collect the abstractions that are involved in this operation. This

includes the operation's parameters (including its return type, if any),

the attributes of the enclosing class, and certain neighboring classes.

 Identify the preconditions at the operation's initial state and the post

conditions at the operation's final state. Also identify any invariants of

the enclosing class that must hold during the execution of the

operation.

 Beginning at the operation's initial state, specify the activities and

actions that take place over time and render them in the activity

diagram as either activity states or action states.

 Use branching as necessary to specify conditional paths and iteration.

 Only if this operation is owned by an active class, use forking and

joining as necessary to specify parallel flows of control.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

5 / 24

Events and signals

 Events

 An event is the specification of a significant occurrence that has a location in
time and space. In the context of state machines, an event is an occurrence of a

stimulus that can trigger a state transition.

 A signal is a kind of event that represents the specification of an asynchronous

message communicated between instances.

 Events may be external or internal: External events are those that pass
between the system and its actors.

 For example, the pushing of a button and an interrupt from a collision sensor
are both examples of external events. Internal events are those that pass among

the objects that live inside the system. An overflow exception is an example of

an internal event.

 Signals

 A message is a named object that is sent asynchronously by one object and

then received by another. A signal is a classifier for messages; it is a message

type.

 Call Events

 Just as a signal event represents the occurrence of a signal, a call event

represents the receipt by an object of a call request for an operation on the

object. A call event may trigger a state transition in a state machine or it may

invoke a method on the target object. The choice is specified in the class

definition for the operation.

http://umlguide2.uw.hu/gloss01.html#gloss01entry64
http://umlguide2.uw.hu/gloss01.html#gloss01entry152

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

6 / 24

 Time and Change Events

 A time event is an event that represents the passage of time.

 Sending and Receiving Events

 Signal events and call events involve at least two objects: the object that sends
the signal or invokes the operation and the object to which the event is

directed. Because signals are asynchronous, and because asynchronous calls

are themselves signals, the semantics of events interact with the semantics of

active objects and passive objects.

 Common Modeling Techniques

 Modeling a Family of Signals

 Consider all the different kinds of signals to which a given set of active

objects may respond.

 Look for the common kinds of signals and place them in a
generalization/specialization hierarchy using inheritance. Elevate more

general ones and lower more specialized ones.

 Look for the opportunity for polymorphism in the state machines of

these active objects. Where you find polymorphism, adjust the

hierarchy as necessary by introducing intermediate abstract signals.

 Figure models a family of signals that may be handled by an

autonomous robot. Note that the root signal (RobotSignal) is abstract,

which means that there may be no direct instances. This signal has two

immediate concrete specializations (Collision and HardwareFault), one

of which (HardwareFault) is further specialized. Note that

the Collision signal has one parameter.

http://umlguide2.uw.hu/ch21lev1sec3.html#ch21fig06

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

7 / 24

 Modeling Abnormal Occurrences
 For each class and interface, and for each operation of such elements,

consider the normal things that happen. Then think of things that can

go wrong and model them as signals among objects.

 Arrange the signals in a hierarchy. Elevate general ones, lower

specialized ones, and introduce intermediate exceptions as necessary.

 For each operation, specify the abnormal occurrence signals that it may

raise. You can do so explicitly (by showing send dependencies from an

operation to its signals) or you can use sequence diagrams illustrating

various scenarios.

State machines
 A state machine is a behavior that specifies the sequences of states an object goes

through during its lifetime in response to events, together with its responses to those

events.

 A state is a condition or situation during the life of an object during which it satisfies

some condition, performs some activity, or waits for events.

 An event is the specification of a significant occurrence that has a location in time and

space.

 In the context of state machines, an event is an occurrence of a stimulus that can

trigger a state transition.

 A transition is a relationship between two states indicating that an object in the first

state will perform certain actions and enter the second state when a specified event

occurs and specified conditions are satisfied.

 An activity is ongoing non-atomic execution within a state machine.

 An action is an executable computation that results in a change in state of the model

or the return of a value.

 Graphically, a state is rendered as a rectangle with rounded corners. and a transition is

rendered as a solid directed line or path from the original state to the new state.

 The UML provides a graphical representation of states, transitions, events, and

effects, as Figure shows.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

8 / 24

 States

 A state is a condition or situation during the life of an object during which it
satisfies some condition, performs some activity, or waits for some event.

 An object remains in a state for a finite amount of time.

 For example, a Heater in a home might be in any of four states: Idle (waiting

for a command to start heating the house), Activating (its gas is on, but it's

waiting to come up to temperature), Active (its gas and blower are both on),

and ShuttingDown (its gas is off but its blower is on, flushing residual heat
from the system).

 A state has several parts:

 1. Name

 A textual string that distinguishes the state from other states; a

state may be anonymous, meaning that it has no name.

 2. Entry/exit effects

 Actions executed on entering and exiting the state, respectively.

 3. Internal transitions

 Transitions that are handled without causing a change in state.

 4. Substates – may sequential or concurrent

 The nested structure of a state, involving non-orthogonal

(sequentially active) or orthogonal (concurrently active) sub-

states.

 5. Deferred events - (infrequently used)

 A list of events that are not handled in that state but, rather, are

postponed and queued for handling by the object in another

state.

 Special categories of states

 Initial state - indicates the initial starting state for the state

machine or a substate.

 Final state - indicates the state machine’s execution has

completed.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

9 / 24

 Transition

 A directed relationship between two states.

 A flow of control through a statechart diagram.

 A Transition has five parts:
1. Source state - current state before transition fires.

2. Event trigger - external stimulus that has the potential to cause a

transition to fire.

3. Guard condition - a condition that must be satisfied before a transition

can fire.

4. Action - an executable atomic computation.

5. Target state - new state after transition fires.

 Advanced States and Transitions

 Entry action - Upon each entry to a state, a specified action is automatically
executed.

entry / action

 Exit action - Just prior to leaving a state, a specified action is automatically
executed.

exit / action

 Internal Transitions - The handling of an event without leaving the current

state.

event / action

 Activities - Ongoing work that an object performs while in a particular state.
The work automatically terminates when the state is exited.

do / activity

 Deferred Event - An event whose occurrence is responded to at a later time.
event / defer

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

10 / 24

 Simple state - A state that contains no substates.

 Composite state - A state that contains substates.

 Substate - A state that is nested inside another state.
 Substates allow state diagrams to show different levels of abstraction.

 Substates may be sequential or concurrent.

 Substates may be nested to any level.

 Sequential Substates - The most common type of substate. Essentially, a state
diagram within a single state.

 The “containing” state becomes an abstract state.

 The use of substates simplifies state diagrams by reducing the number

of transition lines.

 A nested sequential state diagram may have at most one initial state

and one final state.

 History States - Allows an object to remember which substate was last active
when the containing state was exited.

 Concurrent Substates (Fork and Join) - Used when two or more state diagrams

are executing concurrently within a single object.

 Allows an object to be in multiple states simultaneously.

 The concurrent state diagrams within a “containing” state must begin

and end execution simultaneously.

 If one concurrent state diagram finishes first, it must wait for the others

to complete before exiting the containing state.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

11 / 24

State chart diagrams
 A state diagram shows a state machine, emphasizing the flow of control from state to

state.

 A state machine is a behavior that specifies the sequences of states an object goes

through during its lifetime in response to events, together with its responses to those

events.

 A state is a condition or situation in the life of an object during which it satisfies some

condition, performs some activity, or waits for some event.

 An event is the specification of a significant occurrence that has a location in time and

space.

 In the context of state machines, an event is an occurrence of a stimulus that can

trigger a state transition.

 A transition is a relationship between two states indicating that an object in the first

state will perform certain actions and enter the second state when a specified event

occurs and specified conditions are satisfied.

 An activity specifies an ongoing execution within a state machine. An action specifies

a primitive executable computation that results in a change in state of the model or the

return of a value.

 Graphically, a state diagram is a collection of nodes and arcs.

http://umlguide2.uw.hu/gloss01.html#gloss01entry157
http://umlguide2.uw.hu/gloss01.html#gloss01entry158
http://umlguide2.uw.hu/gloss01.html#gloss01entry156
http://umlguide2.uw.hu/gloss01.html#gloss01entry64
http://umlguide2.uw.hu/gloss01.html#gloss01entry184
http://umlguide2.uw.hu/gloss01.html#gloss01entry06
http://umlguide2.uw.hu/gloss01.html#gloss01entry03

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

12 / 24

 Common Properties

 A state diagram is just a special kind of diagram and shares the same common
properties as do all other diagrams that is, a name and graphical contents that

are a projection into a model. What distinguishes a state diagram from all

other kinds of diagrams is its content.

 Contents

 State diagrams commonly contain

 Simple states and composite states

 Transitions, events, and actions

 Common Uses

 To model the dynamic aspects of a system

 Common Modeling Techniques

 Modeling Reactive Objects

 Choose the context for the state machine, whether it is a class, a use

case, or the system as a whole.

 Choose the initial and final states for the object. To guide the rest of

your model, possibly state the pre-and post conditions of the initial and

final states, respectively.

 Decide on the stable states of the object by considering the conditions

in which the object may exist for some identifiable period of time.

Start with the high-level states of the object and only then consider its

possible substates.

 Decide on the meaningful partial ordering of stable states over the

lifetime of the object.

 Decide on the events that may trigger a transition from state to state.

Model these events as triggers to transitions that move from one legal

ordering of states to another.

 Attach actions to these transitions (as in a Mealy machine) and/or to

these states (as in a Moore machine).

 Consider ways to simplify your machine by using substates, branches,

forks, joins, and history states.

 Check that all states are reachable under some combination of events.

 Check that no state is a dead end from which no combination of events

will transition the object out of that state.

 Trace through the state machine, either manually or by using tools, to

check it against expected sequences of events and their responses.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

13 / 24

 Example for phone call

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

14 / 24

 Example for ATM

 Example for Library Management System

Component
 A component is a physical replaceable part of a system that complies with and

provides the realization of a set of interfaces.

 We use components to model the physical things that may reside on a node, such as

executables, libraries, tables, files and documents.

 A component typically represents the physical packaging of otherwise logical

elements such as classes, interfaces and collaborations.

 We do logical modeling to visualize, specify, and document our decisions about the

vocabulary of our domain and the structural and behavioral way those things

collaborate.

 We do physical modeling to construct the executable system. Object libraries,

executables, COM+ components and Enterprise Java Beans are all examples of

components.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

15 / 24

 Components and Classes

o In many ways, components are like classes. Both have names, both may

realize a set of interfaces, both may participate in dependency, generalization

and association relationships, both may be nested, and both may have

instances. However, there are some significant differences between

components and classes:

 Classes represent logical abstractions, components represent physical

things that live in the world of bits. In short, components may live on

nodes, classes may not.

 Components represent the physical packaging of otherwise logical

components and are at a different level of abstraction.

 Classes may have attributes and operations directly. In general,

components only have operations that are reachable only through their

interfaces.

o The relationship between a component and the classes it implements can be

shown explicitly by using a dependency relationship as shown below:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

16 / 24

 Components and Interfaces

o An interface is a collection of operations that are used to specify a service of a

class or a component.

o We can show the relationship between a component and its interfaces in one

of the two ways.

 The first style renders the interfaces in its elided, iconic form. The

component that realizes the interfaces is connected to the interface

using an elided realization relationship.

 The second style renders the interface in its expanded form, perhaps

revealing its operations. The component that realizes the interface is

connected to the interface using a full realization relationship.

o In both cases, the component that accesses the services of the other component

through the interfaces is connected to the interface using a dependency

relationship.

 Binary Replaceability

o The basic intent of every component-based operating system facility is to

permit the assembly of systems from binary replaceable parts.

o This means that we can create a system out of components and then evolve the

system by adding new components and replacing the old ones, without

rebuilding the system.

 First, a component is physical. It lives in the world of bits, not

concepts.

 Second, a component is replaceable. A component is substitutable

means it is possible to replace a component with another that conforms

to the sane interfaces.

 Third, a component is part of a system. A component rarely stands

alone. Rather, a given component collaborates with other components

and in so doing exists in the architectural or technology context in

which it is intended to be used.

 Fourth, a component conforms to and provides the realization of a set

of interfaces.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

17 / 24

 Kinds of Components

o Three kinds of components may be distinguished.

 First, there are deployment components. These are the components

necessary and sufficient to form an executable system, such as

dynamic libraries (DLLs) and executables (EXEs).

 Second, there are work product components. These components are

generally the residue of the development process, consisting of things

such as the source code files and data files from which deployment

components are created.

 Third are execution components. These components are created as a

consequence of an executing system, such as COM+ object, which is

instantiated from a DLL.

 Standard Elements

o All the UML’s extensibility mechanisms apply to components. Most often,

we’ll use tagged values to extend the component properties and stereotypes to

specify new kind of components.

o The UML defines five standard stereotypes that apply to components:

 Common Modeling Techniques

o Modeling Executables and Libraries

 Identify the partitioning of the physical system. Consider the impact of

the technical, configuration management and reuse issues.

 Model any executables and libraries as components, using the

appropriate standard elements.

 Model the significant interfaces that some components use and others

realize.

 As necessary to communicate your intent, model the relationships

among these executables, libraries and interfaces.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

18 / 24

o Modeling Tables, Files and Documents

 Identify the components that are part of the physical implementation of

your system.

 Model these things as components.

 As necessary to communicate your intent, model the relationships

among these components and other executables, libraries and

interfaces in the system

o Modeling an API

 Identify the programmatic seems in the system and model each seem

as an interface.

 Expose only those properties of the interface that are important to

visualize the given context. Otherwise, hide these properties, keeping

them in the interface’s specification for reference, as necessary.

 Model the realization of each API only as it is important to show the

configuration of a specific implementation.

o Modeling Source Code

 Depending on the constraints imposed by your development tools,

model the files used to store the details of all your logical elements,

along with their compilation dependencies.

 Use tagged values if you want to use configuration management and

version control tools.

 As far as possible, let your development tools manage the relationships

among these files, and use the UML only to visualize and document

these relationships.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

19 / 24

Component diagrams
 Component diagrams are one of the two kinds of diagrams for modeling the physical

aspects of object-oriented software systems.

 A component diagram shows the organization and dependencies among a set of

components.

 We use component diagrams to model the static implementation view of a software

system.

 Common Properties

o A component is just a special kind of a diagram and shares the same common

properties as the other diagrams like: a name and graphical contents. What

distinguishes a component diagram from the rest of the diagrams is its content.

 Content

o Component diagram commonly contain:

 Components

 Interfaces

 Dependency, generalization, association and realization relationships.

 Common Uses

o When modeling the static implementation view of a system, we will typically

use component diagrams in one of four ways:

1. To model source code.

2. To model executable releases.

3. To model physical databases.

4. To model adaptable systems.

 Common Modeling Techniques

o Modeling source code

 Either by forward or reverse engineering identifies the set of source

code files of interest and model them as components stereotypes as

files.

 For larger systems, use packages to show groups of source code files.

 Consider using tagged values indicating such information as the

version number of the source code file, its author, and the date it was

last changed.

 Model the compilation dependencies among these files using

dependencies.

o Modeling an executable release

 Identify the set of components you’d like to model.

 Consider the stereotype of each component in this set.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

20 / 24

 For each component in this set, consider its relationship to its

neighbors. Most, often this will involve interfaces that are realized by

certain components and then imported by others.

o Modeling a physical database

 Identify the classes in your model that represent your logical database

schema.

 Select a strategy for mapping these classes to tables. You have to also

consider the physical distribution of your databases.

 To visualize, specify, construct and document your mapping, create a

component diagram that contains components stereotyped as tables.

 Where possible, use tools to help you transform your logical design

into a physical design.

o Modeling adaptable systems

 Consider the physical distribution of the components that may migrate

from node to node. We can specify the location of a component

instance by marking it with a location tagged value.

 If you want to model the actions that cause a component to migrate,

create a corresponding interaction diagram that contains component

instances. We can illustrate a change of location by drawing the same

instance more than once, but with different values for its location

tagged value.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

21 / 24

Deployment
 A node is a physical element that exists at runtime and represents a computational

resource, generally having atleast some memory and, often, processing capability. We use

nodes to model the topology of the hardware on which our system executes. A node

typically represents a processor or a device on which components may be deployed.

 When we architect a software-intensive system, we have to consider both its logical and

physical dimensions. On the logical side, you’ll find things such as classes, interfaces,

collaborations, interactions and state machines. On the physical side you’ll find

components and nodes.

 In UML, a node is represented as a cube as shown below. Using stereotypes we can tailor

this notation to represent specific kinds of processors and devices.

 Nodes and Components

o In many ways, nodes are like components: Both have names, both may participate

in dependency, generalization and association relationships. Both may be nested,

both may have instances, both may be participants in interactions. However, there

are significant differences between nodes and components:

 Components are things that participate in the execution of a system. Nodes

are things that execute components.

 Components represent the physical packaging of logical elements, nodes

represent the physical deployment of components.

o This first difference is the most important. Simply put, nodes execute components;

components are things that are executed by nodes.

o A set of objects or components that are allocated to a node as a group is called a

distribution unit.

 Connections

o The most common kind of relationship we’ll use among nodes is an association.

In this context, an association represents a physical connection among nodes, such

as an Ethernet connection, a serial line, or a shared bus as shown below. We can

even use associations to model indirect connections, such as a satellite link

between distant processors.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

22 / 24

 Common Modeling Techniques

o Modeling processors and devices

 Identify the computational elements of your system’s deployment view

and model each as a node.

 If these elements represent generic processors and devices, then stereotype

them as such. If they are kinds of processors and devices that are part of

the vocabulary of your domain, then specify an appropriate stereotype with

an icon for each.

 As with class modeling, consider the attributes and operations that might

apply to each node.

o Modeling the distribution of components

 For each significant component in your system, allocate it to a given code.

 Consider duplicate locations for components.

 Render this allocation in one of the three ways:

1. Don’t make the allocation visible, but leave it as part of the

backplane of your model that is, in each node’s specification.

2. Using dependency relationships, connect each node with the

components it deploys.

3. List the components deployed on a node in an additional

compartment.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

23 / 24

Deployment diagrams
 Deployment diagrams are one of the two kinds of diagrams used in modeling the physical

aspects of an object-oriented system. A deployment diagram shows the configuration of

run time processing nodes and the components that live on them.

 We use deployment diagrams to model the static deployment view of a system. A

deployment diagram is a diagram that shows the configuration of run time processing

nodes and the components that live on them.

 Common Properties

o A deployment is just a special kind of diagram that shares the same properties as

all other diagrams like: a name and graphical contents. What distinguishes a

deployment diagram from the rest of the diagrams is its content.

 Contents

o A deployment diagram commonly contains:

 Nodes

 Dependency and association relationships

 Common Uses

o When modeling the static deployment view of a system, we’ll typically use

deployment diagrams in one of the three ways:

1. To model embedded systems.

2. To model client/server systems.

3. To model fully distributed systems.

 Common Modeling Techniques

o Modeling an embedded system

 Identify the devices and nodes that are unique to your system.

 Provide visual cues, especially for unusual devices, by using stereotypes.

 Model the relationships among these processors and devices in a

deployment diagram. Similarly, specify the relationship between

components and nodes.

 As necessary, expand on the intelligent devices by modeling their structure

with a more detailed deployment diagram.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – IV

24 / 24

o Modeling a client/server system

 Identify the nodes that represent your system’s client and server

processors.

 Highlight those devices that are relevant to the behavior of your system.

 Provide visual cues for these processors and devices via stereotyping.

 Model the topology of these nodes in a deployment diagram.

o Modeling a fully distributed system

 Identify the system’s devices and processors as for simpler client/server

systems.

 If you need to reason about the performance of the system’s network or the

impact of changes to the network, be sure to model these communication

devices to the level of detail sufficient to make assessments.

 Pay close attention to logical groupings of nodes, which you can specify

by using packages.

 Model these devices and processors using deployment diagrams.

 If you need to focus on the dynamics of the system, introduce use case

diagrams to specify the kind of behavior you are interested in, and expand

on these use cases with interaction diagrams.

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

1 / 16

Syllabus: Unit – V: Case Studies

Analysis and Design of ATM system using object oriented approach - Analysis and Design of

Library management system using object oriented approach - Analysis and Design of Online

Railway reservation system using object oriented approach

ATM (Automatic Teller Machine)
Use Case Diagram:

Activity Diagram for Overall ATM Machine

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

2 / 16

Activity Diagram for Verify Password ATM Machine

Activity Diagram for ATM Machine

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

3 / 16

Class Diagram

State diagram for One Transaction ATM machine

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

4 / 16

State diagram for one Session ATM Machine

Sequence diagram for ATM Machine

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

5 / 16

Sequence Diagram for Invalid Pin ATM Machine

Sequence Diagram ATM withdrawal

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

6 / 16

Collaboration Diagram for ATM machine

Collaboration Diagram for ATM withdrawal

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

7 / 16

Component diagram

Deployment Diagram

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

8 / 16

Library Management System
Use Case Diagram:

Activity Diagram for Issue Book

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

9 / 16

Activity Diagram for Return Book

Class Diagram

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

10 / 16

State diagram for Book

State diagram for Librarian

Sequence diagram for issuing book

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

11 / 16

Collaboration diagram for issuing Book

Sequence diagram for returning book

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

12 / 16

Collaboration diagram for returning Book

Component diagram

Deployment Diagram

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

13 / 16

Online Railway reservation system

Use Case Diagram:

Activity Diagram:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

14 / 16

Class Diagram:

State diagram

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

15 / 16

Sequence diagram:

Collaboration Diagram:

SITAMS – B.Tech – III Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

16CSE 324 – Object Oriented Analysis and Design (OOAD) Professor in CSE,

Unit – V

16 / 16

Component diagram:

Deployment Diagram:

