
Input-Output and Interrupt

Input-Output Configuration

• A Terminal with a keyboard and a Printer

Input-Output Configuration

- Input and output terminal sends and receives serial information's
- Each quantity of information has 8 bits of alphanumeric code.
- The serial information from the keyboard is shifted into I/P register INPR.
- The serial information for the printer is stored in the O/P register OUTR.
- These two registers communicate with a communication interface serially and with AC in parallel
- Transmitter interface receives serial information from keyboard and transmit to INPR.
- Receiver interface receives information from OUTR and sends to printer serially.

Input Register

- Input register INPR consist of 8 bits and holds alphanumeric input information.
- The 1 bit input flag FGI is a control flip-flop which is set to 1 when new information is available in INPR and it is cleared to 0 when the information is accepted by the computer.
- The process of information transfer is as follows:
 - 1. Initially the input flag FGI is cleared to 0.
 - 2. When a key is pressed in the keyboard, an 8 bit alphanumeric code is shifted to INPR and the FGI is set to 1.
 - 3. The computer checks the flag bit, if it is 1 the information from INPR is transferred in parallel into AC and FGI is cleared to 0.
 - 4. Once the FGI is cleared, new information can be shifted into INPR by striking another key.

Output Register

- The output register OUTR works similarly but direction of information flow is reversed.
- The process of information transfer is as follows:
 1. Initially the output flag FGO is set to 1.
 - 2. The computer checks the flag bit, if it is 1 the information from AC is transferred in parallel into OUTR and FGO is cleared to 0.
 - 3. The output device accepts the coded information, prints the corresponding character and when the operation is completed, it sets FGO to 1
 - 4. The computer does not load a new character into OUTR when FGO is 0 because this indicates that output device is in the process of printing the character.

INPUT-OUTPUT INSTRUCTIONS

- I/p and O/p instruction have the opcode 1111 and recognized by the control when D7=1 and I=1.
- The remaining bits of instruction specify the particular operation.
- The control function and micro operation for input output instruction are listed below

INPUT-OUTPUT INSTRUCTIONS

$$D_7 IT_3 = p$$

IR(i) = B_i, i = 6, ..., 11

p:		$SC \leftarrow 0$	Clear SC
INP	рВ ₁₁ :	$AC(0-7) \leftarrow INPR, FGI \leftarrow 0$	Input char. to AC
OUT	рВ ₁₀ :	OUTR \leftarrow AC(0-7), FGO \leftarrow 0	Output char
			from AC
SKI	pB ₉ :	if (FGI = 1) then (PC \leftarrow PC + 1)	Skip on input flag
SKO	pB ₈ :	if (FGO = 1) then (PC \leftarrow PC + 1)	Skip on output flag
ION	рВ ₇ :	IEN ← 1	Interrupt enable on
IOF	pB ₆ :	$IEN \leftarrow 0$	Interrupt enable off

BASIC COMPUTER INSTRUCTIONS

	Hex Code	
Symbol	<i>I</i> = 0 <i>I</i> = 1	Description
AND	Oxxx 8xxx	AND memory word to AC
ADD	1xxx 9xxx	Add memory word to AC
LDA	2xxx Axxx	Load AC from memory
STA	Зххх Вххх	Store content of AC into memory
BUN	4xxx Cxxx	Branch unconditionally
BSA	5xxx Dxxx	Branch and save return address
ISZ	6xxx Exxx	Increment and skip if zero
CLA	7800	Clear AC
CLE	7400	Clear E
CMA	7200	Complement AC
CME	7100	Complement E
CIR	7080	Circulate right AC and E
CIL	7040	Circulate left AC and E
INC	7020	Increment AC
SPA	7010	Skip next instr. if AC is positive
SNA	7008	Skip next instr. if AC is negative
SZA	7004	Skip next instr. if AC is zero
SZE	7002	Skip next instr. if E is zero
HLT	7001	Halt computer
INP	F800	Input character to AC
OUT	F400	Output character from AC
SKI	F200	Skip on input flag
SKO	F100	Skip on output flag
ION	F080	Interrupt on
IOF	F040	Interrupt off