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UNIT III: IoT ARCHITECTURE  

M2M high- IETF architecture for IoT - OGC architecture - IoT reference model - Domain model 

- information model - functional model - communication model - IoT reference architecture. 

 

ETSI M2M high-level architecture 

 This high-level architecture is a combination of both a functional and topological view 

showing some functional groups (FG) clearly associated with pieces of physical 

infrastructure (e.g. M2M Devices, Gateways). 

 There are two main domains, a network domain and a device and gateway domain.  

 The boundary between these conceptually separated domains is the topological border 

between the physical devices and gateways and the physical communication 

infrastructure (Access network). 

 
The Device and Gateway Domain contains the following functional/topological entities: 

 M2M Device:  

 This is the device of interest for an M2M scenario, for example, a device with a 

temperature sensor.  

 An M2M Device contains M2M Applications and M2M Service Capabilities.  

 An M2M device connects to the Network Domain either directly or through an 

M2M Gateway: 

• Direct connection: The M2M Device is capable of performing registration,  

authentication, authorization, management, and provisioning to the Network 

Domain. Direct connection also means that the M2M device contains the  

appropriate physical layer to be able to communicate with the Access Network. 

• Through one or more M2M Gateway: M2M device does not have the  

appropriate physical layer, compatible with the Access Network technology, and 
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therefore it needs a network domain proxy. Moreover, a number of M2M devices 

may form their own local M2M Area Network that typically employs a different 

networking technology from the Access Network. The M2M Gateway acts as a 

proxy for the Network Domain and performs the procedures of authentication, 

authorization, management, and provisioning. An M2M Device could connect 

through multiple M2M Gateways. 

 M2M Area Network:  

 This is a local area network (LAN) or a Personal Area Network (PAN) and 

provides connectivity between M2M Devices and M2M Gateways.  

 Typical networking technologies are IEEE 802.15.1 (Bluetooth), IEEE 802.15.4 

(ZigBee, IETF 6LoWPAN/ROLL/CoRE), MBUS, KNX (wired or wireless) PLC, 

etc. 

 M2M Gateway:  

 The device that provides connectivity for M2M Devices in an M2M Area 

Network towards the Network Domain.  

 The M2M Gateway contains M2M Applications and M2M Service Capabilities. 

 The M2M Gateway may also provide services to other legacy devices that are not 

visible to the Network Domain. 

The Network Domain contains the following functional/topological entities: 

 Access Network:  

 This is the network that allows the devices in the Device and Gateway Domain to 

communicate with the Core Network. 

 Example Access Network Technologies are fixed (xDSL, HFC) and wireless 

(Satellite, GERAN, UTRAN, E-UTRAN W-LAN, WiMAX). 

 Core Network:  

 Examples of Core Networks are 3GPP Core Network and ETSI TISPAN Core 

Network. It provides the following functions: 

• IP connectivity. 

• Service and Network control. 

• Interconnection with other networks. 

• Roaming. 

 M2M Service Capabilities:  

 These are functions exposed to different M2M Applications through a set of open 

interfaces.  

 These functions use underlying Core Network functions, and their objective is to 

abstract the network functions for the sake of simpler applications.  

 M2M Applications:  

 These are the specific M2M applications (e.g. smart metering) that utilize the 

M2M Service Capabilities through the open interfaces. 

 Network Management Functions:  
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 These are all the necessary functions to manage the Access and Core Network 

(e.g. Provisioning, Fault Management, etc.). 

 M2M Management Functions:  

 These are the necessary functions required to manage the M2M Service  

Capabilities on the Network Domain. 

 There are two M2M Management functions: 

• M2M Service Bootstrap Function (MSBF): The MSBF facilitates the 

bootstrapping of permanent M2M service layer security credentials in the M2M 

Device or Gateway and the M2M Service Capabilities in the Network Domain.  

• M2M Authentication Server (MAS): This is the safe execution 

environment where permanent security credentials such as the M2M Root Key are 

stored. 

 The most relevant entities in the ETSI M2M architecture are the M2M Nodes and M2M 

Applications.  

 An M2M Node can be a Device M2M, Gateway M2M, or Network M2M Node. 

 An M2M Application is the main application logic that uses the Service Capabilities to 

achieve the M2M system requirements. 

 
 

 The application logic can be deployed on a Device (Device Application, DA), Gateway 

(Gateway Application, GA) or Network (Network Application, NA). 

 The SCL (Service Capability Layer ) is a collection of functions that are exposed through 

the open interfaces or reference points mIa, dIa, and mId (ETSI M2M TC 2013b). 

 Because the main topological entities that SCL can deploy are the Device, Gateway, and 

Network Domain, there are three types of SCL: DSCL (Device Service Capabilities 



III Unit – IoT Architecture 
 

4 
 

Layer), GSCL (Gateway Service Capabilities Layer), and NSCL (Network Service 

Capabilities Layer).  

 SCL functions utilize underlying networking capabilities through technology-specific 

interfaces.  

 

 

IETF architecture for IoT 

 

 Internet Engineering Task Force architecture 

 

 
 

 6LoWPAN (IPv6 over Low-power WPAN), CoRE (Constrained RESTful 

Environments), and ROLL (Routing Over Low power and Lossy networks). 

 Each set of specifications makes an attempt to address a different part of the 

communication stack of a constrained device. 

 One layer called Application Support which includes the Presentation and Session Layers 

combined. one intermediate layer is introduced: the Adaptation Layer  

 It positioned between the Physical/Data Link and the Network Layer and whose main 

function is to adapt the Network Layer packets to Phy/Link layer packets among others.  

 An example of an adaptation layer is the 6LoWPAN layer designed to adapt IPv6 packets 

to IEEE 8021.5.4/Bluetooth Low Energy (BLE)/DECT Low Energy packets.  

 An example of an Application Support Layer is IETF Constrained Application Protocol 

(CoAP), which provides reliability and RESTful operation support to applications; 

however, it does not describe the specific names of resources a node should host.  

 The IETF CoAP draft specification describes the Transport and Application Support 

Layers, which essentially defines the transport packet formats, reliability support on top 

of UDP, and a RESTful application protocol with GET/PUT/POST/DELETE methods 

similar to HTTP with CoAP clients operating on CoAP server resources. 

 A CoAP server is just a logical protocol entity, and the name “server” does not 

necessarily  
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imply that its functionality is deployed on a very powerful machine; a CoAP server can 

be hosted on a constrained device. 

 The CoRE Link Format specification describes a discovery method for the CoAP 

resources of a CoAP server.  

 For example, a CoAP client sending a request with the GET method to a specific well 

defined server resource (./well-known/core) should receive a response with a list of 

CoAP resources and some of their capabilities (e.g. resource type, interface type). 

 The CoRE interface specification describes interface types and corresponding expected 

behavior of the RESTful methods. 

 The IETF stack for IoT does not currently include any specifications that are similar to 

the profile specifications of other IoT technologies such as ZigBee 

 Profile specification means a document that describes a list of profile names and their 

mappings to specific protocol stack behavior, specific information model, and specific 

serialization of this information model over the relevant communication medium. 

 An example of a profile specification excerpt would mandate that an exemplary 

“Temperature” profile:  

(a) should support a resource called /temp, 

(b) the resource /temp must respond to a GET method request  from a client, and 

(c) the response to a GET method request shall be a temperature value in degrees Celsius 

formatted as a text string with the format “,temperature value encoded in a decimal 

number ._C” 

 A Resource Directory is a CoAP server resource (/rd) that maintains a list of resources, 

their corresponding server contact information (e.g. IP addresses or fully qualified 

domain name, or FQDN), their type, interface, and other information similar to the 

information that the CoRE Link Format document specifies. 
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 An RD plays the role of a rendezvous mechanism for CoAP Server resource descriptions, 

in other words, for devices to publish the descriptions of the available resources and for 

CoAP clients to locate resources that satisfy certain criteria such as specific resource 

types. (e.g. temperature sensor resource type). 

 Resource Directory is a rendezvous mechanism for CoAP Server resource descriptions, a 

Mirror Server is a rendezvous mechanism for CoAP Server resource presentations.  

 A Mirror Server is a CoAP Server resource (/ms) that maintains a list of resources and 

their cached representations (Figure 6.8b).  

 A CoAP Server registers its resources to the Mirror Server, and upon registration a new 

mirror server resource is created on the Mirror Server with a container (mirror 

representation) for the original server representation.  

 The original CoAP Server updates the mirror representation either periodically or when 

the representation changes.  

 A CoAP Client that retrieves the mirror representation receives the latest updated 

representation from the original CoAP Server. The Mirror Server is useful when the 

CoAP Server is not always available for direct access. 

 An example of such a CoAP Server is one that resides on a real device whose  

communication capabilities are turned off in order to preserve energy, e.g. battery-

powered radio devices whose radio and/or processor goes to sleep mode.  

 Typically, a Mirror Server is hosted on a device or machine that is always available. 

 The IETF CoRE workgroup has included the fundamentals of a mapping process between 

HTTP and CoAP in the IETF CoAP specification as well as a set of guidelines for the 

interworking between HTTP and CoAP. 

 The main is the different transport protocols used by the HTTP and CoAP: HTTP uses 

TCP while CoAP uses UDP. 

 The guidelines focus more on the HTTP-to-CoAP proxy and recommend addressing 

schemes (e.g. how to map a CoAP resource address to an HTTP address), mapping 

between HTTP and CoAP response codes, mapping between different media types 

carried in the HTTP/CoAP payloads, etc.  

 HTTP Client sends an HTTP request to a CoAP server (Figure 6.9a) through a Gateway 

Device hosting an HTTP-CoAP Cross Proxy.  

 The Gateway Device connects to the Internet via an Ethernet cable using a LAN, and on 

the CoAP side the CoAP server resides on a Sensor/Actuator (SAN) based on the IEEE 

802.15.4 PHY/MAC.  

 The HTTP request needs to include two addresses, one for reaching the Cross Proxy and 

one for reaching the specific CoAP Server in the SAN.  

 The request is in plain text format and contains the method (GET). It traverses the IPv4 

stack of the client, reaches the gateway, traverses the IPv4 stack of the gateway and 

reaches the Cross proxy.   
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 The request is translated to a CoAP request (binary format) with a destination CoAP 

resource coap://s.coap.example.com/foo, and it is dispatched in the CoAP stack of the 

gateway, which sends it over the SAN to the end device.  

 A response is sent from the end device and follows the reverse path in the SAN in order 

to reach the gateway.  

 The Cross proxy translates the CoAP response code to the corresponding HTTP code, 

transforms the included media, creates the HTTP response, and dispatches it to the HTTP 

client. 

 

 

 
 

 

 

Open Geospatial Consortium architecture 

 The Open Geospatial Consortium (OGC 2013) is an international industry consortium of 

a few hundred companies, government agencies, and universities that develops publicly 

available standards that provide geographical information support to the Web, and 

wireless and location-based services. 

 OGC includes, among other working groups, the Sensor Web Enablement (SWE) (OGC 

SWE 2013) domain working group, which develops standards for sensor system models 

(e.g. Sensor Model Language, or SensorML), sensor information models (Observations & 
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Measurements, or O&M), and sensor services that follow the Service-Oriented  

Architecture (SOA) paradigm. 

 The functionality that is targeted by OGC SWE includes: 

• Discovery of sensor systems and observations that meet an application’s criteria. 

• Discovery of a sensor’s capabilities and quality of measurements. 

• Retrieval of real-time or time-series observations in standard encodings. 

• Tasking of sensors to acquire observations. 

• Subscription to, and publishing of, alerts to be issued by sensors or sensor 

services based upon certain criteria. 

 OGC SWE includes the following standards: 

• SensorML and Transducer Model Language (TML), which include a model and 

an XML schema for describing sensor and actuator systems and processes; for 

example, a system that contains a temperature sensor measuring temperature in 

Celsius, which also involves a process for converting this measurement to a 

measurement with Fahrenheit units. 

• Observations and Measurements (O&M), which is a model and an XML schema 

for describing the observations and measurements for a sensor (Observations and 

Measurements, O&M). 

• SWE Common Data model for describing low-level data models (e.g. 

serialization in XML) in the messages exchanged between OGC SWE functional 

entities. 

• Sensor Observation Service (SOS), which is a service for requesting, filtering, 

and retrieving observations and sensor system information. This is the intermediary 

between a client and an observation repository or near real-time sensor channel. 

• Sensor Planning Service (SPS), which is a service for applications requesting a 

user-defined sensor observations and measurements acquisition. This is the 

intermediary between the application and a sensor collection system. 

• PUCK, which defines a protocol for retrieving sensor metadata for serial port 

(RS232) or Ethernet-enabled sensor devices. 
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 OGC follows the SOA paradigm, there is a registry (CAT) that maintains the descriptions 

of the existing OGC services, including the Sensor Observation and Sensor Planning 

Services.  

 Upon installation the sensor system using the PUCK protocol retrieves the SensorML  

description of sensors and processes, and registers them with the Catalog so as to enable 

the discovery of the sensors and processes by client applications.  

 The Sensor System also registers to the SOS and the SOS registers to the Catalog.  

 A client application #1 requests from the Sensor Planning Service that the Sensor System  

be tasked to sample its sensors every 10 seconds and publish the measurements using 

O&M and the SWE Common Data model to the SOS.  

 Another client application #2 looks up the Catalog, aiming at locating an SOS for 

retrieving the measurements from the Sensor System.  

 The application receives the contact information of the SOS and requests from the sensor 

observations from the specific sensor system from the SOS.  

 As a response, the measurements from the sensor system using O&M and the SWE  

Common Data model are dispatched to the client application #2. 

 The main objective of the OGC standards is to enable data, information, and service 

interoperability. 
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IOT Reference Model 

 

 The IoT Reference Model aims at establishing a common grounding and a common 

language for IoT architectures and IoT systems. 

 A reference model describes the domain using a number of sub-models (Figure 7.1).  

 The domain model of an architecture model captures the main concepts or entities in the 

domain, the domain model adds descriptions about the relationship between the concepts. 

 These concepts and relationships serve the basis for the development of an information 

model because a working system needs to capture and process information about its main 

entities and their interactions. 

 A working system that captures and operates on the domain and information model 

contains concepts and entities of its own, and these need to be described in a separate 

model, the functional model.  

 An M2M and IoT system contain communicating entities, and therefore the 

corresponding communication model needs to capture the communication interactions of 

these entities. 

 
 

 The foundation of the IoT Reference Model is the IoT Domain Model, which introduces 

the main concepts of the Internet of Things like Devices, IoT Services and Virtual 

Entities (VE), and it also introduces relations between these concepts.  

 Based on the IoT Domain Model, the IoT Information Model has been developed. It 

defines the structure (e.g. relations, attributes) of IoT related information in an IoT 

system on a conceptual level without discussing how it would be represented.  

 The information pertaining to those concepts of the IoT Domain Model is modelled, 

which is explicitly gathered, stored and processed in an IoT system, e.g. information 

about Devices, IoT Services and Virtual Entities. 
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 The IoT Functional Model identifies groups of functionalities, of which most are 

grounded in key concepts of the IoT Domain Model.  

 A number of these Functionality Groups (FG) build on each other, following the relations 

identified in the IoT Domain Model.  

 The Functionality Groups provide the functionalities for interacting with the instances of 

these concepts or managing the information related to the concepts, e.g. information 

about Virtual Entities or descriptions of IoT Services.  

 The functionalities of the FGs that manage information use the IoT Information Model as 

the basis for structuring their information. 

 A key functionality in any distributed computer system is the communication between the 

different components.  

  The IoT Communication Model introduces concepts for handling the complexity of 

communication in heterogeneous IoT environments. Communication also constitutes one 

FG in the IoT Functional Model. 

 

IoT domain model 

 

 Domain model as a description of concepts belonging to a particular area of interest. 

 The domain model also defines basic attributes of these concepts, such as name and 

identifier.  

 The domain model defines relationships between concepts, for instance 

“Services expose Resources”. 

  Domain models also help to facilitate the exchange of data between domains.  

 The main purpose of a domain model is to generate a common understanding of the 

target domain in question. 

 The domain model is an important part of any reference model since it includes a 

definition of the main abstract concepts (abstractions), their responsibilities, and their 

relationships.  

 The domain model captures the basic attributes of the main concepts and the relationship 

between these concepts. 

Model notation and semantics 

 Class diagrams in order to present the relationships between the main concepts of the IoT 

domain model. 

 The Class diagrams consist of boxes that represent the different classes of the model 

connected with each other through typically continuous lines or arrows, which represent 

relationships between the respective classes. 

 Each class is a descriptor of a set of objects that have similar structure, behavior, and 

relationships.  

 A class contains a name and a set of attributes and operations. 

 Notation-wise this is represented as a box with two compartments, one containing the 

class name and the other containing the attributes.  

 The Generalization/Specialization relationship is represented by an arrow with a solid 

line and a hollow triangle head.  

 Depending on the starting point of the arrow, the relationship can be viewed as a 

generalization or specialization.  
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 For example, in Figure 7.4, Class A is a general case of Class B or Class B is special case 

or specialization of Class A. 

 Generalization is also called an “is-a” relationship. For example, in Figure 7.4 Class B 

“is-a” Class A. A specialized class/subclass/child class inherits the attributes and the 

operations from the general/super/parent class, respectively, and also contains its own 

attributes and operations. 

 The Aggregation relationship is represented by a line with a hollow diamond in one end 

and represents a whole-part relationship or a containment relationship and is often called 

a “has-a” relationship. 

 

 
 The class that touches the hollow diamond is the whole class while the other class is the 

part class.  

 For example, in Figure 7.4, class B represents a part of the whole Class A, or in other 

words, an object of Class A “contains” or “has-a” object of Class B.  

 When the line with the hollow diamond starts and ends in the same class, then this 

relationship of one class to itself is called Reflexive Aggregation, and it denotes that 

objects of a class (e.g. Class A in Figure 7.4) contain objects of the same class. 

 The Composition relationship is represented by a line with a solid black diamond in one 

end, and also represents a whole-part relationship or a containment relationship.  

  The class that touches the solid black diamond is the whole class while the other class is 

the part class. For example, in Figure 7.4, Class B is part of Class A. Composition and 

Aggregation are very similar, with the difference being the coincident lifetime to the 

objects of classes related with composition.  
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 In other words, if an object of Class B is part of an object of Class A (composition), when 

the object of Class A disappears, the object of Class B also disappears. 

 A plain line without arrowheads or diamonds represents the Association relationship.  

 Directed Association that is represented with a line with a normal arrowhead.  

 An Association (Directed or not) contains an explicit association name. The Directed 

Association implies navigability from a Class B to a Class A in Figure 7.4.  

 Navigability means that objects of Class B have the necessary attributes to know that they 

relate to objects of Class A while the reverse is not true: objects of Class A can exist 

without having references to objects of Class B.  

 When the arrow starts and ends at the same class, then the class is associated to itself with 

a Reflexive Directed Association, which means that an object of this class is associated 

with objects of the same class with the specific named association. 

 An arrow with a hollow triangle head and a dashed line represents the Realization 

relationship. This relationship represents a association between the class that specifies the 

functionality and the class that realizes the functionality.  

 For example, Class A in Figure 7.4 specifies the functionality while Class B realizes it. 

Contain multiplicity information such as numbers (e.g “1”), ranges (e.g. “0_1”, open 

ranges “1. . ._”), etc. in one or the other end of the relationship line/arrow. 

 These multiplicities denote the potential number of class objects that are related to the 

other class object.  

 For example, in Figure 7.4, a plain association called “association name,” relates one (1) 

object of Class B with zero (0) or more objects from Class A. An asterisk “_” denotes 

zero (0) or more  

Main concepts 

 The IoT is a support infrastructure for enabling objects and places in the physical world 

to have a corresponding representation in the digital world. 

 

 
 Monitoring a parking lot with 16 parking spots. 

 The parking lot includes a payment station for drivers to pay for the parking spot after 

they park their cars.  
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 The parking lot also includes an electronic road sign on the side of the street that shows 

in real-time the number of empty spots. 

 Frequent customers also download a smart phone application that informs them about the 

availability of a parking spot before they even drive on the street where the parking lot is 

located.  

 The relevant physical objects as well as their properties need to be captured and 

translated to digital objects such as variables, counters, or database objects so that 

software can operate on these objects and achieve the desired effect. 

 In the digital world, a parking spot is a variable with a binary value (“available” or 

“occupied”).  

 The parking lot payment station also needs to be represented in the digital world in order 

to check if a recently parked car owner actually paid the parking fee.  

 Internet serves a rather virtual world of content and services (although these services are 

hosted on real physical machines) 

 IoT is all about interaction through the Internet with physical Things.  

 As interaction with the physical world is the key for the IoT; it needs to be captured in the 

domain model. 

 A User and a Physical Entity are two concepts that belong to the domain model. 

 A User can be a Human User, and the interaction can be physical (e.g. parking the car in 

the parking lot). The physical interaction is the result of the intention of the human to 

achieve a certain goal (e.g. park the car). 

 The objects, places, and things represented as Physical Entities are the same as Assets. 

 A Physical Entity is represented in the digital world as a Virtual Entity.  

 A Virtual Entity can be a database entry, a geographical model (mainly for places), an 

image or avatar, or any other Digital Artifact.  

 Each Virtual Entity also has a unique identifier for making it addressable among other 

Digital Artifacts.  

 A Virtual Entity representation contains several attributes that correspond to the Physical 

Entity current state (e.g. the parking spot availability).  

 The Virtual Entity representation and the Physical Entity actual state should be 

synchronized.  

 For example, a remotely controlled light (Physical Entity) represented by a memory 

location (Virtual Entity) in an application could be switched on/off by the User by 

changing the Virtual Entity representation, or in other words writing a value in the 

corresponding memory location. 

 A Digital Artifact is an artifact of the digital world, and can be passive (e.g. a database 

entry) or active (e.g. application software). 

 The model captures human-to-machine, application (active digital artifact)-to-machine, 

and M2M interaction when a digital artifact, and thus a User, interacts with a Device that 

is a Physical Entity.  

 Physical Entities or their surrounding environment needs to be instrumented with certain 

kinds of Devices, or certain Devices need to be embedded/attached to the environment. 

 IoT Domain Model, three kinds of Device types are the most important: 
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1. Sensors:  

 These are simple or complex Devices that typically involve a transducer that 

converts physical properties such as temperature into electrical signals.  

 These Devices include the necessary conversion of analog electrical signals into 

digital signals, e.g. A video camera can be example of a complex sensor that could detect 

and recognize people. 

2. Actuators:  

 These are also simple or complex Devices that involve a transducer that converts 

electrical signals to a change in a physical property (e.g. turn on a switch or move a 

motor).  

 These Devices also include potential communication capabilities, storage of 

intermediate commands, processing, and conversion of digital signals to analog electrical 

signals. 

3. Tags:  

 Tags in general identify the Physical Entity that they are attached to.  

 In reality, tags can be Devices or Physical Entities but not both, as the domain 

model shows.  

 An example of a Tag as a Device is a Radio Frequency Identification (RFID) tag, 

while a tag as a Physical Entity is a paper-printed immutable barcode or Quick Response 

(QR) code.  

 Either electronic Devices or a paper-printed entity tag contains a unique 

identification that can be read by optical means (bar codes or QR codes) or radio signals 

(RFID tags).   

 The reader Device operating on a tag is typically a sensor, and sometimes a sensor 

and an actuator combined in the case of writable RFID tags. 

 Any type of IoT Device needs to 

 (a) have energy reserves (e.g. a battery) 

 (b) be connected to the power grid 

 (c) perform energy scavenging (e.g. converting solar radiation to energy). 

 The Device communication, processing and storage, and energy reserve capabilities 

determine several design decisions such as if the resources should be on-Device or not. 

 Resources are software components that provide data for, or are endpoints for, controlling 

Physical Entities. 

 Resources can be of two types, on-Device resources and Network Resources. 

 An on-Device Resource is typically hosted on the Device itself and provides information, 

or is the control point for the Physical Entities that the Device itself is attached to. 

 An example is a temperature sensor on a temperature node deployed in a room that hosts 

a software component that responds to queries about the temperature of the room.  

 The Network Resources are software components hosted somewhere in the network or 

cloud.  
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 A Virtual Entity is associated with potentially several Resources that provide information 

or control of the Physical Entity represented by this Virtual Entity. 

 Resources can be of several types: sensor resources that provide sensor data, actuator 

resources that provide actuation capabilities or actuator state (e.g. “on”/“off”), processing 

resources that get sensor data as input and provide processed data as output, storage 

resources that store data related to Physical Entities, and tag resources that provide 

identification data of Physical Entities. 

 IoT Services can be classified into three main classes according to their level of  

abstraction: 

1. Resource-Level Services typically expose the functionality of a Device by exposing 

the on-Device Resources. In addition, these services typically handle quality aspects such 

as security, availability, and performance issues. An example of such a Network 

Resource is a historical database of measurements of a specific resource on a specific 

Device. 

2. Virtual Entity-Level Services provide information or interaction capabilities about 

Virtual Entities, and as a result the Service interfaces typically include an identity of the 

Virtual Entity. 

3. Integrated Services are the compositions of Resource-Level and Virtual Entity-Level 

services, or any combination of both service classes. 

Further considerations 

 Identification of Physical Entities is important in an IoT system in order for any User to 

interact with the physical world though the digital world. 

 Two ways to describe :  

(a) primary identification that uses natural features of a Physical Entity, and 

(b) secondary identification when using tags or labels attached to the Physical Entity. 

 Both types of identification are modeled in the IoT Domain Model. 

 Extracting natural features can be performed by a camera Device (Sensor) and relevant 

Resources that produce a set of features for specific Physical Entities.  

 In physical spaces, a GPS Device or another type of location Device (e.g. an indoor 

location Device) can also be used to record the GPS coordinates of the space occupied by 

the Physical Entity. 

 With respect to secondary identification, tags or labels attached to Physical Entities are 

modeled in the IoT Domain model, and there are relevant RFID or barcode technologies 

to realize such identification mechanisms. 

 Apart from identification, location and time information are important for the annotation 

of the information collected for specific Physical Entities and represented in Virtual 

Entities.  

 Information without one or the other (i.e. location or time) is practically useless apart 

from the case of Body Area Networks (BAN, networks of sensors attached to a human 
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body for live capture of vital signals, e.g. heart rate); that location is basically fixed and 

associated with the identification of the Human User. 

 Nevertheless, in such cases, sometimes the location of the whole BAN or Human User is 

important for correlation purposes (e.g. upon moving outdoors, the Human User heart 

rate increases in order to compensate for the lower temperature than indoors).  

 Therefore, the location, and often the timestamp of location, for the Virtual Entity can be 

modeled as an attribute of the Virtual Entity that could be obtained by location sensing 

resources (e.g. GPS or indoor location systems). 

 

Communication model 

 The communication model for an IoT Reference Model consists of the identification of 

the endpoints of interactions, traffic patterns (e.g. unicast vs. multicast), and general 

properties of the underlying technologies used for enabling such interactions.  

 It is used to identification of the endpoints of the communication paths. 

 The potential communicating endpoints or entities are the Users, Resources, and Devices 

from the IoT Domain Model.  

 Users include Human Users and Active Digital Artifacts (Services, internal system 

components, external applications).  

 Devices with a Human_Machine Interface mediate the interactions between a Human 

User and the physical world (e.g. keyboards, mice, pens, touch screens, buttons, 

microphones, cameras, eye tracking, and brain wave interfaces, etc.), and therefore the 

Human User is not a communication model endpoint. 

  The User (Active Digital Artifact, Service)-to-Service interactions include the User-to-

Service and Service-to-Service interactions as well as the Service_Resource_Device 

interactions.  

 The User-to-Service and Service-to-Service communication is typically based on Internet 

protocols and one or both Services are hosted in Service-to-Service interactions on 

constrained/low-end Devices such as embedded systems. 

 The communication model for these interactions includes several types of gateways (e.g. 

network, application layer gateways) to bridge between two or more disparate 

communication technologies.  

 The Devices may be so constrained that they cannot host the Services, while the 

Resources could be hosted or not depending on the Device capabilities. 

 This inability of the Device to host Resources or Services results in moving the 

corresponding Resources and/or Services out of the Device and into more powerful 

Devices or machines in the cloud. 

 Then the Resource-to-Device or the Service-to-Resource communication needs to 

involve multiple types of communication stacks. 
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Functional model 

 

 The IoT Functional Model aims at describing mainly the Functional Groups (FG) and 

their interaction with the ARM. 

 Functional View of a Reference Architecture describes the functional components of an 

FG, interfaces, and interactions between the components.  

 The Functional View is typically derived from the Functional Model in conjunction with 

high level requirements.  

 

 

 

 
 

 The Application, Virtual Entity, IoT Service, and Device FGs are generated by starting 

from the User, Virtual Entity, Resource, Service, and Device classes from the IoT 

Domain Model. 

 The need to compose simple IoT services in order to create more complex ones, as well 

as the need to integrate IoT services (simple or complex) with existing Information and 

Communications Technology (ICT) infrastructure, is the main driver behind the  

introduction of the Service Organization and IoT Process Management FGs respectively.  

 All the above-mentioned FGs need to be supported by management and security 

functionality captured by the corresponding FGs.  

 

Device functional group 

 

 The Device FG contains all the possible functionality hosted by the physical Devices that 

are used for instrumenting the Physical Entities.  

 This Device functionality includes sensing, actuation, processing, storage, and 

identification components, the sophistication of which depends on the Device capabilities. 
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Communication functional group 

 The Communication FG abstracts all the possible communication mechanisms used by 

the relevant Devices in an actual system in order to transfer information to the digital world 

components or other Devices.  

 Examples of such functions include wired bus or wireless mesh technologies through 

which sensor Devices are connected to Internet Gateway Devices.  

 Communication technologies used between Applications and other functions such as 

functions from the IoT Service FG are out of scope because they are the typical Internet 

technologies. 

IoT Service functional group 

 The IoT Service FG corresponds mainly to the Service class from the IoT Domain 

Model, and contains single IoT Services exposed by Resources hosted on Devices or in the 

Network (e.g. processing or storage Resources). 

 Support functions such as directory services, which allow discovery of Services and 

resolution to Resources, are also part of this FG. 

 

Virtual Entity functional group 

 The Virtual Entity FG corresponds to the Virtual Entity class in the IoT Domain Model, 

and contains the necessary functionality to manage associations between Virtual Entities 

with themselves as well as associations between Virtual Entities and related IoT Services, 

i.e. the Association objects for the IoT Information Model. 

 Associations between Virtual Entities can be static or dynamic depending on the mobility 

of the Physical Entities related to the corresponding Virtual Entities.  

 An example of a static association between Virtual Entities is the hierarchical inclusion 

relationship of a building, floor, room/corridor/open space, i.e. a building contains 

multiple floors that contain rooms, corridors, and open spaces. 

 An example of a dynamic association between Virtual Entities is a car moving from one 

block of a city to another (the car is one Virtual Entity while the city block is another).  

 A major difference between IoT Services and Virtual Entity Services is the semantics of 

the requests and responses to/from these services.  

 The parking lot example, the Parking Sensor Service provides as a response only a 

number “0” or “1” given the identifier of a Loop Sensor (e.g. #11).  

 The Virtual Entity Parking Spot #01 responds to a request about its occupancy status as 

“free.” The IoT Service provides data or information associated to specific Devices or 

Resources, including limited semantic information (e.g. Parking sensor #11, value5“0”, 

units 5 none); the Virtual IoT Service provides information with richer semantics 

(“Parking spot #01 is free”), and is closer to being human-readable and understandable. 

 

IoT Service Organization functional group 

 The purpose of the IoT Service Organization FG is to host all functional components that 

support the composition and orchestration of IoT and Virtual Entity services.  

 This FG acts as a service hub between several other functional groups such as the IoT 

Process Management FG when, for example, service requests from Applications or the 

IoT Process Management are directed to the Resources implementing the necessary 

Services. 
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 Therefore, the Service Organization FG supports the association of Virtual Entities with 

the related IoT Services, and contains functions for discovery, composition, and 

choreography of services. 

 Simple IoT or Virtual Entity Services can be composed to create more complex services, 

e.g. a control loop with one Sensor Service and one Actuator service with the objective to 

control the temperature in a building.  

 Choreography is the brokerage of Services so that Services can subscribe to other 

services in a system. 

 

IoT Process Management functional group 

 

 The IoT Process Management FG is a collection of functionalities that allows smooth 

integration of IoT-related services (IoT Services, Virtual Entity Services, Composed 

Services) with the Enterprise (Business) Processes. 

 

Management functional group 

 The Management FG includes the necessary functions for enabling fault and performance 

monitoring of the system, configuration for enabling the system to be flexible to changing 

User demands, and accounting for enabling subsequent billing for the usage of the 

system.  

 Support functions such as management of ownership, administrative domain, rules and 

rights of functional components, and information stores are also included in the 

Management FG. 

 

Security functional group 

 The Security FG contains the functional components that ensure the secure operation of 

the system as well as the management of privacy.  

 The Security FG contains components for Authentication of Users (Applications, 

Humans), Authorization of access to Services by Users, secure communication (ensuring 

integrity and confidentiality of messages) between entities of the system such as Devices, 

Services, Applications, assurance of privacy of sensitive information relating to Human 

Users. 

 These include privacy mechanisms such as anonymization of collected data, 

anonymization of resource and Service accesses (Services cannot deduce which Human 

User accessed the data), and un-linkability (an outside observer cannot deduce the 

Human User of a service by observing multiple service requests by the same User). 

Application functional group 

 The Application FG is just a placeholder that represents all the needed logic for creating 

an IoT application.  

 The applications typically contain custom logic tailored to a specific domain such as a 

Smart Grid.  

 An application can also be a part of a bigger ICT system that employs IoT services such 

as a supply chain system that uses RFID readers to track the movement of goods within a 

factory in order to update the Enterprise Resource Planning (ERP) system. 

Modular IoT functions 

 It is important to note that not all the FGs are needed for a complete actual IoT system.  
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 The Functional Model, as well as the Functional View of the Reference Architecture, 

contains a complete map of the potential functionalities for a system realization.  

 The functionalities that will eventually be used in an actual system are dependent on the 

actual system requirements.  

 FGs are organized in such a way that more complex functionalities can be built based on 

simpler ones, thus making the model modular. 

 

Information model 

 Information is defined as the enrichment of data (raw values without relevant or usable 

context) with the right context, so that queries about who, what, where, and when can be 

answered.  

 IoT information model captures the details of a Virtual Entity centric model. 

 
 Association class in Figure 7.8 contains information about the specific association 

between a Virtual Entity and a related Service.  

 On a high-level, the IoT Information Model maintains the necessary information about 

Virtual Entities and their properties or attributes.  

 These properties/attributes can be static or dynamic and enter into the system in various 

forms, e.g. by manual data entry or reading a sensor attached to the Virtual Entity.  

 Virtual Entity attributes can also be digital synchronized copies of the state of an 

actuator. 

 In the presentation of the high-level IoT information model, we omit the attributes that 

are not updated by an IoT Device (sensor, tag) or the attributes that do not affect any IoT 
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Device (actuator, tag), with the exception of essential attributes such as names and 

identifiers.  

 Examples of omitted attributes that could exist in a real implementation are room names 

and floor numbers, in general, context information that is not directly related to IoT 

Devices, but that is nevertheless important for an actual system. 

 The IoT Information Model describes Virtual Entities and their attributes that have one or 

more values annotated with meta-information or metadata. 

 The attribute values are updated as a result of the associated services to a Virtual Entity.  

 The associated services are related to Resources and Devices as seen from the IoT 

Domain Model.  

 A Virtual Entity object contains simple attributes/properties:  

(a) entityType to denote the type of entity, such as a human, car, or room (the entity type 

can be a reference to concepts of a domain ontology, e.g. a car ontology);  

(b) a unique identifier; and 

(c) zero or more complex attributes of the class Attributes.  

 The class Attributes should not be confused with the simple attributes of each class.  

 This class Attributes is used as a grouping mechanism for complex attributes of the 

Virtual Entity.  

 Objects of the class Attributes, in turn, contain the simple attributes with the  self 

descriptive names attributeName and attributeType.  

 The attribute type is the semantic type of the value (e.g. that the value is a temperature 

value), and can refer to an ontology such as the NASA quantities and units SWEET 

ontology (NASA JPL 2011).  

 The Attribute class also contains a complex attribute ValueContainer that is a container 

of the multiple values that an attribute can take. 

 The container includes complex attributes of the class Value and the class MetaData. 

 The container contains exactly one value and meta-information (modeled as the class 

MetaData), such as a timestamp, describing this single value. 

 Objects of the MetaData class can contain MetaData objects as complex attributes, as 

well as the simple attributes with the self-descriptive namesmetadataName, 

metadataType, and metadataValue. 

 a Virtual Entity is associated with Resources that expose Services about the specific 

Virtual Entity.  

 This association between a Virtual Entity and its Services is captured in the Information 

Model with the explicit class called Association.  

 Objects of this class capture the relationship between objects of the complex Attribute 

class (associated with a Virtual Entity) and objects of the Service Description class. 

 The class Association describes the relationship between a Virtual Entity and Service 

Description through the Attribute class, there is a dashed line between Association class 

and the line between the Virtual Entity and Service Description classes.  
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 The attribute serviceType can take two values: 

(a) “INFORMATION,” if the associated service is a sensor service (i.e. allows 

reading of the sensor), or  

(b) “ACTUATION,” if the associated serviceis an actuation service (i.e. allows an 

action executed on an actuator). 

 In both cases, the eventual value of the attribute will be a result of either reading a sensor 

or controlling an actuator. 

Example 

 

 

 Not show all the possible Virtual Entities, but only one corresponding to one parking 

spot.  

 This Virtual Entity is described with one Attribute (among others) called hasOccupancy.  

 This Attribute is associated with the Parking Lot Occupancy Service Description through 

the Occupancy Association.  

 The Occupancy Association is the explicit expression of the association (line) between 

the Parking Spot #1 Virtual Entity and the Parking Lot Occupancy Service.  

 The dashed arrows with hollow arrowheads represent the relationship “is instance of” for 

the information model, as opposed to the Realization relationship for the IoT Domain 

Model. 
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 Figure 7.10 presents the relationship between the core concepts of the IoT Domain Model 

and the IoT Information Model.  

 The Information Model captures the Virtual Entity in the Domain Model being the 

“Thing” in the Internet of Things as several associated classes (Virtual Entity, Attribute, 

Value, MetaData, Value Container) that basically capture the description of a Virtual 

Entity and its context. 

 The Device, Resource, and Service in the IoT Domain Model are also captured in the IoT 

Information Model because they are used as representations of the instruments and the 

digital interfaces for interaction with the Physical Entity associated with the Virtual 

Entity. 

 The Information Model is a very high-level model, and omits certain details that could 

potentially be required in a concrete architecture and an actual system.  

 These details could be derived by specific requirements from specific use cases 

describing the target actual system. 

 Several other attributes or properties that could exist in a Virtual Entity description: 

1. Location and its temporal information are important because Physical Entities 

represented by Virtual Entities exist in space and time. These properties are extremely 

important when the interested Physical Entities are mobile (e.g. a moving car).A mobile 

Physical Entity affects the associations between Attributes and related Services, e.g. a 

person moving close to a camera (sensor) is associated with the Device, Resource, and 

Services offered by the camera for as long as she stays within the field of view of the 

camera. In such cases, the temporal availability of the associations between Attributes 
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and Services need to be captured, as availability denotes also temporal observability of 

the Virtual Entity. 

2. Even non-moving Virtual Entities contain properties that are dynamic with time, 

and therefore their temporal variations need to be modeled and captured by an 

information model. 

3. Information such as ownership is also important in commercial settings because it 

may determine access control rules or liability issues. It is important to note that the 

Attribute class is general enough to capture all the interested properties of a Physical 

Entity, and thus provides an extensible model whose details can only be specified by the 

specific actual system in mind. 

 The Services in the IoT Domain Model are mapped to the Service Description in the IoT 

Information Model.  

 The Service Description contains the following : 

1. Service type, which denotes the type of service, such as Big Web Service or RESTful 

Web Service. The interfaces of a service are described based on the description language 

for each service type, for example, Web Application Description Language (WADL) for 

RESTful Web Services, Web Services Description Language (WSDL) for Big Web 

Services, Universal Service Description Language  (USDL). The interface description 

includes, among other information, the invocation contact information, e.g. a Uniform 

Resource Locator (URL). 

2. Service area and Service schedule are properties of Services used for specifying the 

geographical area of interest for a Service and the potential temporal availability of a 

Service, respectively. For sensing services, the area of interest is equivalent to the 

observation area, whereas for actuation services the area of interest is the area of 

operation or impact. 

3. Associated resources that the Service exposes. 

4. Metadata or semantic information used mainly for service composition. This is 

information such as the indicator of which resource property is exposed as input or 

output, whether the execution of the service needs any conditions satisfied before 

invocation. 

 The IoT Information Model also contains Resource descriptions because Resources are 

associated with Services and Devices in the IoT Domain model. 

 A Resource description contains the following information: 

1. Resource name and identifier for facilitating resource discovery. 

2. Resource type, which specifies if the resource is  

(a) a sensor resource, which provides sensor readings;  

(b) an actuator resource, which provides actuation capabilities (to affect the physical 

world) and actuator state;  

(c) a processor resource, which provides processing of sensor data and output of 

processed data; 
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(d) a storage resource, which provides storage of data about a Physical Entity;  

(e) a tag resource, which provides identification data for Physical Entities. 

3. Free text attributes or tags used for capturing typical manual input such as “fire alarm, 

ceiling.” 

4. Indicator of whether the resource is an on-Device resour ce or network resource. 

5. Location information about the Device that hosts this resource in case of an on-Device 

resource. 

6. Associated Service information. 

7. Associated Device description information. 

 A Device is a Physical Entity that could have a sensor, actuator, or tag instantiation.  

 

IoT reference architecture 

 Architecture Reference Model (ARM) consists of two main parts:  

1. a Reference model  

2. a Reference Architecture. 

 The foundation of an IoT Reference Architecture description is an IoT reference model. 

 A System Architecture is a communication tool for different stakeholders of the system.  

 Developers, component and system managers, partners, suppliers, and customers have 

different views of a single system based on their requirements and their specific 

interactions with the system. 

 The high-level abstraction is called Reference Architecture as it serves as a reference for 

generating concrete architectures and actual systems, as shown in the Figure 7.2. 
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 Concrete architectures are instantiations of rather abstract and high-level Reference 

Architectures.  

 A Reference Architecture captures the essential parts of an architecture, such as design 

principles, guidelines, and required parts (such as entities), to monitor and interact with 

the physical world for the case of an IoT Reference Architecture. 

 A concrete architecture can be further elaborated and mapped into real world components 

by designing, building, engineering, and testing the different components of the actual 

system.  

 The general essentials out of multiple concrete architectures can then are aggregated, and 

contribute to the evolution of the Reference Architecture. 
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 It has two types of Architecture: 

Three Layer Architectures 

Five-Layer Architectures 

Three Layer Architectures 

 It has three layers, namely, the perception, network, and application layers. 

 

(i) The perception layer is the physical layer, which has sensors for sensing and 

gathering information about the environment. It senses some physical parameters or 

identifies other  smart objects in the environment. 

(ii) The network layer is responsible for connecting to other smart things, network 

devices, and servers. Its features are also used for transmitting and processing sensor 

data. 

(iii) The application layer is responsible for delivering application specific services to 

the user. It defines various applications in which the Internet of Things can be deployed, 

for example, smart homes, smart cities, and smart health. 

 

 The three-layer architecture defines the main idea of the Internet of Things, but it is not 

sufficient for research on IoT because research often focuses on finer aspects of the 

Internet of Things.  

Five Layer Architectures 

 The five layers are perception, transport, processing, application, and business layers (see 
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 The role of the perception and application layers is the same as the architecture with three 

layers. We outline the function of the remaining three layers. 

(i) The transport layer transfers the sensor data from the perception layer to the 

processing layer and vice versa through networks such as wireless, 3G, LAN, Bluetooth, 

RFID, and NFC. 

(ii) The processing layer is also known as the middleware layer. It stores, analyzes, and 

processes huge amounts of data that comes from the transport layer. It can manage and 

provide a diverse set of services to the lower layers. It employs many technologies such 

as databases, cloud computing, and big data processing modules. 

(iii) The business layer manages the whole IoT system, including applications, business 

and profit models, and users’ privacy. 

 

 
 The layers are : 

 Client/external communications - Web/Portal, Dashboard, APIs  

 Event processing and analytics (including data storage) 

 Aggregation/bus layer – ESB and message broker  

 Relevant transports - MQTT/HTTP/XMPP/CoAP/AMQP, etc. 

 Devices 

 The cross-cutting layers are : 

 Device manager  

 Identity and access management 

The Device Layer  
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 The bottom layer of the architecture is the device layer.  

 Devices can be of various types, but in order to be considered as IoT devices, they must 

have some communications that either indirectly or directly attaches to the Internet.  

 Examples of direct connections are : 

• Arduino with Arduino Ethernet connection  

• Arduino Yun with a Wi-Fi connection  

• Raspberry Pi connected via Ethernet or Wi-Fi  

• Intel Galileo connected via Ethernet or Wi-Fi Examples of indirectly connected device 

include  

• ZigBee devices connected via a ZigBee gateway  

• Bluetooth or Bluetooth Low Energy devices connecting via a mobile phone  

• Devices communicating via low power radios to a Raspberry Pi  

 Each device typically needs an identity. 

 The identity may be one of the following:  

• A unique identifier (UUID) burnt into the device  

• A UUID provided by the radio subsystem (e.g. Bluetooth identifier, Wi-Fi MAC 

address) 

• An OAuth2 Refresh/Bearer Token  

• An identifier stored in nonvolatile memory such as EEPROM 

The Communications Layer 

• The communication layer supports the connectivity of the devices.  

• There are multiple potential protocols for communication between the devices and the 

cloud.  

 The most well known three potential protocols are : 

• HTTP/HTTPS (and RESTful approaches on those) 

• MQTT 3.1/3.1.1 

• Constrained application protocol (CoAP) 

 HTTP supports many libraries. Because it is a simple textbased protocol, many small 

devices such as 8-bit controllers can only partially support the . 

 The larger 32-bit based devices can utilize full HTTP client libraries that properly 

implement the whole protocol. 

 MQTT solve issues in embedded systems and SCADA. 

 MQTT is a publish-subscribe messaging system based on a broker model. The protocol 

has a very small overhead. 

 It is designed to support lossy and intermittently connected networks. 

 MQTT was designed to flow over TCP.  
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 In addition there is an associated specification designed for ZigBee-style networks called 

MQTT-SN (Sensor Networks). 

 CoAP is a protocol from the IETF that is designed to provide a RESTful application 

protocol modeled on HTTP semantics. CoAP is a more traditional client-server approach 

 CoAP is designed to be used over UDP. 

The Aggregation/Bus Layer  

 This layer aggregates and brokers communications.  

 This is an important layer for three reasons:  

1. The ability to support an HTTP server and/or an MQTT broker to talk to the devices 

2.The ability to aggregate and combine communications from different devices and to 

route communications to a specific device (possibly via a gateway)  

3.The ability to bridge and transform between different protocols, e.g. to offer HTTP 

based APIs that are mediated into an MQTT message going to the device. 

 The bus layer may also provide some simple correlation and mapping from different 

correlation models (e.g. mapping a device ID into an owner’s ID or vice-versa). 

 It must be able to act as an OAuth2 Resource Server (validating Bearer Tokens and 

associated resource access scopes). 

 It must also be able to act as a policy enforcement point (PEP) for policy-based access.  

The Event Processing And Analytics Layer  

 This layer takes the events from the bus and provides the ability to process and act upon 

these events.  

 A core capability here is the requirement to store the data into a database. 

 It has the following approaches:  

• Highly scalable, column-based data storage for storing events  

• Map-reduce for long-running batch-oriented processing of data  

• Complex event processing for fast in-memory processing and near real-time reaction 

and autonomic actions based on the data and activity of devices and other systems  

Client/External Communications Layer  

 The reference architecture needs to provide a way for these devices to communicate 

outside of the device-oriented system.  

 This includes three main approaches.  

• Firstly, we need the ability to create web-based front-ends and portals that interact 

with devices and with the event-processing layer. 
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• Secondly, we need the ability to create dashboards that offer views into analytics 

and event processing. 

• Finally, we need to be able to interact with systems outside this network using 

machine-to-machine communications (APIs).  

 The API management layer provides three main functions:  

• The first is that it provides a developer-focused portal where developers can find, 

explore, and subscribe to APIs from the system. There is also support for publishers to 

create, version, and manage the available and published APIs;  

• The second is a gateway that manages access to the APIs, performing access control 

checks (for external requests) as well as throttling usage based on policies. It also 

performs routing and load-balancing;  

• The final aspect is that the gateway publishes data into the analytics layer where it is 

stored as well as processed to provide insights into how the APIs are used. 

Device Management 

 Device management (DM) is handled by two components.  

 A server-side system (the device manager) communicates with devices via various 

protocols and provides both individual and bulk control of devices. 

 It also remotely manages software and applications deployed on the device.  

 It can lock and/or wipe the device if necessary.  

 The device manager works in conjunction with the device management agents.  

 There are multiple different agents for different platforms and device types.  

 The device manager also needs to maintain the list of device identities and map these into 

owners. 

 It must also work with the identity and access management layer to manage access 

controls over devices. 

 There are three levels of device: non-managed, semi-managed and fully managed (NM, 

SM, FM).  

 A full DM agent supports:  

• Managing the software on the device  

• Enabling/disabling features of the device (e.g. camera, hardware, etc.)  

• Management of security controls and identifiers  

• Monitoring the availability of the device  

• Maintaining a record of the device’s location if available  

Identity and Access Management 

 The final layer is the identity and access management layer. 

 This layer needs to provide the following services: 

• OAuth2 token issuing and validation 
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• Other identity services including SAML2 SSO and OpenID Connect support for 

identifying inbound requests from the Web layer 

• XACML PDP 

• Directory of users (e.g. LDAP) 

• Policy management for access control (policy control point) 

 


