Multiplication algorithms

Multiplication algorithms

 Multiplication of two fixed point binary numbers in signed magnitude representation is done with paper and pencil of successive shift and add operation.

23	10111	Multiplicand
19	\times 10011	Multiplier
—	10111	-
	10111	
	00000	+
	00000	
	10111	
437	110110101	Product

Multiplication algorithms

- If the multiplier bit is a 1,the multiplicand is copied down; otherwise zero are copied down.
- Finally all the partial products are added to get the desired product.
- The sign of the product is determined from the sign of the multiplicand and multiplier.
- If they are same sign then product is positive and if they are of different sign, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude data

- First instead of providing register to store and add simultaneously as many binary numbers as there are bits in the multiplier , it is convenient to provide an adder for the summation of only two binary numbers and successively accumulate the partial products in a register.
- Second instead of shifting the multiplicand to the left, the partial product is shifted to the right.
- Third when the corresponding bits of the multiplier is 0 there is no need al add all zero's to the partial product.

Hardware Implementation for Signed-Magnitude data

• The hardware for multiplication consists of the equipment shown in following fig.

Hardware Implementation for Signed-Magnitude data

- The multiplier stored in the Q register and its sign in Q_s The sequence counter SC is initially set to a number equal to the number of bits in the multiplier.
- The counter is decremented by 1 after forming each partial product. When the counter reaches to zero, the product is formed and process stops.
- Initially the multiplicand is in B register and multiplier in Q register.
- The sum of A and B forms a partial product which is transferred to the EA register .
- The shift will be denoted by the statement shr EAQ to designate the right shift.
- The least significant bit of A is shifted into the most significant position of Q.

Hardware Algorithm

Flowchart for multiply operation.

Hardware Algorithm

- Initially the multiplicand is in B and the multiplier in Q and there corresponding signs are in B_s and Q_s respectively.
- Register A and E are cleared and the sequence counter SC is set to a number equal to the number of bits of the multiplier.
- After the initialization , the low order bit of the multiplier is in Qn is tested. If it is 1,the multiplicand in B is added to the present partial product in A . If it is 0, nothing is done.
- Register EAQ shifted once to the right to form the new partial product.
- The SC is decremented by one and its new value is checked. If it is not zero the process is repeated and it it is zero the process stops.
- The final product is available in both A and Q, with A holding the most significant bits and Q holding the least significant bits.

Example Multiply 23 X 19 = 437

TABLE 10-2 Numerical Example for Binary Multiplier

Multiplicand $B = 10111$	E	A	Q	SC
Multiplier in Q		00000	10011	101
$Q_n = 1$; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
$Q_n = 1$; add B		10111		
Second partial product		00010		
Shift right EAQ	0	10001	01100	011
$Q_n = 0$; shift right EAQ		01000	10110	010
$Q_n = 0$; shift right EAQ		00100	01011	001
$Q_n = 1$; add B		10111		
Fifth partial product		11011		
Shift right EAQ		01101	10101	000
Final product in $AQ = 0110110101$				