
1

UNIT 4 OBJECT-ORIENTED CONCEPTS USED IN PYTHON

Features of object-oriented programming-Fundamental concepts- Class- Encapsulation-

Inheritance- Polymorphism.

Object references - Turtle graphics - creating a Turtle Graphics Window - the “Default” Turtle -

Fundamental Turtle Attributes and Behavior - Additional Turtle Attributes - Creating Multiple

Turtles.

4.1 Features of object-oriented programming

 Definition: Object-oriented programming (OOP) is a method of structuring a program

by bundling related properties and behaviors into individual objects.

 Object Oriented means directed towards objects.

 Python is an Object Oriented programming (OOP).

 It is a way of programming that focuses on using objects and classes to design and build

applications.

 It is used to design the program using classes and objects.

 Advantages of oops:

 It is faster

 It is easy to execute

 It provides a clear structure for the programs

 Easy to maintain, modify and debug

 It is used to create full reusable applications with less code and shorter

development time

 Features of oops:

 Class

 Object

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

Class

 The class can be defined as a collection of objects.

 It is a logical entity that has some specific attributes and methods.

 A class is a blueprint for the object.

 A class is a template for objects

 A Class in Python is a logical grouping of data and functions.

 A class is a collection of objects

Syntax :

2

class classname:

 Class body

Object

 An object is an instance of a class.

 The objector instance contains real data or information.

 The object is an entity that has state and behaviour.

 Object as collection of both data and functions that operate on that data.

 An object is used to allocate the memory.

 Each object has own set of data members and member functions.

Syntax:

Objectname=classname()

Encapsulation

 Wrapping up of data and method into a single unit is called Encapsulation.

 It is used to restrict access to methods and variables.

 Encapsulation is a means of bundling together instance variables and methods to form a

given type (class).

 Selected members of a class can be made inaccessible (“hidden”) from its clients,

referred to as information hiding .

 Information hiding is a form of abstraction.

Abstraction

 Abstraction is used to hide internal details and show only functionalities.

 It refers to essential information without including the background details.

Inheritance

 Deriving a new class from the old class is called inheritance.

 Old class is called parent class or super class or base class.

 New class is called child class or sub class or derived class.

 Reusability of coding is the main advantages of inheritance.

3

Polymorphism

 Poly means many and morph means forms.

 It means more than one form with the same name

 It means one task can be performed in different ways.

 There are types of polymorphism

 Compile time polymorphism or Static polymorphism

 Run time polymorphism or dynamic polymorphism

 Method is invoked at compile time is called compile time polymorphism. Ex. Method

overloading

 Method is invoked at runtime is called run time polymorphism. Ex. Method overriding

4.2 Fundamental concepts

4.2.1 Class

 Class Definition: A class specifies the set of instance variables and methods that are

“bundled together” for defining a type of object.

 Python class is a blueprint of an object.

 Class is a keyword

Syntax:

Class classname:

 Variables and functions

 Object Definition: An object is simply a collection of data (variables) and methods

(functions) that act on those data.

 An object is also called an instance of a class

Syntax:

Objectname=classname()

4

 Call the variable and function in a class using the following

Objectname.variablename

Objectname.functionname()

Example:

class ruff:

 def f1(self):

 print("Hello World")

ob=ruff()

ob.f1()

Output:

Hello World

 Self definition: The self parameter is a reference to the current instance of the class. It

has to be the first parameter of any function in the class. It contains a reference to the

object instance to which the method belongs.

 Constructor Definition:

 Constructor is to initialize (assign values) to the data members of the class when

an object of class is created.

 In Python the __init__() method is called the constructor and is always called

when an object is created.

 Instance variables are initialized in the __init__ () method.

Syntax:

def __init__(self):

 # body of the constructor

Example:

class ruff:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 def f(self):

 print(self.a,self.b)

ob=ruff(10,20)

 ob.f()

Output:

10 20

 There are two types of constructor:

1. default constructor

5

2. parameterized constructor

 default constructor :The default constructor is simple constructor which doesn’t

accept any arguments.

Example:

class ruff:

 def __init__(self):

 print("Hello")

ob=ruff()

Output:

Hello

 parameterized constructor :constructor with parameters is known as

parameterized constructor. First argument is self and the rest of the arguments are

provided by the programmer.

Example:

class ruff:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 print(self.a,self.b)

ob=ruff(10,20)

Output:

10 20

 del keyword is used to delete an object.

 delete properties on objects by using the del keyword

Syntax:

del objectname

del objectname.variablename

4.2.2 Encapsulation

 Encapsulation is a means of bundling together instance variables and methods to form a

given type (class).

 Selected members of a class can be made inaccessible (“hidden”) from its clients,

referred to as information hiding .

 Information hiding is a form of abstraction.

 Private members of a class begin with two underscore characters, and cannot be directly

accessed.

Example:

class ruff:

def __init__(self,x,y):

self.__a=x

self.__b=y

Output:

30 20

AttributeError: 'ruff' object has no

6

print(self.__a,self.__b)

ob=ruff(30,20)

print(ob.__a)

attribute '__a'

 In the above example __a and __b are private variables and cannot be accessed directly.

 Renaming of identifiers is called name mangling .

 Special methods in Python:

 Special methods in Python have names that begin and end with two underscore

characters, and are automatically called in Python.

 __init__() - it is automatically called whenever a new object is created.

 __str__ () - it is called when an object is displayed using print.

 __repr__() – it is called when the value of an object is displayed in the Python

shell .

Methods Meaning

a.__init__(self, args) constructor: a = A(args)

a.__del__(self) destructor: del a

a.__str__(self) pretty print: print a, str(a)

a.__repr__(self) representation: a = eval(repr(a))

a.__add__(self, b) a + b

a.__sub__(self, b) a - b

a.__mul__(self, b) a*b

a.__div__(self, b) a/b

a.__lt__(self, b) a < b

a.__gt__(self, b) a > b

a.__le__(self, b) a <= b

a.__ge__(self, b) a => b

a.__eq__(self, b) a == b

a.__ne__(self, b) a != b

4.2.3 Inheritance

 Inheritance is the ability of a class to inherit members of another class as part of its own

definition.

 The inheriting class is called a subclass (also “derived class” or “child class”), and the

class inherited from is called the superclass (also “base class” or “parent class”).

 Class hierarchy is as follows:

7

 Class A is a super class. Classes B & E are subclasses of class A, both are inherited

variables and methods of class A. Class C & D are direct subclasses of class B but

indirect subclasses of class A.

 Definition of super() : super() function that will make the child class inherit all the

methods and properties from its parent

 Types of inheritance:

1. Single inheritance

2. Multilevel inheritance

3. Multiple inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

1. Single inheritance

 Only one child class inherit only one parent class is called single inheritance.

Syntax:

class parent:

 Statement

class child(parent):

 Statement

8

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

 print("child class")

ob=two()

ob.f1()

ob.f2()

Output:

parent class

child class

2. Multilevel inheritance

 Multi-level inheritance is archived when a derived class inherits another derived class. .

Syntax:

class parent:

 Statement

class child1(parent):

 Statement

class child2(child1):

 Statement

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

Output:

parent class

Intermediate parent class

child class

9

 print("Intermediate parent class")

class three(two):

 def f3(self):

 print("child class")

ob=three()

ob.f1()

ob.f2()

ob.f3()

3. Multiple inheritance

 A child class to inherit from more than one parent class is called multiple inheritance.

Syntax:

class parent 1:

 Statement

class parent 2:

 Statement

class parent n:

 Statement

class child(parent1, parent1..... parent n):

 Statement

Example :

class one:

 def f1(self):

 print("first parent class")

class two:

 def f2(self):

 print("second parent class")

class three(one,two):

 def f3(self):

 print("child class")

Output:

first parent class

second parent class

child class

10

ob=three()

ob.f1()

ob.f2()

ob.f3()

4. Hierarchical inheritance

 This inheritance allows a class to host as a parent class for more than one child class or

subclass.

Syntax:

class parent:

 Statement

class child1(parent):

 Statement

class child2(parent):

 Statement

class childN(parent):

 Statement

Example :

class one:

 def f1(self):

 print("parent class")

class two(one):

 def f2(self):

 print("first child class")

class three(one):

 def f3(self):

 print("second child class")

Output:

parent class

first child class

parent class

second child class

Base class

Derived class 1 Derived class 2 Derived class N

11

ob=two()

ob.f1()

ob.f2()

ob1=three()

ob1.f1()

ob1.f3()

5. Hybrid inheritance

 Combination of more than one inheritance is called hybrid inheritance.

Example :

class one:

 def f1(self):

 print("first parent class")

class two:

 def f2(self):

 print("second parent class")

class three(two):

 def f3(self):

 print("child class one")

class four(one,three):

 def f4(self):

 print("child class two")

Output:

first parent class

second parent class

child class one

child class two

Base class

Derived class 2

Derived class 4 Derived class 5

Derived class 3

12

ob=four()

ob.f1()

ob.f2()

ob.f3()

ob.f4()

4.2.4 Polymorphism

 The word polymorphism derives from Greek meaning “something that takes many

forms.”

 It means that the same function name can be used for different types.

 Types of polymorphism

 Compile time polymorphism or Static polymorphism

 Run time polymorphism or dynamic polymorphism

 Method is invoked at compile time is called compile time polymorphism. Ex. Method

overloading, Operator overloading

 Method is invoked at runtime is called run time polymorphism. Ex. Method overriding.

Built in polymorphism in python

a = 23

b = 11

c = 9.5

s1 = "Hello"

s2 = "There!"

print(a + b)

print(b + c)

print(s1 + s2)

Output:

34

20.5

HelloThere!

str = 'HiThere'

tup = ('Mon','Tue','wed','Thu','Fri')

lst = ['Jan','Feb','Mar','Apr']

dict = {'1D':'Line','2D':'Triangle','3D':'Sphere'}

print(len(str))

print(len(tup))

print(len(lst))

print(len(dict))

Output:

7

5

4

3

13

Method Overriding

 Methods in the child class that have the same name as the methods in the parent class is

known as method overriding.

Example :

class one:

 def f1(self):

 print("Good morning")

class two(one):

 def f1(self):

 print("Good afternoon")

class three(one):

 def f1(self):

 print("Good evening")

ob1=one()

ob2=two()

ob3=three()

for a in (ob1,ob2,ob3):

 a.f1()

Output:

Good morning

Good afternoon

 Good evening

Operator overloading

 Operator overloading in Python is the ability of a single operator to perform more than

one operation based on the class (type) of operands.

 For e.g: To use the + operator with custom objects you need to define a method called

__add__.

Example :

class one:

 def __init__(self,a,b):

 self.a=a

 self.b=b

 def __add__(self,other):

 a=self.a+other.a

 b=self.b+other.b

 ob3=one(a,b)

 return ob3

ob1=one(90,80)

ob2=one(40,30)

Output:

130

 110

14

ob3=ob1+ob2

print(ob3.a)

 print(ob3.b)

Method overloading

 Method Overloading is a way to create multiple methods with the same name but

different arguments. But Python not support method overloading directly. But indirectly

support method overloading.

Example :

class over:

 def sum(self, a = None, b = None, c = None):

 s = 0

 if a != None and b != None and c != None:

 s = a + b + c

 elif a != None and b != None:

 s = a + b

 else:

 s = a

 return s

ob=over()

print(ob.sum(1))

print(ob.sum(5, 5))

print(ob.sum(10, 2, 3))

Output:

1

10

 15

4.3 Object References

Definition of object : An object contains a set of attributes, stored in a set of instance

variables, and a set of functions called methods that provide its behavior.

Definition of Object references: A reference is a value that references, or “points to,” the

location of another entity. In Python, objects are represented as a reference to an object in

memory.

Definition of Garbage collection: Garbage collection is a method of determining which

locations in memory are no longer in use, and de allocating them.

15

 The value that a reference points to is called the dereferenced value .

Ex: a,b,c=10,10,20

id(a) -> 1682691264

id(b) -> 1682691264

id(c) -> 1682691426

 The dereferenced values of a and b, 10, is stored in the same memory location

(1682691264), whereas the dereferenced value of c, 20, is stored in a different location

(1682691426).

 Even though n and k are each separately assigned literal value 10, they reference the

same instance of 10 in memory (505498136).

 This saves memory and reduces the number of reference locations that Python must

maintain.

4.4 Turtle Graphics

Definition: Turtle graphics refers to a means of controlling a graphical entity (a “turtle”) in a

graphics window with x,y coordinates.

 Python provides the capability of turtle graphics in the turtle Python standard library

module.

 There may be more than one turtle on the screen at once.

 Each turtle is represented by a distinct object. Thus, each can be individually controlled

by the methods available for turtle objects.

4.4.1 Creating a Turtle Graphics Window

 import turtle module

 turtle graphics methods called in the form turtle. methodname .

 setup() - creates a graphics window of the specified size (in pixels).

 Screen() –set the title of the window.

 bgcolor('color') - The background color of the window can be changed

 Example : turtle.setup(800,600)

16

 Window of size 800 pixels width by 600 pixels height is created.

 The center point of the window is at coordinate (0,0).

 x-coordinate values to the right of the center point are positive values, and left are

negative values.

 y-coordinate values above the center point are positive values, and below are negative

values.

4.4.2 The “Default” Turtle

 A “turtle” is an entity in a turtle graphics window

 getturtle() - returns the reference to the default turtle.

 The initial position of all turtles is the center of the screen at coordinate (0,0)

 The default turtle shape is an arrowhead.

4.4.3 Fundamental Turtle Attributes and Behavior

 Turtle objects have three fundamental attributes:

1. position,

2. heading (orientation)

17

3. pen attributes.

Position

 turtle’s position can be changed using absolute positioning by use of method

setposition().

 hideturtle() - The turtle is made invisible

Example:

import turtle

t=turtle.getturtle()

t.hideturtle()

t.setposition(100,0)

t.setposition(100,100)

t.setposition(0,100)

 t.setposition(0,0)

Heading and Relative Positioning

 A turtle’s position can also be changed through relative positioning .

 A turtle’s heading can be changed by turning the turtle a given number of degrees left,

left(90), or right, right(90).

 forward() - Moves the turtle forward by the specified amount

 backward()- Moves the turtle backward by the specified amount

 left() - Turns the turtle counter clockwise based on angle

 right() - Turns the turtle clockwise based on angle

Example:

import turtle

t=turtle.getturtle()

t.forward(100)

t.left(90)

t.forward(100)

t.left(90)

t.forward(100)

t.left(90)

t.forward(100)

Pen Attributes

 The pen attribute of a turtle object is related to its drawing capabilities.

18

 attributes is whether the pen is currently “up” or “down,” controlled by methods penup()

and pendown().

 penup()- Picks up the turtle’s Pen

 pendown()-Puts down the turtle’s Pen

 color()-Changes the color of the turtle’s pen

 fillcolor()-fill the shapes with color

 pensize() - determines the width of the lines drawn

Example:

import turtle

t=turtle.getturtle()

t.penup()

t.setposition(0,0)

t.pendown()

 t.setposition(0,250)

4.4.4 Additional Turtle Attributes

Turtle visibility

hideturtle() – invisible of the turtle

showturtle() - visible of the turtle

Turtle size

turtlesize(width,length)– change the size of the turtle based on width and length.

Turtle Speed

speed(value) - To set the speed of the turtle. Range of speed values from 0 to 10.

The following speed values can be set using a descriptive rather than a numeric value,

10: 'fast' , 6: 'normal' , 3: 'slow' , 1: 'slowest' , 0: 'fastest'

Turtle Shape

shape('value')- shape of the turtle can be changed. value may be 'arrow', 'turtle', 'circle', 'square',

'triangle' and 'classic'.

fillcolor('color') – filled the color in the shape. Color can be red, blue, green, etc.

default shape of turtle is arrow and fill color is black.

19

Example:

import turtle

t=turtle.getturtle()

t.turtlesize(2,5)

t.shape('triangle')

t.fillcolor('green')

t.speed(5)

4.4.5 Creating Multiple Turtles

 To create and control any number of turtle objects.

 To create a new turtle, the Turtle() method is used.

 turtle1 = turtle.Turtle()

 turtle2 = turtle.Turtle()

Example:

import turtle

t = turtle.Turtle()

win=turtle.Screen()

win.setup(500,400)

t.pencolor('blue')

t.pensize(4)

t.shape('turtle')

#draw circle with radius 60 pixels

t.circle(60)

t.clear()

#draw square

for i in range(4):

 t.left(90)

 t.forward(100)

t.clear()

#draw triangle

for i in range(3):

 t.left(120)

 t.forward(100)

Output:

	Class
	Object

