LOGICAL AND SHIFT MICROOPERATION

WHAT IS LOGIC MICROOPER ATION

- Logic microoperation specify binary operation for strings of bit stored in registers.
- These operation consider each bit of the register separately and treat them as binary variables.For example,
P:Rk R1at R2
1010 Content of R1
1100 Content of R2
0110 Content of R1after $\mathrm{P}=1$

LIST OF LOGIC MICROOPERATION

TRUTH TA BLE FOR 16 FUNCTION OF TWO VA RIA BLES
X Y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
$\begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$

SIXTEEN LOGIC MICROOPER ATION

Boolean Function $\mathrm{FO}=0$	Microoperation $\mathrm{F} \leftarrow 0$	Name Clear
$\mathrm{F} 1=0$ $\mathrm{~F} 1=\mathrm{xy}$	$F \leftarrow 0$ $F \leftarrow A \wedge B$	Clear
F2 $=$ xy ${ }^{\prime}$	$\mathrm{F} \leftarrow \mathrm{A} \wedge \overline{\mathrm{B}}$	
F3=x	$\mathrm{F} \leftarrow \mathrm{A}$	Transfer A
F4 4 x'y	$\mathrm{F} \ll \overline{\mathrm{A}} \wedge \mathrm{B}$	
F5=y	$\mathrm{F} \leftarrow \mathrm{B}$	Transfer B
$\mathrm{F} 6=\mathrm{x} \leqslant+\mathrm{y}$	$\mathrm{F} \leftarrow \mathrm{A} \leqslant \mathrm{B}$	Exclusive-OR
$F 7=(x+y)$	$\mathrm{F} \leftarrow \mathrm{A} \vee \mathrm{B}$	OR
$F 8=(x+y)^{\prime}$	$\mathrm{F}_{<}-\overline{\mathrm{A} \vee ~ B}$	NOR
$\mathrm{F} 9=(\mathrm{x} \leqslant \mathrm{f} \text {) })^{\prime}$	$\mathrm{F} \ll \overline{\mathrm{A}}+\mathrm{B}$	Exclusive-NOR
F10 $=y^{\prime}$	$\mathrm{F} \leftarrow \overline{\mathrm{B}}$	Complement B
F11 $=x+y^{\prime}$	$\mathrm{F} \leftarrow \mathrm{A} \vee \overline{\mathrm{B}}$	
F12 $=\mathrm{x}^{\prime}$	F< A	Complement
F13 $=\mathrm{x}^{\prime}+\mathrm{y}$	$\mathrm{F}<-\overline{\mathrm{A}} \vee \mathrm{B}$	
$\mathrm{F} 14=(\mathrm{xy})^{\prime}$	$\mathrm{F}_{<}-\mathrm{A} \wedge \mathrm{B}$	NAND
F15 =1	$\mathrm{F} \leftarrow$ all ${ }^{\text {rs }}$	Set to all 1's

HARDWARE IMPLEMENTATION

5180	OUTPUT	OPGRATION
00	Eava	AND
01	$\underline{\operatorname{Ea}} \boldsymbol{A} \boldsymbol{A}$	OR
10	E-A98	XOR
11	Ex $\overline{\mathrm{A}}$	COMPLEMENT

SOME OTHER FUNCTION

- SELECTIVE SET:

it sets the bit's to 1 in register A where there are 1,s in register B. O's in B will not be affected. Logic OR operation is followed.example

1010 A before
1100 B (logic operant)
1110 A after

- SELECTIVE COMPLEMENT :
it complements bits in A where there are
corresponding I's in B.example
1010 A before
1100 B
0110 A after
it can be seen selective complement can be done by Exclusive-OR

- SELECTIVE CLEAR:

it clear the bit to 0 in A where there are corresponding 1's in B.example

1010 A before
1100 B
0010 A after
(it can be obtained by microoperation AB^{\prime})

- MASKING:
it is similar to selective clear except that the bit of A is cleared where there corresponding 0's.

1010 A before
1100 B
1000 A after

- INSERT :

it inserts a new value into a group of bits.
This is done by first masking and then ORing with the value.Example

01101010 A before
00001111 B
00001010 A after
then insert a newvalue
00001010 A before
10010000 B(insert)
10011010 A after

SHIFT MICROOPERATION

- Shift microoperation are used for serial transfer of data.
- The content of the register can be shifted to left or the right.
- At the same time of bits shifted to the left or right, the first flip flop receive its binary information from the serial input.
- There are three types of shift:
I. Logical shift
II. Circular shift
III. Arithmetic shift

LOGICAL SHIFT

- A logical shitt is one that transfer 0 through the serial input. The bit transferred to the end position through the serial input is assumed to be zero.
- Example: $\mathrm{R} 1 \leftarrow \operatorname{shl} \mathrm{R} 1$ (1bit shift to the left) $\mathrm{R} 2 \leftarrow \operatorname{shr} 2$ 2(1bit shift to the right)

CIRCULAR SHIFT

- The circular shift(also known as rotate operation) circulates the bits of the register around the ends without the loss of information.
- This is accomplished by the connecting the serial output of the register to the serial input.
- Example: Rk cil R1(shifts left) $\mathrm{R} 2 \leftarrow$ cir R2(shifts right)

ARITHMETIC SHIFT

- An arithmetic shift is a microoperation that shifts signed binary number to the left or right.
- An arithmetic shift left multiplies a signed binary no. by 2 and shift right divides by 2 .
- The signed bit remains unchanged whether it is divided or multiplied by 2.

ARITHMETIC SHIFT

- The arithmetic shift right leaves the sign bit unchanged and shift the no.(including the sign bit) to the right the bit Rn-1remain unchanged and R0 is lost.
- The arithmetic shift left insert a 0 into R0 and shifts all the other bits to the left. The initial bit of Rn-1is lost and replaced by the bit from Rn-2.A sign reversal occurs if the bit in Rn-1changes in the value after shift.
- An over-flow flip-flop Vs can be used to detect an arithmetic shift left overflow.

$$
\mathrm{Vs}=\mathrm{Rn}-1 \Leftrightarrow \mathrm{Rn}-2
$$

- If $\mathrm{Vs}=0$,there is no over flow, if $\mathrm{Vs}=1$ there is overflow and a sign reversal takes place.

HARDWARE IMPLEMENTATION

