
SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

1 / 28

Syllabus : Unit – I : Fundamentals and Finite Automata

Strings - Alphabets and languages - Finite state systems – Basic Definitions - Finite Automata -

Deterministic finite automata – Non deterministic finite automata - Equivalence of DFA and NFA -

Equivalence of NFA with and without ε –moves - Minimization of FA - Finite automata with output

– More machines and mealy machines.

Introduction

 Definition of TOC

TOC describes the basic ideas and models underlying computing. TOC

suggests various abstract models of computation, represented mathematically.

 History of Theory of Computation

 1936 Alan Turing invented the Turing machine, and proved that there exists

an unsolvable problem.
 1940’s Stored-program computers were built.

 1943 McCulloch and Pitts invented finite automata.

 1956 Kleene invented regular expressions and proved the equivalence of

regular expression and finite automata

 1956 Chomsky defined Chomsky hierarchy, which organized languages

recognized by different automata into hierarchical classes.

 1959 Rabin and Scott introduced nondeterministic finite automata and proved

its equivalence to (deterministic) finite automata.

 1950’s-1960’s More works on languages, grammars, and compilers

 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis

and Stearns defined space complexity.

 1971 Cook showed the first NP-complete problem, the satisfiability problem.

 1972 Karp Showed many other NP-complete problems.

 1976 Diffie and Helllman defined Modern Cryptography based on NP-

complete problems.

 1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme,

RSA.

Finite State systems

A finite automaton can also be thought of as the device shown below consisting of a tape

and a control circuit which satisfy the following conditions:

 The tape has the left end and extends to the right without an end.

 The tape is dividing into squares in each of which a symbol can be written prior to the

start of the operation of the automaton.

 The tape has a read only head.

 The head is always at the leftmost square at the beginning of the operation.

 The head moves to the right one square every time it reads a symbol.

It never moves to the left. When it sees no symbol, it stops and the automaton

terminates its operation.

 There is a finite control which determines the state of the automaton and also controls

the movement of the head.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

2 / 28

Basic Definitions

 Symbol :

Symbol is a character.

Example : a,b,c,… , 0,1,2,3,….9 and special characters.

 Alphabet :
An alphabet is a finite, nonempty set of symbol. It is denoted by ∑.

 Example :

a) ∑ = {0,1}, the set of binary alphabet.

b) ∑ = {a,b……..z}, the set of all lowercase letters.

c) ∑ = {+, &,…..}, the set of all special characters.

 String or Word :
 A string is a finite set sequence of symbols chosen from some alphabets.

 Example :

a) 0111010 is a string from the binary alphabet ∑ = {0,1}

b) aabbaacab is a string from the alphabet ∑ = {a,b,c}

 Empty String :
The empty string is the string with zero occurrences of symbols (no symbols).

It is denoted by є.

 Length of String :
 The length of a string is number of symbols in the string. It denoted by |w|.

Example :

 w = 010110101 from binary alphabet ∑ = {0,1}

 Length of a string |w| = 9

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

3 / 28

 Power of an Alphabet:
 If ∑ is an alphabet, we can express the set of all strings of certain length

from that alphabet by using an exponential notation. It is denoted by ∑
k
 is

the set of strings of length k, each of whose symbols is in ∑.

 Example :

∑ = {0,1} has 2 symbols

i) ∑
1
 = {0,1} (2

1
 = 2)

ii) ∑
2
 = {00, 01, 10, 11} (2

2
 = 4)

iii) ∑3
 = {000,001,010,011,100,101,110,111} (2

3
 = 8)

 The set of strings over an alphabet ∑ is usually denoted by ∑
*
.

 For instance, ∑
*
 = {0,1}

*
 = {є,0,1,00,01,10,11}

 (∑
*
=∑

0
∑

1
∑

2
……) - with є symbol.

 The set of strings over an alphabet ∑ excluding є is usually denoted by ∑
+
.

For instance, ∑
+
 = {0,1}

+
 = {0,1,00,01,10,11}

 (∑
+
=∑

*
- {є}

 or ∑

1
∑

2
∑

3
…..…)

 - without є symbol.

 Concatenation of String
Join the two or more strings. Let x and y be two strings. Concatenation of

strings x and y is appending symbols of y to right end of x.

 x = a1a2a3……………an and y = b1b2b3……………bn

 Concatenation of String xy = a1a2a3……an b1b2b3….…bn

 Example :

 s = ababa and t = cdcddc

 Concatenation st = ababacdcddc

 Languages:

If Σ is an alphabet, and L Σ* then L is a language.
Examples:

o The set of legal English words

o The set of legal C programs

o The set of strings consisting of n 0's followed by n 1's

{ ϵ, 01,0011,000111, …}

 Operations on Languages
 Complementation

Let L be a language over an alphabet Σ. The complementation of L, denoted

byL, is Σ*–L.

 Union

Let L1 and L2 be languages over an alphabet Σ. The union of L1 and L2,

denoted by L1L2, is {x | x is in L1 or L2}.

 Intersection

Let L1 and L2 be languages over an alphabet Σ. The intersection of L1 and L2,

denoted by L1L2, is { x | x is in L1 and L2}.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

4 / 28

 Concatenation

Let L1 and L2 be languages over an alphabet Σ. The concatenation of L1 and

L2, denoted by L1L2, is {w1w2| w1 is in L1 and w2 is in L2}.

 Reversal

Let L be a language over an alphabet Σ. The reversal of L, denoted by L
r
, is

{w
r
| w is in L}.

 Kleene’s closure

Let L be a language over an alphabet Σ. The Kleene’s closure of L, denoted by

L*, is {x | for an integer n 0 x = x1 x2 … xn and x1, x2 , …, xn are in L}.

 ∞

L
*
 = U Li

 (e.g. a
*
 ={,a,aa,aaa,……})

 i=0

 Positive Closure

Let L be a language over an alphabet Σ. The closure of L, denoted by L+, is {

x |for an integer n 1, x = x1x2…xn and x1, x2 , …, xn are in L}
 ∞

L
+
 = U Li

 (e.g. a
*
 ={a,aa,aaa,……})

 i=1

Finite Automata
Automaton is an abstract computing device. It is a mathematical model of a system,

with discrete inputs, outputs, states and set of transitions from state to state that occurs on

input symbols from alphabet Σ.

 It representations:

o Graphical (Transition Diagram or Transition Table)
o Tabular (Transition Table)
o Mathematical (Transition Function or Mapping Function)

 Formal Definition of Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)

where

Q is a finite set called the states

Σ is a finite set called the alphabet

δ : Q ×Σ → Q is the transition function

q0 ∈ Q is the start state also called initial state

F ⊆ Q is the set of accept states, also called the final states

 Transition Diagram (Transition graph)

It is a directed graph associated with the vertices of the graph corresponds to

the states of the finite automata. (or) It is a 5-tuple graph used state and edges

represent the transitions from one state to other state.

Example:

q0 q1 q2

0 1
1

0 1
q2

Start or Initial State Final or Accepting State

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

5 / 28

 Transition Table.

It is the tabular representation of the DFA. For a transition table the transition

function is used.

Example:

 Transition Function.

- The mapping function or transition function denoted by δ.

- Two parameters are passed to this transition function: (i) current state and

(ii) input symbol.

- The transition function returns a state which can be called as next state.

 δ (current_state, current_input_symbol) = next_state

Example:

 δ (q0, a) = q1

 Computation of a Finite Automaton

o The automaton receives the input symbols one by one from left to right.

o After reading each symbol, M1 moves from one state to another along the

transition that has that symbol as its label.

o When M1 reads the last symbol of the input it produces the output: accept if

M1 is in an accept state, or reject if M1 is not in an accept state.

 Applications

o It plays an important role in complier design.

o In switching theory and design and analysis of digital circuits automata theory

is applied.

o Design and analysis of complex software and hardware systems.

o To prove the correctness of the program automata theory is used.

o To design finite state machines such as Moore and mealy machines.

o It is base for the formal languages and these formal languages are useful of the

programming languages.

 Types of Finite Automata

o Finite Automata without output

o Deterministic Finite Automata (DFA)

o Non-Deterministic Finite Automata (NFA or NDFA)

o Non-Deterministic Finite Automata with ε move (ε-NFA or ε-NDFA)

o Finite Automata with output

o Moore Machine

o Mealy Machine

States
Input

0 1

{q0} {q1} {q0}

{q1} - {q2}

*{q2} - -

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

6 / 28

Deterministic Finite Automata (DFA)

Deterministic Finite Automaton is a FA in which there is only one path for a specific

input from current state to next state. There is a unique transition on each input symbol.

 Formal Definition of Deterministic Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)

where

Q is a finite set called the states

Σ is a finite set called the alphabet

δ : Q ×Σ → Q is the transition function

q0 ∈ Q is the start state also called initial state

F ⊆ Q is the set of accept states, also called the final states

Non-Deterministic Finite Automata (NDFA or NFA)

Non-Deterministic Finite Automaton is a FA in which there many paths for a

specific input from current state to next state.

 Formal Definition of Non-Deterministic Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)

where

Q is a finite set called the states

Σ is a finite set called the alphabet

δ : Q ×Σ → 2
Q
 is the transition function

q0 ∈ Q is the start state also called initial state

F ⊆ Q is the set of accept states, also called the final states

S0

S2

q2 S1 1

0

1 1

0

0

q2 q0 q1 q2
0 1

 0
 1

 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

7 / 28

Finite Automaton with ε- moves
The finite automata is called NFA when there exists many paths for a specific input

or ε from current state to next state. The is a character used to indicate null string.

 Formal Definition of Non-Deterministic Finite Automata

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)

where

Q is a finite set called the states

Σ is a finite set called the alphabet

δ : Q ×(Σ {ε}) → 2
Q
 is the transition function

q0 ∈ Q is the start state also called initial state

F ⊆ Q is the set of accept states, also called the final states

Differentiate DFA and NFA
Sl. No DFA NFA

1.
DFA is Deterministic Finite

Automata

NFA is Non-Deterministic Finite

Automata

2.

For given state, on a given input

we reach to deterministic and

unique state.

For given state, on a given input

we reach to more than one state.

3.
DFA is a subset of NFA Need to convert NFA to DFA in

the design of complier.

4.
δ : Q ×Σ → Q

Example: δ(q0, a) = {q1}

δ : Q ×Σ → 2
Q

Example : δ(q0, a) = {q1, q2}

Problems for Finite Automata
1. Design FA which accepts odd number of 1’s and any number of 0’s.

2. Design FA to accept the string that always ends with 00.

q2 q0 q1 q2

 0
 1

 1

S0

S2

q2 S1 1

0

1 1

0

0

q2 q0 q1 q2
0 0

1

1

1

0

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

8 / 28

3. Design FA to check whether given unary number is divisible by three.

4. Design FA to check whether given binary number is divisible by three.

5. Obtain the closure of states q0 and q1 in the following NFA with transition.

Solution:

 - CLOSURE {q0} = {q0, q1,q2}

 - CLOSURE {q1} = {q1,q2}

6. Obtain closure of each state in the following NFA with move.

Solution:

 - CLOSURE {q0} = {q0, q1,q2}

 - CLOSURE {q1} = {q1,q2}

 - CLOSURE {q2} = {q2}

Tutorial:

7. Design Finite Automata which accepts the only 0010 over the input Σ = {0, 1}.

8. Design Finite Automata which checks whether given binary number is even or

odd over the input Σ = {0, 1}.

9. Design Finite Automata which accepts only those strings which starts with ‘a’

and end with ‘b’ over the input Σ = {a, b}.

q0 q1 q2

0 1
2

q2

1 1 1
q2 q0 q1 q2 q1

1

q0 q1 q2

a b c

S0

S2

q2 S1 0

1

1 1

0

S3

0

0

0

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

9 / 28

10. Design a DFA to accept the language L = {w | w has both an even number of 0’s

and an even number of 1’s.

11. Design a DFA to accept the language L = {w | w has both an odd number of 0’s

and an odd number of 1’s.

12. Obtain closure of each state in the following NFA with move.

Equivalence of NFA and DFA

For every NFA, there exists an equivalent DFA.

Theorem:

For every NFA, there exists a DFA which simulates the behavior of NFA. If L is the set

accepted by NFA, then there exists a DFA which also accepts L.

Or

Let L be a set accepted by NFA (L(M)), then there exists a DFA that accepts (L(Mʹ)).

Proof:

Let M = (Q, Σ, δ, q0, F) be an NFA for language L, then define DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ).

 The states of Mʹ are all the subset of M.

 The elements in Qʹ will be denoted by [q1, q2, q3, … , qi] and the elements in Q are
denoted by {q1, q2, q3, … , qi}.

 Initial state of NFA is q0, and also an initial state of DFA is q0ʹ =[q0].

 we define
 δʹ ([q1, q2, q3, …, qi],a) = [p1, p2, p3, …, pi]

if only if

δ({q1, q2, q3, …, qi},a) = {p1, p2, p3, …, pi}

This means that whenever in NFA, at the current state {q1, q2, q3, …, qi} if we

get input ‘a’ and it goes to the next states {p1, p2, p3, …, pi} then while constructing

DFA for it the current state is assumed to be [q1, q2, q3, …, qi]. At this state, the input

is ‘a’ and it goes to the next state is assumed to be [p1, p2, p3, …, pi]. On applying

transition function on each of the state’s q1, q2, q3, …, qi the new state may be any of

the state’s from p1, p2, p3, …, pi.

Theorem can be proved with the induction method by assuming length of input string ‘x’.

δʹ(q0ʹ, x) = [q1, q2, q3, …, qi]

if only if

δ(q0, x) = {q1, q2, q3, …, qi}

b

q2 q0 q1 q2
ε ε

a, b

a, b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

10 / 28

Basis method:

 If the input string length is 0. ie. |x|=0 where x = {ε}, then q0ʹ = [q0].

Induction method:

 If we assume that the hypothesis is true for the length of input string is less than or

equal to ‘m’. Then if ‘xa’ is a length of string is m+1. Hence the transition function (δʹ) could

be written as,

 δʹ (q0ʹ, xa) = δʹ (δʹ (q0ʹ, x),a)

By induction hypothesis,

δʹ(q0ʹ, x) = [p1, p2, p3, …, pi]

if only if

δ(q0, x) = {p1, p2, p3, …, pi}

By definition of δʹ

δʹ([p1, p2, p3, …, pi], a) = [r1, r2, r3, …, ri]

if only if

δ({p1, p2, p3, …, pi}, a) = {r1, r2, r3, …, ri}

Thus,

 δʹ (q0ʹ, xa) = [r1, r2, r3, …, ri]

if only if

 δ (q0, xa) = {r1, r2, r3, …, ri}

Shown by induction hypothesis,

L(M) = L(Mʹ)

Extended Transition Function (δʹʹ or δ^)

 This is used to represent transition functions with a string of input symbols ‘w’ and returns a

set of states. It is represented by δʹʹ or δ^

Suppose w = xa

δ (q, x) = {p1, p2, p3, …, pk}

then

 ∞

 U δʹʹ(pi,a) = {r1, r2, r3, …, rm}

 i=0

δʹʹ(pi, xa) = δʹʹ(δ(q,x) a))

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

11 / 28

Example Problems for Converting NFA into DFA

1. Obtain the DFA equivalent to the following NFA.

 Solution :

 The transition table for given NFA can be drawn as follows

Let the DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ) then, transition function (δʹ) will be computed as,

 δʹ([q0], 0) = [q0, q1] - a new state - A

 δʹ([q0], 1) = [q0]

 δʹ([q1], 0) = -

 δʹ([q1], 1) = [q2]

 δʹ([q2], 0) = -

δʹ([q2], 1) = -

 δʹ([qo,q1],0) = [q0,q1]

 δʹ([qo,q1],1) = [q0,q2] a new state - B

δʹ([qo,q2],0) = [q0,q1]

 δʹ([qo,q2],0) = [q0]

The transition table for DFA

 The transition diagram for DFA

States
Input

0 1

{q0} {q0}{q1} {q0}

{q1} - {q2}

*{q2} - -

States
Input

0 1

[q0] [q0, q1] [q0]

[q1] - [q2]

*[q2] - -

[q0, q1] [q0, q1] [q0, q2]

*[q0, q2] [q0, q1] [q0]

q2 q0 q1 q2
0 1

0, 1

1
0

q2 q0 A B
0 1

1 0

q21

q1

q2

1

1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

12 / 28

2. Let M = ({q0, q1}, {0,1}, δ, q0, {q1}) be NFA. Where δ (q0, 0) = {q0, q1},

 δ (q0, 1) = {q1}, δ (q1, 0) = {}, δ (q1, 1) = {q0, q1}. Construct its equivalent DFA.

Solution :

 The transition table for NFA

The transition diagram for NFA

Let the DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ) then, transition function (δʹ) will be computed as,

 δʹ ([q0], 0) = [q0, q1] -a new state A

 δʹ([q0], 1) = [q1]

 δʹ([q1], 0) =

 δʹ([q1], 1) = [q0]

 δʹ([q0,q1],0) = [q0,q1]

 δʹ([qo,q1],1) = [q0,q1]

The transition table for DFA

The transition diagram for DFA

States
Input

0 1

{q0} {q0}{q1} {q1}

*{q1} {q0}{q1}

States
Input

0 1

[q0] [q0, q1] [q1]

*[q1] [q0]

*[q0, q1] [q0, q1] [q0, q1]

0

q2 q0 q1

0, 1

1

1

0

q0

[q0,q1]

1
q1

1

0, 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

13 / 28

Tutorial:

3. Obtain the DFA equivalent to the following NFA.

4. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be NFA. Where δ (q0, 0) = {q0, q1},

 δ (q0, 1) = {q1}, δ (q1, 0) = {q2,q3}, δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2},

 δ (q2, 1) = {q0, q3}, δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, Construct its equivalent

 DFA.

Equivalence of NDFA’s with and without ε-moves

Theorem:

If L is accepted by NFA with ε-moves, then there exists L which is accepted by NFA

without ε-moves.

Proof:

Let M = (Q, Σ, δ, q0, F) be an NFA with ε-moves for language L, then define NFA without

ε-moves Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ).

 The elements in Qʹ will be denoted by [q1, q2, q3, … , qi] and the elements in Q are
denoted by {q1, q2, q3, … , qi}.

 Initial state of NFA with ε-moves is q0, and also an initial state of NFA without ε-moves
is q0ʹ =[q0].

 Fʹ =

 δʹ can be denoted by δʹʹ with some input.

Basis:

 |X| = 1, where X is a symbol ‘a’.

 δʹ(q0,a) = δʹʹ(q0,a)

Induction:

 |X| > 1, Let X = wa

 δʹ(q0,wa) = δʹ(δʹʹ(q0,w),a)

By induction hypothesis,

 δʹ(q0,w) = δʹʹ(q0,w) = p

Now we will show that

 δʹ(p,a) = δ(q0,wa)

But,

 δʹ(p,a) = δʹ(q,a) = δʹʹ(q,a) as p = δʹʹ(q0,w)

We have

δʹʹ(q,a) = δʹʹ(q0,wa)

Thus by definition of δʹʹ

δʹ(q0,wa) = δʹʹ(q0,wa)

a, b

q2 q0 q1 q2
b a

a, b

a, b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

14 / 28

Example Problems for Converting NFA with into NFA without

1. Construct NFA without from NFA with .

Solution:

Find the ε – closure function of all states:

ε – closure (q0) = {q0, q1, q2}

ε – closure (q1) = {q1, q2}

ε – closure (q2) = {q2}

Compute δʹ function:

 δʹ(q0,0) = δʹʹ (q0,0) = ε – closure (δ(δʹ(q0,ε),0))

 = ε – closure (δ({q0,q1,q2},0))

 = ε – closure (q0) = {q0,q1,q2}

 δʹ(q0,1) = δʹʹ (q0,1) = ε – closure (δ(δʹ(q0,ε),1))

 = ε – closure (δ({q0,q1,q2},1))

 = ε – closure (q1) = {q1,q2}

 δʹ(q0,2) = δʹʹ (q0,2) = ε – closure (δ(δʹ(q0,ε),2))

 = ε – closure (δ({q0,q1,q2},2))

 = ε – closure (q2) = {q2}

 δʹ(q1,0) = δʹʹ (q1,0) = ε – closure (δ(δʹ(q1,ε),0))

 = ε – closure (δ({q1,q2},0))

 = ε – closure () = {}
 δʹ(q1,1) = δʹʹ (q1,1) = ε – closure (δ(δʹ(q1,ε),1))

 = ε – closure (δ({q1,q2},1))

 = ε – closure (q1) = {q1,q2}

 δʹ(q1,2) = δʹʹ (q1,2) = ε – closure (δ(δʹ(q1,ε),2))

 = ε – closure (δ({q1,q2},2))

 = ε – closure (q2) = {q2}

 δʹ(q2,0) = δʹʹ (q2,0) = ε – closure (δ(δʹ(q2,ε),0))

 = ε – closure (δ({q2},0))

 = ε – closure () = {}

 δʹ(q2,1) = δʹʹ (q2,1) = ε – closure (δ(δʹ(q2,ε),1))

 = ε – closure (δ({q2},1))

 = ε – closure () = {}
 δʹ(q2,2) = δʹʹ (q2,2) = ε – closure (δ(δʹ(q2,ε),2))

 = ε – closure (δ({q2},2))

 = ε – closure (q2) = {q2}

q0 q1 q2

0 1
2

q2

ε – closure (q0)

= { q0,q1,q2}

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

15 / 28

The transition table for NFA

The transition diagram for NFA

2. Construct NFA without from NFA with .

Solution:

Find the ε – closure function of all states:

ε – closure (q0) = {q0, q1}

ε – closure (q1) = {q1}

Compute δʹ function:

 δʹ(q0,0) = δʹʹ (q0,0) = ε – closure (δ(δʹ(q0,ε),0))

 = ε – closure (δ({q0,q1},0))

 = ε – closure (q0) = {q0,q1}

 δʹ(q0,1) = δʹʹ (q0,1) = ε – closure (δ(δʹ(q0,ε),1))

 = ε – closure (δ({q0,q1},1))

 = ε – closure (q1) = {q1}

 δʹ(q1,0) = δʹʹ (q1,0) = ε – closure (δ(δʹ(q1,ε),0))

 = ε – closure (δ({q1},0))

 = ε – closure () = {}

 δʹ(q1,1) = δʹʹ (q1,1) = ε – closure (δ(δʹ(q1,ε),1))

 = ε – closure (δ({q1},1))

 = ε – closure (q1) = {q1}

 The transition table for NFA

States
Input

0 1 2

q0 {q0,q1,q2} {q1,q2} {q2}

q1 {} {q1,q2} {q2}

*q2 {} {} {q2}

States
Input

0 1

*q0 {q0,q1} {q1}

*q1 {} {q1}

q0 q1 q2

0 1
2

1,2 0,1
q2

0,1,2

0

q2 q0

1

q2 q1

ε

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

16 / 28

The transition diagram for NFA

Tutorial:

1. Obtain the NFA equivalent to the following NFA with -move.

2. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be -NFA.

Where δ (q0, 0) = {q0, q1}, δ (q0, 1) = {q1}, δ (q1, 0) = {q2,q3}, δ (q1, ε) = {q1},

δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2}, δ (q2, ε) = {q3}, δ (q2, 1) = {q0, q3,},

δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, δ (q3, ε) = {q0}. Construct its equivalent

NFA.

Example Problems for Converting NFA with -move into DFA

1. Construct DFA from the following -NFA.

Solution:

ε – closure (q0) = {q0, q1, q2} A new state in DFA

ε – closure (δ (A, a)) = ε – closure (q0,q2)

 = {q0, q1, q2} A

ε – closure (δ (A, b)) = ε – closure (q0,q1,q2)

 = {q0, q1, q2} A

The transition table for DFA

The transition diagram for DFA

States
Input

A b

*A A A

0

q2 q0

1

q2 q1

0,1

b

q2 q0 q1 q2
ε ε

a, b

a, b

b

q2 q0 q1 q2
ε ε

a, b

a, b

a,b

q2 A

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

17 / 28

2. Construct DFA from the following -NFA.

Solution:

ε – closure (p) = {p,q,r} A new state in DFA

ε – closure (δ (A, 0)) = ε – closure (p,r) = ε – closure (p) ε – closure (r)

 = {p,q,r} {r,s} = {p,q,r,s} B new state in DFA

ε – closure (δ (A, 1)) = ε – closure (q,s) = ε – closure (q) ε – closure (s)

 = {q,r} {p,q,r,s} = {p,q,r,s} B

ε – closure (δ (B, 0)) = ε – closure (p,r) = ε – closure (p) ε – closure (r)

 = {p,q,r} {r,s} = {p,q,r,s} B

ε – closure (δ (B, 1)) = ε – closure (q,s) = ε – closure (q) ε – closure (s)

 = {q,r} {p,q,r,s} = {p,q,r,s} B

The transition table for DFA

The transition diagram for DFA

States
Input

0 1

A B B

*B B B

0

p

q2 s

1

q

0

r

ε

0

ε ε

0

ε

1

0,1

q2 B A
0,1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

18 / 28

Tutorial:

1. Obtain the DFA equivalent to the following NFA with -move.

2. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be -NFA.

Where δ (q0, 0) = {q0, q1}, δ (q0, 1) = {q1}, δ (q1, 0) = {q2,q3}, δ (q1, ε) = {q1},

δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2}, δ (q2, ε) = {q3}, δ (q2, 1) = {q0, q3,},

δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, δ (q3, ε) = {q0}. Construct its equivalent

DFA.

Minimization of DFA
 DFA minimization stands for converting a given DFA to its equivalent DFA with

minimum number of states.

 Suppose there is a DFA M = (Q, ∑, q0, δ, F) which recognizes a language L. Then the

minimized DFA M = (Q’, ∑, q0, δ’, F’) can be constructed for language L as:

1. We will divide Q (set of states) into two sets. One set will contain all final states

and other set will contain non-final states. This partition is called P0.

2. Initialize k = 1

3. Find Pk by partitioning the different sets of Pk-1. In each set of Pk-1, we will take

all possible pair of states. If two states of a set are distinguishable, we will split the

sets into different sets in Pk.

4. Stop when Pk = Pk-1 (No change in partition)

5. All states of one set are merged into one. No. of states in minimized DFA will be

equal to no. of sets in Pk.

Example:
Consider the following DFA into minimized DFA.

q0 q1 q2

0 1
2

q2

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/fig-11.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/fig-11.png

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

19 / 28

Solution:

Transition Table for DFA

States
Inputs

0 1

q0 q3 q1

*q1 q2 q5

*q2 q2 q5

q3 q0 q4

*q4 q2 q5

q5 q5 q5

Step 1: Divide into two sets. One set is containing final states and other set containing

non-final states.

States
Inputs Partition

(P0) 0 1

q0 q3 q1
Non-Final

States
q3 q0 q4

q5 q5 q5

*q1 q2 q5

Final States *q2 q2 q5

*q4 q2 q5

Step 2: To calculate P1, we will check whether sets of partition P0 can be partitioned or

not:

For set { q1, q2, q4 } :

 δ (q1, 0) = δ (q2, 0) = q2 and δ (q1, 1) = δ (q2, 1) = q5, So q1 and q2 are
not distinguishable.

 Similarly, δ (q1, 0) = δ (q4, 0) = q2 and δ (q1, 1) = δ (q4, 1) = q5, So q1
and q4 are not distinguishable.

 So, q2 and q4 are not distinguishable. So, {q1, q2, q4} set will not be

partitioned in P1.

States
Inputs Partition

(P0) 0 1

q0 q3 q1
Non-Final

States
q3 q0 q4

q5 q5 q5

*q1 q2 q5

Final States *q2 q2 q5

*q4 q2 q5

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

20 / 28

Step 3: Remove q2 and q4 row from the table and replace q2 and q4 into q1 where

however present in the table.

States
Inputs Partition

(P0) 0 1

q0 q3 q1
Non-Final

States
q3 q0 q4 q1

q5 q5 q5

*q1 q1 q5
Final

States

Step 4:

 δ (q0, 0) = q3 and δ (q3, 0) = q0 - Moves of q0 and q3 on input symbol 0

are q3 and q0 respectively which are in same set in partition P0.

 δ (q0, 1) = δ (q3, 1) = q1 - Moves of q0 and q3 on input symbol 1 is q1
which are in same set in partition P0.

 So, q0 and q3 are not distinguishable.

Step 5: Remove q3 row from the table and replace q3 into q0 where however present in

the table.

States
Inputs Partition

(P0) 0 1

q0 q3 q0 q1
Non-Final

States
q3 q0 q1

q5 q5 q5

*q1 q1 q5
Final

States

Step 6: Final Transition Table for DFA (no more not distinguishable)

States
Inputs Partition

(P0) 0 1

q0 q0 q1 Non-Final

States q5 q5 q5

*q1 q1 q5
Final

States

Step 7: Transition Diagram for minimized DFA

q2 q1 q0
q5

0 0
0,1

1 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

21 / 28

Tutorial:

1. Consider the following DFA into minimized DFA.

2. Consider the following DFA into minimized DFA.

Finite automata with Output
 Finite automata may have outputs corresponding to each transition. There are two model

or machine for finite automata with output.

Mealy Machine

 A Mealy Machine is an FSM whose output depends on the present state as well as the

present input.

 The value of the output function z(t) depends only on the present state q(t) and present

input λ (t), i.e. z(t) = λ (q(t), x(t))

 The length of output for a mealy machine is equal to the length of input. If input string ,

the output string is also .

Finite Automata

with Output

Mealy Machine Moore Machine

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

22 / 28

 It can be described by a 6 tuples M = (Q, ∑, Δ, δ, λ, q0)

where

 Q is a finite set of states.

 ∑ is a finite set of input symbols

 Δ is a finite set of output symbols

 δ is the input transition function where δ: Q × ∑ → Q

 λ is the output transition function where λ : Q × ∑ → Δ

 q0 is the initial state

 Transition table of mealy machine:

Present State
Input = 0 Input = 1

Next State Output Next State Output

q0 q1 0 q2 0

q1 q1 0 q2 1

q2 q1 1 q2 0

 Transition diagram of mealy machine:

Moore Machine

 Moore machines are FSM whose output depends on the present state as well as the

previous state.

 The value of the output function z(t) depends only on the present state q(t) and

independent of the current input x(t), i.e. z(t) = λ (q(t))

 The length of output for a moore machine is greater than input by 1. If input string , the

output string is Δ= λ (q(t)).

 It can be described by a 6 tuples M = (Q, ∑, Δ, δ, λ, q0)

where

 Q is a finite set of states.

 ∑ is a finite set of input symbols

 Δ is a finite set of output symbols

 δ is the input transition function where δ: Q × ∑ → Q

 λ is the output transition function where λ : Q → Δ

 q0 is the initial state

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

23 / 28

 Transition table of moore machine:

Present State

Next State

Output
Input =

0

Input =

1

q0 q1 q2 0

q1 q1 q3 0

q2 q4 q2 0

q3 q4 q2 1

q4 q1 q3 1

 Transition diagram of moore machine:

Mealy Machine vs. Moore Machine

Mealy Machine Moore Machine

Output depends both upon the present state

and the present input

Output depends only upon the present state.

Generally, it has fewer states than Moore

Machine.

Generally, it has more states than Mealy

Machine.

The value of the output function is a

function of the transitions and the changes,

when the input logic on the present state is

done.

The value of the output function is a function

of the current state and the changes at the

clock edges, whenever state changes occur.

Mealy machines react faster to inputs. They

generally react in the same clock cycle.

In Moore machines, more logic is required to

decode the outputs resulting in more circuit

delays. They generally react one clock cycle

later.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

24 / 28

Transforming Mealy Machine into Moore Machine

 Transform Mealy Machine into Moore Machine for the given input string and the output

string as same (except for the first symbol).

 Algorithm:

 Step 1: Look into the next state column for any state (example q0,q1, …. qi) and
determine the number of different outputs associated with qi in that column

(output column values are same or different).

 Step 2: qi into several different states. The number of such states being equal to

the number of outputs associated with qi.

 Step 3: qi replaced by qi0 for output 0 and qi1 for output 1

 Step 4: Convert Mealy Structure to Moore Structure

 Step 5: Add new start state with output 0 and next states same as the next states of
first state.

 Example:

Consider the Mealy machine described by the transition table given below. To

construct a Moore machine, this is equivalent to mealy machine.

Present State

a = 0 a = 1

Next State Output Next State Output

q1 q3 0 q2 0

q2 q1 1 q4 0

q3 q2 1 q1 1

q4 q4 1 q3 0

Solution:

 Step 1: Look into the next state column for any state (example q0,q1, …. qi) and

determine the number of different outputs associated with qi in that column (output column

values are same or different).

Present State

a = 0 a = 1
Determine same or

different output

Next State Output Next State Output

q1 q3 0 q2 0 same

q2 q1 1 q4 0 different

q3 q2 1 q1 1 same

q4 q4 1 q3 0 different

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

25 / 28

Step 2: q2 split into q20 and q21 states. Similarly q4 split into q40 and q41.

Present State

a = 0 a = 1

Next State Output Next State Output

q1 q3 0 q2 0

 q20

 q2

 q21

q1 1 q4 0

q3 q2 1 q1 1

 q40

 q4

 q41

q4 1 q3 0

Present State

a = 0 a = 1

Next State Output Next State Output

q1 q3 0 q2 0

q20 q1 1 q4 0

q21 q1 1 q4 0

q3 q2 1 q1 1

q40 q4 1 q3 0

q41 q4 1 q3 0

Step 3: q2 replaced by q20 for output 0 and q21 for output 1, similarly q4 replaced by q40

for output 0 and q41 for output 1

Present State

a = 0 a = 1

Next State Output Next State Output

q1 q3 0 q20 0

q20 q1 1 q40 0

q21 q1 1 q40 0

q3 q21 1 q1 1

q40 q41 1 q3 0

q41 q41 1 q3 0

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

26 / 28

Step 4: Convert Mealy Structure to Moore Structure

Present State

Next State

Output

a = 0 a = 1

q1 q3 q20 1

q20 q1 q40 0

q21 q1 q40 1

q3 q21 q1 0

q40 q41 q3 0

q41 q41 q3 1

Step 5: Add new start state with output 0 and next states same as the next states of first state.

Present State

Next State

Output

a = 0 a = 1

q0 q3 q20 0

q1 q3 q20 1

q20 q1 q40 0

q21 q1 q40 1

q3 q21 q1 0

q40 q41 q3 0

q41 q41 q3 1

Transition Diagram for Moore Machine

1
q0/
0

1

0

0 q3/
0

q20/
0

q1/
1

0

1

0

q40/

0

1

q21/
1

1

1

0
1

q41/

1

0

1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

27 / 28

Transforming Moore Machine into Mealy Machine

 Transform Mealy Machine into Moore Machine for the given input string and the output

string as same.

 Algorithm:

 Step 1: Remove output column from moore table and add output column to
mealy table

 Step 2: Fill the output column from moore table.

Example:

Consider the Moore machine described by the transition diagram given below. To

construct a Mealy machine, which is equivalent to moore machine.

 Transition Table for Moore Machine

Present State

Next State

Output

a = 0 a = 1

q0 q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q0 1

Solution:

Step 1: Remove output column from moore table and add output column to mealy table

 Transition Table for Mealy:

Present State

a = 0 a = 1

Next State Output Next State Output

q0 q3 1 q1 1

q1 q1 1 q2 0

q2 q2 0 q3 1

q3 q3 1 q0 0

q0/

0

1

0

0

q3/

1

q1/

1

q2/
0

1

1
0

0

1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – I

28 / 28

Transition Diagram for Mealy:

Tutorial Problems:

1. Construct the moore machine from the given mealy machine.

2. Construct the moore machine from the given mealy machine.

q0

1/1

0/1

0/1 q3

q1

q2

1/0

1/1
0/0

0/1

1/0

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – II

1 / 2

Syllabus : Unit – II : Regular Expressions and Regular sets

Regular expressions – Regular languages - Identity rules for regular expressions – Equivalence of
finite automata and regular expressions – Pumping lemma for regular sets – Applications of the
Pumping lemma - Closure proportions of regular sets (Without proof)

Equivalence of finite Automaton and regular expressions

Regular Languages
A language is called regular language if there exists a finite automaton that recognizes

it. For example finite automaton M recognizes the language L if L = {w | M accepts w}.

 Operations on Regular Languages

Let A and B be languages. We define regular operations union, concatenation,

and star as follows:

- Union : A ∪ B = {x | x ∈ A ∨ x ∈ B}

- Concatenation : A ◦ B = {xy | x ∈ A ∧ y ∈ B}

- Star : A* = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A, 1 ≤ i ≤ k}

Regular Expression
Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are

defined recursively as follows:

a. Ø is a regular expression and denotes the empty set.

b. is a regular expression and denotes the set {}

c. For each ‘a’ Σ, ‘a’ is a regular expression and denotes the set {a}.

d. If ‘r’ and ‘s’ are regular expressions denoting the languages L1 and L2

respectively then

 Union : r + s is equivalent to L1 U L2

 Concatenation : rs is equivalent to L1L2

 Closure : r
*
 is equivalent to L1

*

Problems for Regular Expression

1. Write the regular expression for the language accepting all combinations of a’s

over the set = {a}.

L = { a,aa,aaa,………………….}

R= a
*

(i.e. kleen closure)

2. Write regular expression for the language accepting the strings which are

starting with 1 and ending with 0, over the set = {0,1}.

L = { 10,1100,1010,100010………………….}

R= 1(0+1)
*
0

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D.,

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – II

2 / 2

3. Show that (0*1*)* = (0+1)*.

LHS : (0*1*)* = { , 0,1,00,11,0011,011,0011110……………….}

RHS : (0+1)* = { , 0,1,00,11,0011,011,0011110……………….}

 Hence

LHS = RHS is proved

4. Show that (r+s)* r* + s*.

LHS : (r+s)* = { , r,s,rs,rr,ss,rrrsssr,……………….}

RHS : r* + s* = { , r,rr,rrr………….}U { , s,ss,sss,………….}

 = { , r,rr,rrr,s,ss,ssss……………..}

 Hence

LHS ≠ RHS is proved

5. Describe the following by regular expression

a. L1 = the set of all strings of 0’s and 1’s ending in 00.

b. L2 = the set of all strings of 0’s and 1’s beginning with 0 and ending with .

r1 = (0+1)*00

r2 = 0(0+1)*1

6. Show that (r*)* = r* for a regular expression r.

LHS = r* = { ε, r,rr,rrr, …………….)

 (r*)* = { ε, r,rr,rrr, …………….)*

(r*)* = { ε, r,rr,rrr, …………….) = r*

LHS = RHS

7. If L = {The language starting and ending with ‘a’ and having any combinations

of b’s in between, that what is r?

r1 = a b*a

8. Give regular expression for L= L1 L2 over alphabet {a,b}

where L1 = all strings of even length,

L2 = all strings starting with ‘b’.

 r = r1 + r2

 r = a
n
b

n
 + b (a+b)*

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

1 / 35

Syllabus : Unit – III : Regular Grammars and Context Free Grammars

Types of Grammars - Regular grammars – Right Linear and Left Linear grammars -

Equivalence of regular grammar and Finite Automata - Context free Grammars - Motivation

and introduction - Derivations - Leftmost derivation - Rightmost derivation - Derivation tree

– Ambiguity - Simplification of CFG’s - Chomsky Normal Form - Greibach Normal Form.

Introduction
 Language: “A language is a collection of sentences of finite length all constructed

from a finite alphabet of symbols.”

 Grammar: “A grammar can be regarded as a device that enumerates the sentences of

a language.”

 A formal grammar is a quad-tuple G = (N, T, P, S)

where

N is a finite set of non-terminals

T is a finite set of terminals and is disjoint from N

P is a finite set of production rules of the form w (NT)∗ → w (NT)∗

S N is the start symbol

 Chomsky Hierarchy (Types of grammars)

Class Grammars Languages Automaton Rules

Type-0 Unrestricted

Grammar

Recursively

enumerable

Language

Turing

machine

Rules are of the form:

α → β,

where α and β are arbitrary strings

over a vocabulary V and α ≠ ε

Type-1 Context-

sensitive

Grammar

Context-

sensitive

Language

Linear-

bounded

automaton

Rules are of the form:

αAβ → αBβ

S → ε

where

A, S N

α, β, B (N T)∗ B ≠ ε

Type-2 Context-free

Grammar

Context-free

Language

Pushdown

automaton

Rules are of the form:

A → α

where A N

α (N T)∗

Type-3 Regular

Grammar

Regular

Language

Finite

automaton

Rules are of the form:

A → ε

A → α

A → αB

where A, B N and α T

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

2 / 35

 Scope of each type of grammar

A figure shows the scope of each type of grammar:

 Type - 3 Grammar

 Type-3 grammars generate regular languages. Type-3 grammars must have a
single non-terminal on the left-hand side and a right-hand side consisting of a

single terminal or single terminal followed by a single non-terminal.

 The productions must be in the form

X → a

X → aY

where X, Y ∈ N (Non terminal) and a ∈ T (Terminal)

 The rule S → ε is allowed if S does not appear on the right side of any rule.

 Example
X → ε

X → a | aY

Y → b

 Type - 2 Grammar

 Type-2 grammars generate context-free languages. These languages generated by

these grammars are be recognized by a non-deterministic pushdown automaton.

 The productions must be in the form
A → γ

where A ∈ N (Non terminal) and γ ∈ (T ∪ N)* .

 Example

S → X a

X → a

X → aX

X → abc

X → ε

 Type - 1 Grammar

 Type-1 grammars generate context-sensitive languages.

 The productions must be in the form
α A β → α γ β

Where A ∈ N (Non-terminal) and α, β, γ ∈ (T ∪ N)*

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

3 / 35

 The strings α and β may be empty, but γ must be non-empty.

 The rule S → ε is allowed if S does not appear on the right side of any rule. The

languages generated by these grammars are recognized by a linear bounded

automaton.

 Example
AB → AbBc

A → bcA

B → b

 Type - 0 Grammar

 Type-0 grammars generate recursively enumerable languages. The productions
have no restrictions. They are any phase structure grammar including all formal

grammars.

 They generate the languages that are recognized by a Turing machine.

 The productions can be in the form of

α → β

where α is a string of terminals and non-terminals with at least one non-

terminal and α cannot be null. β is a string of terminals and non-terminals.

 Example
S → ACaB

Bc → acB

CB → DB

aD → Db

Regular grammars
 Formal Definition of Regular Grammars

 A regular grammar is a mathematical object, G, with four components,

G = (N, T, P, S)

Where

N is a nonempty, finite set of non-terminal symbols

T is a finite set of terminal symbols

P is a set of grammar rules, each of one having one of the forms

A → aB

A → a

A → ε, for A, B N, a T, and ε the empty string

S is the start symbol S ∈ N

 Definition: The Language Generated by a Regular Grammar

 Let G = (N, T, P, S) be a regular grammar. We define the language generated by
G to be L(G)

 L(G) = {w | S ⇒ * w, where w T*}

Linear grammar
 A linear grammar is a context-free grammar that has at most one non-terminal symbol

on the right hand side of each grammar rule.

S → aA

A → aB

B → Bb

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

4 / 35

Left Linear grammars
 A left linear grammar is a linear grammar in which the non-terminal symbol always

occurs on the left side.

 In a grammar if all productions are in the form

A→ B α

A→ α where A,B V and α T
*

 Example

A → Aa / Bb / b

Right Linear grammars
 A right linear grammar is a linear grammar in which the non-terminal symbol always

occurs on the right side.

 In a grammar if all productions are in the form

A→ α B

A→ α where A,B V and α T
*

 Example

A → aA / bB / b

Converting Left Linear grammars into Right Linear grammars
 Algorithm:

1. If the left linear grammar has a rule S → a, then make that a rule in the right

linear grammar

2. If the left linear grammar has a rule A → a, then add the following rule to the

right linear grammar: S → aA

3. If the left linear grammar has a rule B → Aa, add the following rule to the

right linear grammar: A → aB

4. If the left linear grammar has a rule S → Aa, then add the following rule to the

right linear grammar: A → a

 Example 1:

 Example 2:

Left Linear Grammar

S → Ab

S → Sb

A → Aa

A → a

Step 1: Make new non-terminal

 S0 → S

S → Ab

S → Sb

A → Aa

A → a

Left Linear Grammar
S → Aa

A → ab

Right Linear Grammar
S → abA

A → a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

5 / 35

Step 2: If the left linear grammar has this rule A → p, then add the following

rule to the right linear grammar: S → pA

Left Linear Grammar Left Linear Grammar

S0 → S S0 → aA

S → Ab

S → Sb

A → Aa

A → a

Step 3: If the left linear grammar has a rule B → Ap, add the following rule

to the right linear grammar: A → pB

Left Linear Grammar Left Linear Grammar

S0 → S S0 → aA

S → Ab A → bS

S → Sb A → aA

A → Aa S → bS

A → a

Step 4: If the left linear grammar has S → Ap, then add the following rule to

the right linear grammar: A → p

Left Linear Grammar Left Linear Grammar

S0 → S S0 → aA

S → Ab A → bS

S → Sb A → aA

A → Aa S → bS

A → a S → ε

Step 5: Equivalent Right Linear Grammar:

S0 → aA

A → bS

A → aA

S → bS

S → ε

Equivalence of regular grammar and Finite Automata

 Conversion of Finite Automata to Right Linear Regular Grammar

1. Algorithm:

1. Repeat the process for every state.

2. Begin the process from start state.

3. Write the production as the output followed by the state on which the

transition is going.

4. And at the last add ε because that’s required to end the derivation.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

6 / 35

 Problems for Finite Automata to Right Linear Regular Grammar:

1. Construct Right Linear Grammar from the given Finite Automata

1) Pick start state and output is on symbol 'a' we are going on state B

So, we will write as :

A → aB

2) Then we will pick state B and then we will go for each output.

So, we will get the below production.

B→aB/bB/ε

3) So, final we got right linear grammar as:

 A → aB

 B → aB/bB/ε

2. Construct Right Linear Grammar from the given Finite Automata

1) Pick start state and output is on symbol 'ab' we are going on state A

So, we will write as :

S → abA

2) Pick start state and output is on symbol 'ba' we are going on state B

So, we will write as :

S → baA

3) Pick start state and output is on symbol 'ε ' we are going on state B and C

So, we will write as :

S → B and S → ε (C is final state)

4) Then we will pick state A and then we will go for each output.

So, we will get the below production.

A→ bS and A→ b (C is final state)

5) Then we will pick state B and then we will go for each output.

So, we will get the below production.

B→ aS

6) Then we will pick state C and then we will go for each output.

So, we will get the below production.

C→ ε

7) So, final we got right linear grammar as:

S → abA / baA / B / ε

A→ bS / b

B → aS

C → ε

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

7 / 35

 Conversion of Regular language to Right Linear Regular Grammar

Algorithm:

1. Construct Finite automata from regular language.

2. Repeat the process for every state.

3. Begin the process from start state.

4. Write the production as the output followed by the state on which the

transition is going.

5. And at the last add ε because that’s required to end the derivation.

 Problems for Regular language to Right Linear Regular Grammar:

3. Construct Regular language from the given Finite Automata

L = {All strings start with ‘a’ over = (a+b)*}.

1) Construct Finite automata from given regular language.

2) Pick start state and output is on symbol 'a' we are going on state B

So, we will write as :

A → aB

3) Then we will pick state B and then we will go for each output.

So, we will get the below production.

B→aB/bB/ε

4) So, final we got right linear grammar as:

 A → aB

 B → aB/bB/ε

 Conversion of Regular expression to Right Linear Regular Grammar

Algorithm:

1. Construct Finite automata from regular expression.

2. Repeat the process for every state.

3. Begin the process from start state.

4. Write the production as the output followed by the state on which the

transition is going.

5. And at the last add ε because that’s required to end the derivation.

 Problems for Regular language to Right Linear Regular Grammar:

4. Construct Regular Expression from the given Finite Automata

r = a(a+b)*

1) Construct Finite automata from given regular expression.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

8 / 35

2) Pick start state and output is on symbol 'a' we are going on state B

So, we will write as :

A → aB

3) Then we will pick state B and then we will go for each output.

So, we will get the below production.

B→aB/bB/ε

4) So, final we got right linear grammar as:

 A → aB

 B → aB/bB/ε

Tutorial Questions:

5. Construct Right Linear Grammar from the given Finite Automata

6. Construct Right Linear Grammar from the given Finite Automata

7. Construct Right Linear Grammar from the given Finite Automata

8. Construct Right Linear Grammar from the following Regular Languages.

a. L = {All the strings starting and ending with ‘a’ and having any

combinations of b’s in between over = (a, b)}.

b. L = {The set of all strings of 0’s and 1’s ending in 00 over = (0, 1)}.
c. L = {The set of all strings of 0’s and 1’s beginning with 0 and ending with

1 over = (0, 1)}.

9. Construct Right Linear Grammar from the following Regular Expressions.

a. r = (0+1)*11

b. r = a(a+b)*b

1
0

q2 S A B
0 1

1 0

a, b

q2 q0 q1 q2
b a

a, b

a, b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

9 / 35

 Conversion of Right Linear Regular Grammar to Finite Automata

Algorithm:

Given a regular grammar G, a finite automata accepting L(G) can be obtained as

follows:

1. The number of states in the automata will be equal to the number of non-

terminals plus one. Each state in automata represents each non-terminal in the

regular grammar. The additional state will be the final state of the automata.

The state corresponding to the start symbol of the grammar will be the initial

state of automata. If L(G) contains ϵ that is start symbol is grammar devices to

ϵ, then make start state also as final state.

2. The transitions for automata are obtained as follows:

 For every production A → aB, then make δ(A, a) = B that is make an

are labeled ‘a’ from A to B.

 For every production A → a, then make δ(A, a) = final state.

 For every production A → ϵ, then make δ(A, ϵ) = A and A will be final

state.

 Problems for Right Linear Regular Grammar to Finite Automata

1. Construct a Finite Automata from the given Right Linear Grammar

A → aB/bA/b

 B → aC/bB

 C → aA/bC/a

 Solution:

 Step 1: Take the ‘A’ productions, then will make transition functions

A → aB δ(A, a) = B

A → bA δ(A, b) = A

A → b δ(A, b) = Final State

Step 2: Take the ‘B’ productions, then will make transition functions

B → aC δ(B, a) = C

B → bB δ(B, b) = B

Step 3: Take the ‘C’ productions, then will make transition functions

C → aA δ(C, a) = A

C → bC δ(C, b) = C

C → b δ(C, b) = Final State

Step 4: Construct Finite Automata

 * State D is a new final State
 D

A B

b

a
C

a

b

a

b

b a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

10 / 35

2. Construct a Finite Automata from the given Right Linear Grammar

S → A / B / ε

 A → 0S/1B/0

 B → 0S/1A/1

 Solution:

 Step 1: Take the ‘S’ productions, then will make transition functions

S → A δ(S, ε) = A

S → B δ(S, ε) = B

S → ε δ(S, ε) = S and S is make Final State

Step 2: Take the ‘A’ productions, then will make transition functions

A → 0S δ(A, 0) = S

A → 1B δ(A, 1) = B

A → 0 δ(A, 0) = Final State

Step 3: Take the ‘B’ productions, then will make transition functions

B → 0S δ(B, 0) = S

B → 1A δ(B, 1) = A

B → 1 δ(B, 1) = Final State

Step 4: Construct Finite Automata

* State C is a new final State

Step 5: Reconstructed Finite Automata (after removing state C)

 S A
ε

B
1

ε

0 1

0

 C

0

1

 S A
ε

B
1

ε

0

0,1

1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

11 / 35

Tutorial Questions:

3. Construct a Finite Automata from the given Right Linear Grammar

S → abA / baA / B / ε

A→ bS / b

B → aS

C → ε

4. Construct a Finite Automata from the given Right Linear Grammar

A → aB

 B → aB/bB/ε

5. Give the Finite Automata from the given Right Linear Grammar

S → 0S/1A/1/0B/0

A → 0A/1B/0/1

B → 0B/1A/0/1

 Conversion of Finite Automata to Left Linear Regular Grammar

Algorithm:

1. Take reverse of the finite automata

2. Remove unreachable state.

3. Then write right linear grammar using the following steps

i. Repeat the process for every state.

ii. Begin the process from start state.

iii. Write the production as the output followed by the state on which

the transition is going.

iv. And at the last add ε because that’s required to end the derivation.

4. Then take reverse of the right linear grammar

5. And you will get the final left linear grammar

 Problems for Finite Automata to Left Linear Regular Grammar:

1. Construct Left Linear Grammar from the given Finite Automata

1) Take reverse of the finite automata (make final state as initial state and vice-

versa)

2) Remove unreachable state.

There is no unreachable state

B q2 A
a

a,b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

12 / 35

3) Then write right linear grammar

a. Pick start state and output is on symbol 'a' we are going on state A and

B. So, we will write as :

B → aA / aB

b. Pick start state and output is on symbol 'b' we are going on state B. So,

we will write as :

B → bB

c. Then we will pick state A and then we will go for each output.

So, we will get the below production.

A→ ε

d. So, final we got right linear grammar as:

 B→ aA / aB / bB

 A → ε

4) Then take reverse of the right linear grammar

B→ Aa / Ba / Bb

 A → ε

5) Final left linear grammar

B→ Aa / Ba / Bb

A → ε

2. Construct Left Linear Grammar from the given Finite Automata

1) Take reverse of the finite automata (make final state as initial state and vice-

versa)

2) Remove unreachable state.

State C is unreachable state, So remove state from the above FA

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

13 / 35

3) Then write right linear grammar

a. Pick start state and output is on symbol 'a' we are going on state A and

B. So, we will write as :

B → aA / aB

b. Pick start state and output is on symbol 'b' we are going on state B. So,

we will write as :

B → bB

c. Then we will pick state A and then we will go for each output.

So, we will get the below production.

A→ ε

d. So, final we got right linear grammar as:

 B→ aA / aB / bB

 A → ε

4) Then take reverse of the right linear grammar

B→ Aa / Ba / Bb

 A → ε

5) Final left linear grammar

B→ Aa / Ba / Bb

A → ε

Tutorial Questions:

3. Construct Left Linear Grammar from the given Finite Automata

4. Construct Left Linear Grammar from the given Finite Automata

5. Construct Left Linear Grammar from the given Finite Automata

1
0

q2 S A B
0 1

1 0

a, b

q2 q0 q1 q2
b a

a, b

a, b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

14 / 35

 Conversion of Left Linear Regular Grammar to Finite Automata

Algorithm:

Given a regular grammar G, a finite automata accepting L(G) can be obtained as

follows:

1. Take reverse of CFG

2. The number of states in the automata will be equal to the number of non-

terminals plus one. Each state in automata represents each non-terminal in the

regular grammar. The additional state will be the final state of the automata.

The state corresponding to the start symbol of the grammar will be the initial

state of automata. If L(G) contains ϵ that is start symbol is grammar devices to

ϵ, then make start state also as final state.

3. The transitions for automata are obtained as follows:

 For every production A → aB, then make δ(A, a) = B that is make an

are labeled ‘a’ from A to B.

 For every production A → a, then make δ(A, a) = final state.

 For every production A → ϵ, then make δ(A, ϵ) = A and A will be final

state.

4. Then again take reverse of the FA and that will be our final output

5. Start State: It will be the first production's state

6. Final State: Take those states which end up with input alphabets.

 Problems for Finite Automata to Left Linear Regular Grammar

1. Construct a Finite Automata from the given Left Linear Grammar

A → Ba/Ab/b

 B → Ca/Bb

 C → Aa/Cb/a

Solution:

Step 1: Take reverse of CFG

A → aB/bA/b

 B → aC/bB

 C → aA/bC/a

 Step 2: Take the ‘A’ productions, then will make transition functions

A → aB δ(A, a) = B

A → bA δ(A, b) = A

A → b δ(A, b) = Final State

Step 3: Take the ‘B’ productions, then will make transition functions

B → aC δ(B, a) = C

B → bB δ(B, b) = B

Step 4: Take the ‘C’ productions, then will make transition functions

C → aA δ(C, a) = A

C → bC δ(C, b) = C

C → b δ(C, b) = Final State

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

15 / 35

Step 5: Construct Finite Automata

 * State D is a new final State

Step 6: Again take reverse of the FA, this is final output.

2. Construct a Finite Automata from the given Left Linear Grammar

S → A / B / ε

 A → S0/B1/0

 B → S0/A1/1

Solution:

Step 1: Take reverse of CFG

S → A / B / ε

 A → 0S/1B/0

 B → 0S/1A/1

 Step 2: Take the ‘S’ productions, then will make transition functions

S → A δ(S, ε) = A

S → B δ(S, ε) = B

S → ε δ(S, ε) = S and S is make Final State

Step 3: Take the ‘A’ productions, then will make transition functions

A → 0S δ(A, 0) = S

A → 1B δ(A, 1) = B

A → 0 δ(A, 0) = Final State

Step 4: Take the ‘B’ productions, then will make transition functions

B → 0S δ(B, 0) = S

B → 1A δ(B, 1) = A

B → 1 δ(B, 1) = Final State

 D

A B

b

a
C

a

b

a

b

b a

 A

D

B

b

a
C

a

b

a

b

b a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

16 / 35

Step 5: Construct Finite Automata

* State C is a new final State

Step 6: Reconstructed Finite Automata (remove state C)

Step 7: Again take reverse of the FA, this is final output.

Tutorial Questions:

3. Construct a Finite Automata from the given Left Linear Grammar

S → Aab / Aba / B / ε

A→ Sb / b

B → Sa

C → ε

4. Construct a Finite Automata from the given Left Linear Grammar

A → Ba

 B → Ba/Bb/ε

5. Give the Finite Automata from the given Left Linear Grammar

S → S0/A1/1/B0/0

A → A0/B1/0/1

B → B0/A1/0/1

 S A
ε

B
1

ε

0 1

0

 C

0

1

 S A
ε

B
1

ε

0

0,1

1

 S A
ε

B
1

ε

0

0,1

1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

17 / 35

Context free Grammars
 Motivation and introduction

 A Context Free Grammar is a “machine” that creates a language.

 A language created by a CF grammar is called A Context Free Language.

 The class of Context Free Languages Properly Contains the class of Regular
Languages.

 Definition:

A Context Free Grammar is consists of four components. They are finite set of

non-terminals, finite set of terminals, set of productions and start symbol.

 Formal Definition of Context Free Grammars (CFG)

 A CFG is a mathematical object, G, with four components,
G = (N, T, P, S)

Where

N is a nonempty, finite set of non-terminal symbols

T is a finite set of terminal symbols

P is a set of grammar rules, each of one having one of the forms

A → α

Where A N and α (N T)*

S is the start symbol S ∈ N

 Example

Let G = ({S},{0,1,},P,S) be a CFG, where productions are S→ 0S0/1S1/

 Context Free Language: The Language Generated by a Regular Grammar

 Let G = (N, T, P, S) be a regular grammar. We define the language generated by
G to be L(G).

 L(G) = {w | w can be derived from G (or) S
∗
⇒ w, where w T*}

 Conversion of Context Free Language (CFL) into Context Free Grammar (CFG)

1. Construct a CFG representing the set of palindromes over (0+1)*.

The possible strings are

 {,0,1,00,11,000,111,010,101,0000,1111,00100,11011, 01110,10101,....}

 The CFG for a palindrome is given by

 S → 0 / 1 /
 S → 0S0 / 1S1

2. Construct a CFG for the language L = { ; n is odd}.

The possible strings are {, a, aaa, aaaaa, aaaaaaa,}
 The productions are

 G: S → a / aaS

3. Construct a CFG for the language L = { ; n ≥ 0}.

The possible strings are {, ab, aabb, aaabbb, aaaabbbb,}

 The productions are

 G: S → ab / aSb /

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

18 / 35

4. Construct a CFG for the language L = { ; n ≥ 1}.
The possible strings are {01, 0011, 000111, 00001111,}

 The productions are

 G: S → 01 / 0S1

5. Construct a CFG for the language L = { ; n ≥ 0}.

The possible strings are {c, acb, aacbb, aaacbbb, aaaacbbbb,}

 The productions are

 G: S → c / aSb

6. Construct a CFG for the language L = { ; w (a+b)*}.
The possible strings are {c, aca, bcb, abcba, aacaa, bbcbb, bacab, abacaba,

 bbacabba,….}

 The productions are

 G: S → aSa / bSb / c

7. Construct a CFG for the language L = { }.

The possible strings are {aabbab, aabbbababaab, aabbbabbababaabaab,….}

 The productions are

 G: S → ABCD

 A → aab

 B → bba / bbaB

 C → bab

 D → aab / aabD

 Tutorial Questions:

8. Construct a CFG for the language L = { ; n, m ≥ 0}.

9. Construct a CFG for the language L = { ; n ≥ 1}.

10. Construct a CFG for the language L = { ; n ≥ 0, m = n+2}.

 Conversion of Context Free Grammar (CFG) into Context Free Language (CFL)

1. Construct a CFL from the given grammar

G = ({S}, {0,1, } , P, S)
 Where

S → 0 / 1 /

 S → 0S0 / 1S1

Solution:

 If String Length = 1, The Strings are , 0, 1
 If String Length = 2, The Strings are 00, 11

 If String Length = 3, The Strings are 000, 111, 010, 101

If String Length = 4, The Strings are 0000,1111

If String Length = 5, The Strings are 00000,11111, 01010, 10101,

 11011, 00100, 01110, 10001

.....

If String Length > 5, The Strings are
So, The CFL is

 L = { w; All strings are palindrome over {0,1}}

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

19 / 35

2. Construct a CFL from the given grammar

G = ({S}, {0,1, } , P, S)
 Where

S → a / aaS

 Solution:

If String Length = 1, The String is a

 If String Length = 2, The String is aaa

 If String Length = 3, The String is aaaaa

If String Length = 4, The String is aaaaaaa

.....

If String Length > n, The String is aaa......aaaa, n is odd

So, The CFL is

 L = { ; n is odd}.

3. Construct a CFL from the given grammar

G = ({S}, {a, b, c} , P, S)

Where

S → aSa / bSb / c

 Solution:

If String Length = 1, The String is c

 If String Length = 3, The Strings are aca, bcb

 If String Length = 5, The Strings are aacaa, bbcbb, abcba, bacab

.....

If String Length > n, The Strings are aaa...c...aaa, bb...c...bb,

 aba..c..aba, bba....c...bba, ...

So, The CFL is

 L = { ; w (a+b)*}.

Tutorial Questions:

4. Construct a the CFL from the following grammar

S → c / aSb

5. Construct a the CFL from the following grammar

 S → ABCD

 A → aab

B → bba / bbaB

C → bab

D → aab / aabD

6. Construct a the CFL from the grammar G = ({S},{a,b},P,S)}, with productions

S → aSa,

S → bSb,

S → ε

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

20 / 35

Derivations

 A derivation of a string for a grammar is a sequence of grammar rule applications that

transform the start symbol into the string. A derivation proves that the string belongs

to the grammar's language. ie. S
∗
⇒ w, where w T* and w L(G)

 A derivation is fully determined by giving, for each step:

o The rule applied in that step

o The occurrence of its left-hand side to which it is applied

 Example

Consider G whose productions are S → aAS / a, A→ SbA / SS / ba,

 show that S ⇒ aabbaa.

Solution:

S ⇒ aAs

 ⇒ aSbAs [A → SbA]

 ⇒ aabAS [S → a]

 ⇒ aabbaS [A → ba]

 ⇒ aabbaa [S → a]

S
∗
⇒ aabbaa

Leftmost derivation (LMD)

 A leftmost derivation is obtained by applying production to the leftmost variable or

non-terminal in each step.

ie. S
∗
⇒

 w, where w T* and w L(G)

 Problems for LMD

1. Consider G whose productions are S → aAS / a, A→ SbA / SS / ba,

 Show that S ⇒ aabbaa.

Solution:

S ⇒ aAS

 ⇒ aSbAS [A→ SbA]

 ⇒ aabAS [S→ a]

 ⇒ aabbaS [A→ ba]

 ⇒ aabbaa [S→ a]

S

∗
⇒

 aabbaa

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

21 / 35

2. Find a left most derivation for “aaabbabbba” with the productions.

P : S → aB / bA, A → a /S / bAA, B → b / bS / aBB

Solution:

 S ⇒ aB

 ⇒ aaBB [B→ aBB]

 ⇒ aaaBBB [B→ aBB]

 ⇒ aaabBB [B→ b]

 ⇒ aaabbB [B→ b]

 ⇒ aaabbaBB [B→ aBB]

 ⇒ aaabbabB [B→ b]

 ⇒ aaabbabbS [B→ bS]

 ⇒ aaabbabbbA [S→ bA]

 ⇒ aaabbabbba [A→ a]

S

∗
⇒

 aaabbabbba

Rightmost derivation

 A rightmost derivation is obtained by applying production to the rightmost variable or

non-terminal in each step.

ie. S
∗
⇒

 w, where w T* and w L(G)

 Problems for RMD

1. Consider G whose productions are S → aAS / a, A→ SbA / SS / ba,

 Show that S ⇒ aabbaa.

Solution:

S ⇒ aAS

 ⇒ aAa [S→ a]

 ⇒ aSbAa [S→ SbA]

 ⇒ aSbbaa [A→ ba]

 ⇒ aabbaa [S→ a]

S

∗
⇒

 aabbaa

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

22 / 35

2. Find a right most derivation for “aaabbabbba” with the productions.

 P : S → aB / bA, A → a /S / bAA, B → b / bS / aBB

Solution:

 S ⇒ aB

 ⇒ aaBB [B→ aBB]

 ⇒ aaBbS [B→ bS]

 ⇒ aaBbbA [S→ bA]

 ⇒ aaBbba [A→ a]

 ⇒ aaaBBbba [B→ aBB]

 ⇒ aaaBbbba [B→ b]

 ⇒ aaabSbbba [B→ bS]

 ⇒ aaabbAbbba [S→ bA]

 ⇒ aaabbabbba [A→ a]

S
∗
⇒

 aaabbabbba

 Sentential Form or Partial Derivation

o A partial derivation is a part of a derivation. The strings are derived from the

start symbol is called as Sentential form.

o If G =(V,T,P,S) is a CFG, then α (V T)*

S
∗
⇒

 α, where α (V T)* - Sentential Form

S
∗
⇒

 α, where α (V T)* - Left Sentential Form

S
∗
⇒

 α, where α (V T)* - Right Sentential Form

Derivation Tree or Parse Tree - (Pictorial representation of derivation)

 A derivation tree or parse tree is an ordered rooted tree that graphically represents the

semantic information a string derived from a context-free grammar.

 Representation Technique

o Root vertex − Must be labelled by the start symbol.

o Vertex − Labelled by a non-terminal symbol.

o Leaves − Labelled by a terminal symbol or ε.

S

A B a

a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

23 / 35

 Types of Derivation Tree

o Leftmost derivation tree

 A leftmost derivation tree is obtained by applying production to the

leftmost vertex in each step.

 Example: S → ABa, A → a, B →

...

o Rightmost derivation tree

 A rightmost derivation tree is obtained by applying production to the

rightmost vertex in each step.

 Example: S → ABa, A → a, B →

...

S

A B a

a

S

A B a

a

S

A B a

a

S

A B a

a

S

A B a

S

A B a

a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

24 / 35

Ambiguity

 If a context free grammar G has more than one derivation tree (leftmost or rightmost

derivation tree) for some string wL(G), it is called an ambiguous grammar. There

exist multiple right-most or left-most derivations for some string generated from that

grammar.

 Problems for Ambiguity in Context-Free Grammars

1. Check whether the grammar G with production rules S → S+S / S*S / S / a is

ambiguous or not.

Solution:

 Let’s assume a string w = a+a*a

 Parse Tree 1 : Parse Tree 2 :

 Thus we have two parse trees, So the given grammar is ambiguous.

2. Check whether the grammar G with production rules S → E+E / E*E / (E) / id is

ambiguous or not.

Solution:

 Let’s assume a string w = (id*id+id)

 Parse Tree 1 : Parse Tree 2 :

Thus we have two parse trees, so the given grammar is ambiguous.

S

S + S

a S * S

a a

S

S * S

S + S a

a a

E

(E)

 E * E

 id E + E

 id id

E

(E)

 E + E

 E * E id

 id id

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

25 / 35

Tutorial Questions:

1. Show that the grammar defined by the productions

S → SS / a /b is ambiguous.

2. If G is the grammar S → SbS / a, Show that G is ambiguous.

3. Prove that the grammar defined by the productions

S → A1B, A → 0A / , B → 0B / 1B / is unambiguous.

4. Let the production of the grammar be S → 0B / 1A, A → 0 / 0S / 1AA,

B → 1 / 1S / 0BB and the string 0110.

a. Find the left most derivation and associated derivation tree.

b. Find the right most derivation and associated derivation tree.

c. Find the G is ambiguous or not.

d. Find a L(G).

5. G denotes the context-free grammar defined by the following rules.

S→ASB / ab / SS

A→aA / A

B→bB / A

a. Give a left most derivation of “aaabb” in G. Draw the associated parse

tree.

b. Give a right most derivation of “aaabb” in G. Draw the associated parse

tree.

c. Show that G is ambiguous.

d. Find a L(G).

Simplification of CFG’s

 In a CFG, it may happen that all the production rules and symbols are not needed for

the derivation of strings. Besides, there may be some null productions, useless

symbols and unit productions. Elimination of these productions and symbols is

called simplification of CFGs.

 Simplification essentially comprises of the following steps

o Elimination of Useless Symbols or Productions

o Elimination of Null Productions (ie.)

o Elimination of Unit Productions

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

26 / 35

 Elimination of Useless Symbols or Productions

o The productions that can never take part in derivation of any string are called

useless productions. Similarly, a symbol that can never take part in derivation

of any string is called a useless symbol or variable.

o Example

1. Eliminate the useless symbols or productions from the given grammar

G: S → abS / abA / abB

A → cd

B → aB

C → dc

Solution:

Step 1:

The production ‘B →aB’ is useless because there is no way it

will ever terminate. If it never terminates, then it can never

produce a string, then remove all the productions in which

variable ‘B’ occurs.

After eliminating B production and B symbols:

 G1: S → abS / abA

 A → cd

 C → dc

Step 2:

The production ‘C → dc’ is useless because the variable ‘C’

will never occur in derivation of any string, then remove all the

productions in which variable ‘C’ occurs.

After eliminating C production:

G2: S → abS / abA

 A → cd

Step 3: Resultant Grammar

G’: S → abS / abA

 A → cd

Tutorial Questions:

2. Eliminate the useless symbols or productions from the given grammar

S → AC / B, A → a, C → c / BC, E → aA /

3. Remove the useless symbol from the given context free grammar:

S → aB / bX

A → Bad / bSX / a

B → aSB / bBX

X → SBD / aBx / ad

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

27 / 35

 Elimination of Null Productions (ie.)

o The productions A → are called productions (also null productions). These

productions can only be removed from those grammars that do not generate
(an empty string).

o To remove null productions, we first have to find all the nullable variables. A

variable A is called nullable if can be derived from A.

 For all the productions A→ , A is a nullable variable.

 For all the productions of type B → A1A2…An, where all ’Ai’s are

nullable variables, B is also a nullable variable.

o If all the variables on the RHS of the production are nullable , then we do not

add A → to the new grammar.

o Example:

1. Eliminate the productions from the given grammar

G: S → ABCd

A → BC

B → bB /

C → cC /

Solution:

Step 1: Remove the productions B→ and C→

G: S → ABCd / ACd / ABd / Ad

 A → BC / C / B /
 B → bB / b

 C → cC / c

Step 2: Remove the production A→

G: S → ABCd / ACd / ABd / Ad / BCd / Cd / Bd / d

 A → BC / C / B

 B → bB / b

 C → cC / c

Step 2: Resultant Grammar

G’: S → ABCd / ACd / ABd / Ad / BCd / Cd / Bd / d

 A → BC / C / B

 B → bB / b

 C → cC / c

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

28 / 35

Tutorial Questions:

2. Eliminate the productions from the given grammar

S → ABAC

A → aA /

B → bB /
C → c

3. Remove the productions from the given grammar

S → ASA / aB / b, A → B, B → b /

 Elimination of Unit Productions

o Any production rules in the form A → B where A, B ∈ Non-terminal is

called unit production.

o Steps for eliminate unit productions:

 Step 1: To remove A → B, add production A → x to the grammar rule

whenever B → x occurs in the grammar. [x ∈ Terminal, x can be Null]

 Step 2: Delete A → B from the grammar.

 Step 3: Repeat from step 1 until all unit productions are removed.

o Example

1. Eliminate the unit production from the given grammar

G: S → Aa / B

A →b / B

B → A / a

Solution:

Step 1: Remove the production B→ A

G: S → Aa / B

A →b / A / a

B → A / a

Step 2: Remove the production A→A

G: S → Aa / B

A →b / a

B → A / a

Step 3: Remove the production B→A

G: S → Aa / B

A → b / a

B → b / a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

29 / 35

Step 4: Remove the production S→B

G: S → Aa / b / a

A → b / a

B → b / a

Step 4: Resultant Grammar

G’: S → Aa / b / a

 A → b / a

 B → b / a

Tutorial Questions:

2. Eliminate the useless symbols or productions from the given grammar

S → XY, X → a, Y → Z / b, Z → M, M → N, N → a

3. Remove the useless symbol from the given context free grammar:

S → AB

A → a

B → C / b

C → D

D → E

E → a

4. Consider the grammar

S→ 0A0 / 1B1 / BB

A→ C

B→ S / A

C→ S / ε and simplify using the same order

a. Eliminate ε-Productions

b. Eliminate unit productions

c. Eliminate useless symbols

Normal Form

 A CFG is convert into a specific form is called as Normal forms.

 There are two types of Normal Norms.

o Chomsky Normal Form (CNF)

o Greibach Normal Form (GNF)

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

30 / 35

Chomsky Normal Form (CNF)

 A CFG is said to be in Chomsky Normal Form if every production is of one of these

two forms:

1. Non-Terminal → Non-Terminal . Non-Terminal

Example: A → BC where A,B,CV (right side is two Non-Terminal).

2. Non-Terminal → Terminal

Example: A → a where a T (right side is a single Terminal).

 Algorithms for converting CFG into CNF:

Step 1: Eliminate Null productions.

Step 2: Eliminate Unit productions.

Step 3: Eliminate Useless Symbols or Productions.

Step 4: Replace each production A → B1…Bn where n > 2 with A → B1C.

 Where C → B2 …Bn. Repeat this step for all productions having more than

 two non-terminals in the right side.

Step 5: If the right side of any production is in the form A → aB where a is a terminal

 and A, B are non-terminal, then the production is replaced by A → XB and

X → a. Repeat this step for every production which is in the form A → aB.

 Problems for converting CGF into CNF:

1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions

S → bA / aB

A → bAA / aS / a

B → aBB / bS / b.

Convert it into CNF.

Solution:

Step 1: Eliminate Null productions.

 There is no Null production.

Step 2: Eliminate Unit productions.

 There is no Unit production.

Step 3: Eliminate Useless Symbols or Productions.

 There is no Useless Symbols or Productions.

Step 4: Find the productions which are already in CNF.

 A → a

 B → b

Step 5: Replace all remaining productions into CNF.

Non-Terminal → Non-Terminal . Non-Terminal

Non-Terminal → Terminal

i) S → bA

 S → CbA

 Cb → b

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

31 / 35

ii) S → aB

 S → CaB

 Ca → a

iii) A → bAA

 A → CbD1

 D1 → AA

 Cb → b

iv) A → aS

A → CaS

Ca → a

v) B → aBB

B → Ca D2

D2 → BB

Ca → a

v) B → bS

B → CbS

Cb → b

Step 3: Final Resultant Grammar

G: S → CbA / CaB

A → CbD1 / CaS / a

 B → Ca D2 / CbS / b

D1 → AA

D2 → BB

 Ca → a

Cb → b

2. Convert the given grammar into CNF.

 G = ({S,A,B},{a,b}, P, S}

 The Productions are

S→ 0A0 / 1B1 / BB

A→ C

B→ S / A

C→ S / ε.

Solution:

Step 1: Eliminate ε-Productions

1.1 Remove the production C→ ε

S→ 0A0 / 1B1 / BB

A→ S / ε

B→ S / A

C→ S

1.2 Remove the production A→ ε

S→ 0A0 / 00 / 1B1 / BB

A→ S

B→ S / ε

C→ S

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

32 / 35

1.3 Remove the production B→ ε

S→ 0A0 / 00 / 1B1 / 11 / BB / B

A→ S

B→ S

C→ S

Step 2: Eliminate Unit productions.

2.1 Remove the production C→ S

S→ 0A0 / 00 / 1B1 / 11 / BB / B

A→ S

B→ S

2.2 Remove the production B→ S

S→ 0A0 / 00 / 1S1 / 11 / SS / S

A→ S

2.3 Remove the production A→ S

S→ 0S0 / 00 / 1S1 / 11 / SS / S

2.4 Remove the production S→ S

S→ 0S0 / 00 / 1S1 / 11 / SS

Step 3: Eliminate useless symbols

There is no Unit production.

Resultant Grammar (after simplifications)

G’ : S→ 0S0 / 00 / 1S1 / 11 / SS

Step 4: Find the productions which are already in CNF.

S→ SS

Step 5: Replace all productions into CNF.

Non-Terminal → Non-Terminal . Non-Terminal

Non-Terminal → Terminal

i) S→ 0S0

S → AB

B→ SA

A→ 0

ii) S→ 00

S → AA

A → 0

iii) S→ 1S1

S → DC

C → SD

D → 1

iv) S→ 11

S → DD

D → 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

33 / 35

Step 5: Resultant Grammar

G’: S → AB / AA / DC / DD

B→ SA

A→ 0

C → SD

D → 1

Tutorial Questions:

3. Convert the following CFG to CNF

S → ASA / aB

A → B / S

B → b / ε

4. Convert the following CFG to CNF

S → AB / Aa

A→ aAA / a

B→ bBB / b

5. Find a grammar in Chomsky Normal form equivalent to

S→aAD

A→aB / bAB

B→b

D→d

6. Consider G = ({S,A}, {a,b}, P, S} where P consists of

S→aAS / a

A→ SbA / SS / ba

Convert it to its equivalent CNF

Greibach Normal Form (GNF)

 A CFG is said to be in Greibach Normal Form if every production is of one of these

two forms:

1. Non-Terminal → Terminal . Any no. of Non-Terminal

Example: A → aBC or

2. Non-Terminal → Terminal

Example: A → a (right side is a single Terminal).

 (Or)

A → aα , where aT and αV*

 Algorithms for converting CFG into GNF:

Step 1: Eliminate Null productions.

Step 2: Eliminate Unit productions.

Step 3: Eliminate Useless Symbols or Productions.

Step 4: Check whether the CFG is already in CNF and convert it to CNF if it is not.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

34 / 35

Step 5: Rename the variables like A1, A2, ...An starting with S = A1. (Ai in ascending

order of i)

Step 6: No need to modify the productions like Ai → Aj where i < j

Step 7: Modify the productions like Ai → Aj where i ≥ j

(a) If Ai → Aj where i > j, then substitute for Aj productions.
Suppose Aj → Ak / AL, then the new set of productions are

 Ai → Ak / AL

(b) It Ai → Aj where i = j, then do the following steps:
Introduce a new variable Bi

Then

 Bi → Ak

 Bi → Bi

and remove the production Ai → Aj

(c) For each production Ai → where does not begin with Ai , then add the

production

Ai → Bi

Step 7: Convert all the productions into GNF form. A → aα where aT and αV*

 Problems for converting CFG into GNF:

1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions

S → AB

A → BS / b

B → SA / a

Convert it into CNF.

Solution:

Step 1: Eliminate Null productions.

 There is no Null production.

Step 2: Eliminate Unit productions.

 There is no Unit production.

Step 3: Eliminate Useless Symbols or Productions.

 There is no Useless Symbols or Productions.

 Step 4: All production rules are already in CNF form.

Step 5: Rename the variables S, A, B as A1, A2, A3 respectively.

A1 → A2 A3 ------ (1)

A2 → A3 A1 / b ------ (2)

A3 → A1 A2 / a ------ (3)

 In (1), i < j, no need to modify the production.

 In (2), i < j, no need to modify the production.

 In (3), i > j, substitute A1 productions in (3)

 A3 → A2 A3 A2 / a -------(4)

 In (4), i > j, substitute A2 productions in (4)

A3 → A3 A1 A3 A2 / b A3 A2 / a -------(5)

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – III

35 / 35

In (5), i = j, introduce new non-terminal B3, then B3 productions are

B3 → A1 A3 A2 / A1 A3 A2 B3 and

A3 → b A3 A2 / a has been modified to

 A3 → b A3 A2 / a / b A3 A2 B3 / a B3

Step 6: Resultant productions are

A1 → A2 A3 -------- (1)

A2 → A3 A1 / b -------- (2)

B3 → A1 A3 A2 / A1 A3 A2 B3 -------- (3)

A3 → b A3 A2 / a / b A3 A2 B3 / a B3 -------- (4)

 Step 7: Convert into GNF form

 Non-Terminal = Terminal .any no. of Non-Terminals

 Non-Terminal = Terminal

 Substitute A2 in (1)

 A1 → A3 A1 A3 / b A3 -------- (5)

 Substitute A3 in (5)

 A1 → b A3 A2 A1 A3 / a A1 A3 / b A3 A2 B3 A1 A3 /

 a B3 A1 A3 / b A3

Substitute A3 in (2)

A2 → b A3 A2 A3 A1 / a A3 A1/ b A3 A2 B3 A3 A1 /

 a B3 A3 A1 / b
Substitute A1 in (3)

B3 → b A3 A2 A3 A2 / a A3 A2 / b A3 A2 B3 A3 A2 / a B3 A3 A2 /

 b A3 A2 A3 A2 B3 / a A3 A2 B3 / b A3 A2 B3 A3 A2 B3 /

 a A3 A2 B3B3

 Step 8: The equivalent GNF productions are

 A1 → b A3 A2 A1 A3 / a A1 A3 / b A3 A2 B3 A1 A3 / a B3 A1 A3 / b A3

A2 → b A3 A2 A3 A1 / a A3 A1/ b A3 A2 B3 A3 A1 / a B3 A3 A1 / b

A3 → b A3 A2 / a / b A3 A2 B3 / a B3

B3 → b A3 A2 A3 A2 / a A3 A2 / b A3 A2 B3 A3 A2 / a B3 A3 A2

B3 → b A3 A2 A3 A2 B3 / a A3 A2 B3 / b A3 A2 B3 A3 A2 B3

 B3 → a A3 A2 B3B3

Tutorial Questions:

2. Convert the following CFG to GNF

S → AA / a

A → SS / b
 (or)

Convert the following CFG to GNF

A1 → A2A2 / a

A2→ A1A1 / b
3. Convert the following CFG to GNF

S → AB / Aa

A→ aAA / a

B→ bBB / b

4. Convert the following CFG to GNF

S → ABA A→ aA / B→ bB /

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

1 / 20

Syllabus : Unit – IV : Push Down Automata

Definitions - Model of PDA – Acceptance by PDA - Design of PDA - Equivalence of PDA’s and

CFL’s - Deterministic PDA - pumping lemma for CFL - Closure properties of CFL (Without proof)

Definition for Push Down Automata
 Formal Definition of Pushdown Automaton

A pushdown automaton consists of seven tuple

M = (Q, Σ, Γ, δ, q0, Z0, F),

Where

Q - Finite set of states

Σ - Finite input alphabet

Γ - Finite alphabet of pushdown symbols

δ - Transition function Q × (Σ ∪ {ε}) × Γ → Q×Γ

q0 - start / initial state q0 Q

Z0 - start symbol on the pushdown Z0 Γ

F - set of final states F Q

Model of PDA
 Pushdown Automata is a finite automaton with extra memory called stack which helps

Pushdown automata to recognize Context Free Languages.

 A DFA can remember a finite amount of information, but a PDA can remember an

infinite amount of information.

 The PDA consists of a finite set of states, a finite set of input symbols and a finite set of

push down symbols.

 The finite control has control of both the input tape and the push down store.

 The stack head scans the top symbol of the stack.

 A pushdown automaton has three components:

o input tape

o control unit, and

o stack with infinite size.

 A stack does two operations:

o Push − a new symbol is added at the top.

o Pop − the top symbol is read and removed.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

2 / 20

Acceptance by PDA

 There are two different ways to Acceptance by PDA

o Acceptance by Final State

 In final state acceptability, a PDA accepts a string when, after reading the

entire string, the PDA is in a final state. From the starting state, we can

make moves that end up in a final state with any stack values. The stack

values are irrelevant as long as we end up in a final state.

 Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA, then the language accepted by

the set of final states F is

L(M) = {w ; (q0, w, z0) ⊢* (p, ε,), p ∈ F, ∈ ⊢*}

o Acceptance by Empty Stack

 In empty stack acceptability, a PDA accepts a string when, after reading

the entire string and also stack is empty, the PDA is in any state.

 Let M = (Q, ∑, Γ, δ, q0, Z0, {q}) be a PDA, then the language accepted by

the empty stack is:

N(M) = {w ; (q0, w, z0) ⊢* (q, ε, ε), q ∈ Q}

Instantaneous Description (ID)
 The ID must record the state and stack contains

If M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

then

 (q0, aw, zα) ⊢ (q0, w, α) if (q, a, z) = (p,)

Equivalence of Acceptance of PDA from Empty Stack to Final state
If L is N(M1) (the language accepted by empty stack) for some PDA M1, then L is L(M2)

(language accepted by final state) for some PDA M2 i.e. L = N(M1) = L(M2)

 (or)

Prove that if L=N(PN) for some PDA PN = (Q, Ʃ, , δ, q0, Z0, F), then there is a PDA PF such

that L=L(PF).

 (or)

If L is L(M2) for some PDA M2 then N(M1)=L(M2),L is N(M1) for some PDA M1.

Theorem:

If M1 = (Q, Ʃ, , δ, q0, Z0, ∅) is a PDA accepting L by empty store, then construct a

PDA M2 = (Q’, Ʃ’, ’, δ’, q0’, Z0’, F) which accepts L by final state i.e., L = N(M1) =
L(M2).

Proof:
 M2 is constructed in such a way that

a) by the initial state moves M2 of , it reaches an initial id of M1

b) by the final move of B, it reaches its final state.

c) all intermediate moves of B are in A.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

3 / 20

 Let us define M2 as follows

 M2 = (Q’, Ʃ’, ’, δ’, q0’, Z0’, F)
 Where

 Q’= Q ∪ {p0, pf}

 Ʃ’ = Ʃ

 = {Z0’}

 F’ = {pf} - New final state (not in Q)

 q0’ = p0 - New start state

 Z0’ = New start symbol for stack.

 δ' is given by rules:

 R1 : δ’(p0, ɛ, Z0’) = {(q0, Z0Z0’)}

 R2: δ’(q, a, Z) = δ(q, a, Z) for all q in Q, a in (Ʃ ∪ ɛ) and Z in .

 R3: δ’ (q, ɛ, Z0’) = {(pf, ɛ)}.

 By Rule R1, the PDA M2 moves from initial ID of M2 to an initial ID of M1.
R1 gives a ‘ɛ’ move. As a result of R1, M2 moves to the initial state of A with

the start symbol z0 on top of the stack.

 By Rule R2 is used to simulate M1. Once M2 reaches an initial ID of M1, R2 is
used to simulate moves of M1. We can repeatedly apply R2 until Z0’ is pushed

to the top of the stack.

 By Rule R3 is also a ‘ɛ’ move. Using R3, M2 moves to new final state pf by
erasing Z0’ in stack.

We have to show N(M1) = L(M2).

 Let w ϵ N(M1) then by definition of N(M1),

 M1 : (q0, w, Z0) ⊢* (q, ɛ, ɛ) for some q Q

By theorem

 (q, x, α) ⊢* (p, y, β) (q, xw, αy) ⊢* (p, yw, βγ)

we get

 M1 : (q0, w, Z0Z0’) ⊢* (q, ɛ, Z0’)

Since empty store (δ) is a subset of δ’ i.e. δ⊂ δ’
we have

 M2 : (q0, w, Z0Z0’) ⊢* (q, ɛ, Z0’)

Therefore we conclude that

M2 : (p0, w, z0’) ⊢ (q0, w, zz0’)

 ⊢* (q, ɛ, z0’)

 ⊢ (pf, ɛ, ɛ)

pf
p0 q0

ɛ, Z0’ / Z0Z0’

ɛ, Z0’ / ɛ

ɛ, Z0’ / ɛ

ɛ, Z0’ / ɛ

ɛ, Z0’ / ɛ

ɛ, Z0’ / ɛ

M1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

4 / 20

Equivalence of Acceptance of PDA from final state to empty stack

If L is N(M1) for some PDA M1,then L if L(M2) for some PDA M2.

(or)

If A= (Q, Ʃ, , δ, q0, Z0, F) accept by final state, we can find a PDA B, accepting L by

empty store i.e., L = T(A) = N(B).

If M1 = (Q, Ʃ, , δ, q0, Z0, F) accept by final state, we can find a PDA M2, accepting L
by empty store i.e., L = L(M1) = N(M2).

Theorem:

If M1 = (Q, Ʃ, , δ, q0, Z0, F) is a PDA accepting L by final state, then construct a

PDA M2 = (Q’, Ʃ’, ’, δ’, q0’, Z0’,) which accepts L by empty store.

 i.e., L = L(M1) = N(M2).

Proof:

M2 is constructs from M1 in such a way that

a) by the initial move of M2 as initial ID of M1 is reached.

b) once M2 reaches an initial ID of M1, it behaves like M1 until a final state of M1

is reached.

c) when M2 reaches final state of M1, it checks whether the input string is

exhausted. Then M2 simulates M1 or it erases all the symbols in stack.

 Let us define M2 as follows

M2 = (Q’, Ʃ’, ’, δ’, q0’, Z0’,)

 Where

 Q’= Q ∪ {p0, p}
 Ʃ’ = Ʃ

 = {Z0’}

 F’ = {p} - New final state (not in Q)

 q0’ = p0 - New start state

 Z0’ = New start symbol for stack.

 δ' is given by rules:

 R1 : δ’(p0, ɛ, Z0’) = {(q0, Z0Z0’)}

 R2 : δ’(q0, ɛ, Z) = {(qf, ɛ)} for all Z

∪ {Z0’}.

 R3 : δ’(q, a, Z) = δ(q, a, Z) for all a Z, q Q, Z .

R4 : δ’(q, ɛ, Z) = δ(q, ɛ, z) ∪ {(p, ɛ)} for all Z

∪ {Z0’} and q F.

qf

p0 q0

ɛ, Z0’ / Z0Z0’

ɛ, Z0’ / ɛ

ɛ, Z0’ / ɛ

M1

qf

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

5 / 20

 Using R1, M2 enters an initial ID of M1 and start symbol Z0 is placed on top of
stack.

 R2 is a ɛ move, using this M2 erases all the symbols on stack.

 R3 is used to make M2 simulate M1 until it reaches the final state of M1.

We have to show that L(M1) = N(M2)

Let w L(M1) then

M1: (q0, w, z0) ⊢* (q, ɛ, α) for some q F, α ˫
*

Since δ’ ⊆ δ and by theorem

 M1: (q, x, α) ⊢*

(p, y, β) (q, xw, αy) ⊢*

(p, yw, βγ)

We can write has

 M2: (q0, w, Z0Z0’) ⊢* (q, ɛ, αz0’)

Then M2 can be computed has

M2: (p0, w, Z0’) ⊢ (q0, w, ZZ0’)

 ⊢* (q, ɛ, Z0’)

 ⊢ (pf, ɛ, ɛ)

Design of PDA

1. Construct a PDA that accepts L = {a

n
 b

n
 ; n ≥ 1} accepted by Final State.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)}

2. (q0, a, a) = {(q0, aa)}

3. (q0, b, a) = {(q1,)}

4. (q1, b, a) = {(q1,)}

5. (q1, , z0) = {(q2, z0)} -

Transition Diagram:

a, z0 / az0

a, a / aa

q2 q0 q1 q2

b, a /

b, a /

, z0 / z0

Push operations

Pop operations

Accept the Final State

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

6 / 20

2. Construct a PDA that accepts L = {a
n
 b

n
 ; n ≥ 1} accepted by empty stack.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)}

2. (q0, a, a) = {(q0, aa)}

3. (q0, b, a) = {(q1,)}

4. (q1, b, a) = {(q1,)}

5. (q1, , z0) = {(q2,)} -

Transition Diagram:

3. Construct a PDA that accepts L = {0
n
 1

n
 ; n ≥ 0} accepted by Final State.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, 0, z0) = {(q0, 0z0)}

2. (q0, , z0) = {(q2, z0)}

3. (q0, 0, 0) = {(q0, 00)}

4. (q0, 1, 0) = {(q1,)}

5. (q1, 1, 0) = {(q1,)}

6. (q1, , z0) = {(q2, z0)} -

Transition Diagram:

0, z0 / 0z0

0, 0 / 00

q2 q0 q1 q2

1, 0 /

1, 0 /

, z0 / z0

, z0 / z0

Push operations

Pop operations

Accept the Final State

a, z0 / az0

a, a / aa

q2 q0 q1 q2

b, a /

b, a /

, z0 /

Push operations

Pop operations

Accept the empty stack

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

7 / 20

4. Construct a PDA that accepts L = {0
n
 1

n
 ; n ≥ 0} accepted by empty stack.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, 0, z0) = {(q0, 0z0)}

2. (q0, , z0) = {(q2,)}

3. (q0, 0, 0) = {(q0, 00)}

4. (q0, 1, 0) = {(q1,)}

5. (q1, 1, 0) = {(q1,)}

6. (q1, , z0) = {(q2,)} -

Transition Diagram:

5. Construct a PDA that accepts L = {wcw
R
 ; w (a+b)*} accepted by Final State.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)

2. (q0, b, z0) = {(q0, bz0)

3. (q0, a, a) = {(q0, aa)

4. (q0, b, b) = {(q0, bb)

5. (q0, a, b) = {(q0, ab)

6. (q0, b, a) = {(q0, ba)

7. (q0, c, a) = {(q1, a)}

8. (q0, c, b) = {(q1, b)}

9. (q1, a, a) = {(q1,)}

10. (q1, b, b) = {(q1,)}

11. (q1, , z0) = {(q2, z0)} -

0, z0 / 0z0

0,0 / 00

q2 q0 q1 q2

1, 0 /

1, 0 /

, z0 /

, z0 /

Pop operations

Accept the empty stack

Push operations

Accept the

separator ‘c’

Accept the Final State

Push operations

Pop operations

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

8 / 20

Transition Diagram:

6. Construct a PDA that accepts L = {wcw
R
 ; w (a+b)*} accepted by empty stack.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)

2. (q0, b, z0) = {(q0, bz0)

3. (q0, a, a) = {(q0, aa)

4. (q0, b, b) = {(q0, bb)

5. (q0, a, b) = {(q0, ab)

6. (q0, b, a) = {(q0, ba)

7. (q0, c, a) = {(q1, a)}

8. (q0, c, b) = {(q1, b)}

9. (q1, a, a) = {(q1,)}

10. (q1, b, b) = {(q1,)}

11. (q1, ,) = {(q2,)} -

Transition Diagram:

c, z0 / z0

a, z0 / az0

b, z0 / bz0

a, a / aa

b, b / bb

a, b / ab

b, a / ba

q2 q0 q1 q2

c, a / a

c, b / b

, z0 / z0

a, a /

b, b /

Push operations

Accept the

separator ‘c’

Accept the empty stack

Pop operations

a, z0 / az0

b, z0 / bz0

a, a / aa

b, b / bb

a, b / ab

b, a / ba

q2 q0 q1 q2

c, a / a
c, b / b

, z0 /

a, a /

b, b /

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

9 / 20

7. Design a PDA that accepts L = {ww
R
 ; w (0+1)*} accepted by final state.
(or)

Design a PDA for even length palindrome.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, 0, z0) = {(q0, 0z0)

2. (q0, 1, z0) = {(q0, 1z0)

3. (q0, 0, 0) = {(q0, 00)

4. (q0, 1, 1) = {(q0, 11)

5. (q0, 0, 1) = {(q0, 01)

6. (q0, 1, 0) = {(q0, 10)

7. (q0, , 0) = {(q1, 0)}

8. (q0, , 1) = {(q1, 1)}

9. (q1, 0, 0) = {(q1,)}

10. (q1, 1, 1) = {(q1,)}

11. (q1, , z0) = {(q2, z0)} -

Transition Diagram:

8. Construct a PDA that accepts L = {a
n
b

m
a

n
 ; m, n ≥1} accepted by empty store.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)

2. (q0, a, a) = {(q0, aa)

3. (q0, b, a) = {(q1, a)

4. (q1, b, a) = {(q1, a)

5. (q1, a, a) = {(q2,)

6. (q2, a, a) = {(q2,)

7. (q2, , z0) = {(q2,)

Push operations

Accept the

separator ‘’

Accept the Final State

Pop operations

0, z0 / 0z0

1, z0 / 1z0

0, 0 / 00

1, 1 / 11

0, 1 / 01

1, 0 / 10

q2 q0 q1 q2

, 0 / 0

, 1 / 1

, z0 / z0

0, 0 /

1, 1 /

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

10 / 20

Transition Diagram:

9. Design a PDA that accepts L = {a
n
b

m
c

m
d

n
; n, m ≥ 1} accepted by empty store and

check whether the string w = aaabcddd is accept or not.

Solution:

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA

The productions are:

1. (q0, a, z0) = {(q0, az0)

2. (q0, a, a) = {(q0, aa)

3. (q0, b, a) = {(q1, ba)

4. (q0, b, b) = {(q1, bb)

5. (q0, c, b) = {(q1,)

6. (q1, c, b) = {(q1,)

7. (q1, d, a) = {(q2,)

8. (q2, d, a) = {(q2,)

9. (q2, , z0) = {(q3,)

Transition Diagram:

String w = aaabcddd

 (q0, aaabcddd, z0) ⊢ (q0, aabcddd, az0)

 ⊢ (q0, abcddd, aaz0)

 ⊢ (q0, bcddd, aaaz0)

 ⊢ (q0, cddd, baaaz0)

 ⊢ (q1, ddd, aaaz0)

 ⊢ (q2, dd, aaz0)

 ⊢ (q2, d, az0)

 ⊢ (q2, , z0)

 ⊢ (q3, ,) - Hence the string is accepted.

a, z0 / az0

a, a / aa

q2 q0 q1 q3
b, a / a

a, a /

b, a / a

q2

, z0 /

a, a /

a, z0 / az0

a, a / aa

b, a / ba

b, b / bb

q2 q0 q1 q3
c, b /

d, a /

c, b /

q2

, z0 /

d, a /

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

11 / 20

Tutorial Problems:

10. Construct a PDA that accepts L = {a
n
b

2n
 ; n ≥1} accepted by empty stack.

11. Construct a PDA that accepts L = {a
n
ba

n
 ; n > 0} accepted by final state.

12. Design a PDA that accepts L = {a
n
ba

n
 ; n > 0} accepted by final state.

13. Construct a PDA that accepts L = {a
n
b

m
a

n
 ; n > 0 and m = n+1} accepted by empty

store.

14. Construct a PDA that accepts L = {a
n
b

m
; n > 0 and m ≥ n} accepted by empty store.

15. Construct a PDA that accepts L = {a
n
b

m
c

m-n
; m, n ≥ 0 and m ≥ n} and check whether

the given string is accepted or not. (a) aabbbbcc (b) aabbc

Equivalence of PDA’s and CFL’s

i) Conversion of CFG to PDA

Theorem:

For any CFG L, there exists an PDA M such that L=L(M).

Proof:

Let G = (V, T, P, S) be a CFG.

Construct the PDA M that accepts L(G) by empty stack as follows:

M = ({q}, T, V ∪ T, δ, q, S)

Where transition function δ is defined by:

1. For each variable A, make δ(q, , A) = {(q, α) if A → α is a production
of P}.

2. For each terminal a, make δ(q, a, a) = {(q,)}.

 Problems for CFG to PDA

1. Construct a PDA from the following CFG.

G = ({S, A}, {a, b}, P, S) where the productions are

S → AS / ε

A → aAb / Sb / a

 Solution:

 Let the equivalent PDA, M = ({q}, {a, b}, {a, b, A, S}, δ, q, S)

where δ:

δ(q, ε , S) = {(q, AS), (q, ε)}

δ(q, ε , A) = {(q, aAb), (q, Sb), (q, a)}

δ(q, a, a) = {(q, ε)}

δ(q, b, b) = {(q, ε)}

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

12 / 20

2. Consider the grammar G = (V, T, P, S) with V = {S}, T = {a, b, c}, and P = {S →

aSa, S → bSb, S → c}

Solution:

 Let the equivalent PDA, M = ({q}, {a, b, c}, {a, b, c, S}, δ, q, S)

where δ:

δ(q, ε , S) = {(q, aSa), (q, bSb), (q, c)}

δ(q, a, a) = {(q, ε)}

δ(q, b, b) = {(q, ε)}

δ(q, c, c) = {(q, ε)}

3. Consider the grammar G = (VN, VT, P, S) with P = { S → abA / baA / B / ε

A→ bS / b, B → aS, C → ε}

Solution:

 Let the equivalent PDA, M = ({q}, {a, b}, {a, b, S, A, B, C}, δ, q, S)

where δ:

δ(q, ε , S) = {(q, abA), (q, baA), (q, B), (q, ε)}

δ(q, ε , A) = {(q, bS), (q, b)}

δ(q, ε , B) = {(q, aS)}

δ(q, ε , C) = {(q, ε)}

δ(q, a, a) = {(q, ε)}

δ(q, b, b) = {(q, ε)}

4. Consider the grammar G = (VN, VT, P, S)

Where P :

S → A / B / ε

 A → 0S/1B/0

 B → 0S/1A/1

Solution:

 Let the equivalent PDA, M = ({q}, {0, 1}, {0, 1, S, A, B}, δ, q, S)

where δ:

δ(q, ε , S) = {(q, A), (q, B), (q, ε)}

δ(q, ε , A) = {(q, 0S), (q, 1B), (q, 0)}

δ(q, ε , B) = {(q, 0S), (q, 1A), (q, 1)}

δ(q, 0, 0) = {(q, ε)}

δ(q, 1, 1) = {(q, ε)}

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

13 / 20

5. Construct a PDA that will accept the language generated by the grammar G = ({S,

A}, {a, b}, P, S) with the productions S → AA / a, A → SA / b and test whether

“abbabb” is in N(M).

Solution:

 Let the equivalent PDA, M = ({q}, {a, b}, {a, b, S, A}, δ, q, S)

where δ:

δ(q, ε , S) = {(q, AA), (q, a }

δ(q, ε , A) = {(q, SA), (q, b)}

δ(q, a, a) = {(q, ε)}

δ(q, b, b) = {(q, ε)}

Test whether “abbabb” is in N(M):

δ(q, abbabb , S) ⊢ δ(q, abbabb , AA) by δ(q, ε , S) = {(q, AA)}

 ⊢ δ(q, abbabb , SAA) by δ(q, ε , A) = {(q, SA)}

 ⊢ δ(q, abbabb , aAA) by δ(q, ε , S) = {(q, a)}

 ⊢ δ(q, abbabb , aAA) by δ(q, a, a) = {(q, ε)}

 ⊢ δ(q, bbabb , SAA) by δ(q, ε , A) = {(q, SA)}

 ⊢ δ(q, bbabb , AAAA) by δ(q, ε , S) = {(q, AA)}

 ⊢ δ(q, bbabb , bAAA) by δ(q, ε , A) = {(q, b)}

 ⊢ δ(q, babb , AAA) by δ(q, b , b) = {(q, ε)}

 ⊢ δ(q, babb , bAA) by δ(q, ε , A) = {(q, b)}

 ⊢ δ(q, abb , AA) by δ(q, b , b) = {(q, ε)}

 ⊢ δ(q, abb , SAA) by δ(q, ε , A) = {(q, SA)}

 ⊢ δ(q, abb , aAA) by δ(q, ε , S) = {(q, a)}

 ⊢ δ(q, bb , AA) by δ(q, a, a) = {(q, ε)}

 ⊢ δ(q, bb , bA) by δ(q, ε , A) = {(q, b)}

 ⊢ δ(q, b , A) by δ(q, b , b) = {(q, ε)}

 ⊢ δ(q, b , b) by δ(q, ε , A) = {(q, b)}

 ⊢ δ(q, ε , ε) by δ(q, b , b) = {(q, ε)}

Tutorial Problems:

6. Consider the grammar G = (VN, VT, P, S) and test whether “abbabb” is in N(M).

Where P :

S → abA / baA / B / ε

A→ bS / b

B → aS

C → ε

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

14 / 20

7. Consider the grammar G = (V, T, P, S)

Where P :

A → aB

 B → aB/bB/ε

8. Consider the grammar G = (V, T, P, S) and test whether “0101001” is in N(M).

Where P :

S → 0S/1A/1/0B/0

A → 0A/1B/0/1

B → 0B/1A/0/1

9. Consider the grammar G = (V, T, P, S)

Where P :

A → Ba/Ab/b

B → Ca/Bb

C → Aa/Cb/a

10. Consider the grammar G = (V, T, P, S)

Where P :

A → aB/bA/b

B → aC/bB

C → aA/bC/a

11. Consider the grammar G = (V, T, P, S)

Where P :

S → ABCD

A → aab

B → bba / bbaB

C → bab

D → aab / aabD

ii) Conversion of PDA to CFG

Theorem:

If L is N(M) for some PDA M then L is CFL.

Proof:

Let M = (Q, ∑, Γ, δ, q0, Z0, Ø) be a PDA

Construct the CFG G that accepts L(M) by empty stack as follows:

G = (V, T, P, S)

Where production P is defined by:

 The productions in P are induced by moves of PDA as follows:

Step 1: Rules for start symbol:

S productions are given by S → [q0 Z0 q] for every qQ

For example:

We have two states (q0, q1), so two rules for starting variable.

 S → [q0 Z0 q0]

 S → [q0 Z0 q1]

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

15 / 20

Step 2: Rules for POP operations:

Each erasing move δ(q, a, Z) = (q1,) induces production [q Z q’] → a

For example:

Step 3: Rules for PUSH operations:

Each non-erasing move δ(q, a, Z) = (q’, Z1 Z2 Z3 …. Zn) induces many

productions of form.

[q Z q’] → a [q1 Z1 q2] [q2 Z2 q3] …………….. [qn Zn q’]

Where each state q’, q1, q2, …. qn can be any state in Q

General Format 1:

General Format 2:

δ(q, a, Z) = (q1,)

[q Z q1] → a

δ(q, , Z) = (q1,)

[q Z q1] →

Filled with other states

δ(q0, a, Z) = (q0, Z1Z2)

[q0 Z ___] → a [q0 Z1 ____] [_____Z2 ____]

same

same

Example: δ(q0, a, Z0) = (q0, XZ0) with two states (q0,q1)

[q0 Z0 q0] → a [q0 X q0] [q0 Z0 q0]

[q0 Z0 q1] → a [q0 X q0] [q0 Z0 q1]

[q0 Z0 q0] → a [q0 X q1] [q1 Z0 q0]

[q0 Z0 q1] → a [q0 X q1] [q1 Z0 q1]

Filled with others states

δ(q0, a, Z) = (q0, Z1)

[q0 Z ___] → a [q0 Z1 ____]

same

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

16 / 20

 Problems for CFG to PDA

1. Convert the PDA P= ({p, q},{0,1},{X,Z0}, δ, q, Z0) to a CFG , if is given by

 1. δ(q, 1, Z0) ={(q, XZ0)}

 2. δ(q, 1, X) = {(q, XX)}

 3. δ(q, 0, X) = {(p, X)}

 4. δ(q, ε, X) = {(q, ε)}

 5. δ(p, 1, X) = {(p, ε)}

 6. δ(p, 0, Z0) = {(q, Z0)}

 Solution:

 Step 1: Find the push and pop operations:

 1. δ(q, 1, Z0) ={(q, XZ0)} - Push

 2. δ(q, 1, X) = {(q, XX)} - Push

 3. δ(q, 0, X) = {(p, X)} - Push

 4. δ(q, ε, X) = {(q, ε)} - Pop

 5. δ(p, 1, X) = {(p, ε)} - Pop

 6. δ(p, 0, Z0) = {(q, Z0)} - Push

Step 2: Rules for start symbol:

 We have two states q and p.

So, S productions are

1. S → [q Z0 q]

2. S → [q Z0 p]

Step 2: Rules for POP operations:

 2. 1 Rules for δ(q, ε, X) = {(q, ε)} --- (4)

3. [q X q] → ε

2. 2 Rules for δ(p, 1, X) = {(p, ε)} --- (5)

4. [p X p] → 1

Step 3: Rules for PUSH operations:

 3. 1 Rules for δ(q, 1, Z0) ={(q, XZ0)} --- (1)

5. [q Z0 q] → 1 [q X q] [q Z0 q]

6. [q Z0 p] → 1 [q X q] [q Z0 p]

7. [q Z0 q] → 1 [q X p] [p Z0 q]

8. [q Z0 p] → 1 [q X p] [p Z0 p]

Example: δ(q0, a, Z0) = (q0, X) with two states (q0,q1)

[q0 Z0 q0] → a [q0 X q0]

[q0 Z0 q1] → a [q0 X q1]

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

17 / 20

3. 2 Rules for δ(q,1, X) = {(q,XX)} --- (2)

9. [q X q] → 1 [q X q] [q X q]

10. [q X p] → 1 [q X q] [q X p]

11. [q X q] → 1 [q X p] [p X q]

12. [q X p] → 1 [q X p] [p X p]

3. 3 Rules for δ(q,0, X) = {(p,X)} --- (3)

13. [q X q] → 0 [q X q]

14. [q X p] → 0 [q X p]

3. 4 Rules for δ(p, 0, Z0) = {(q, Z0)} --- (6)

15. [p Z0 q] → 0 [q Z0 q]

16. [p Z0 p] → 0 [q Z0 p]

2. Convert the PDA P= ({q, p}, {0,1},{Z0, X}, δ, q, Z0,{p}) to a Context free grammar.

 1. δ(q,0, Z0) ={(q, XZ0)}

 2. δ(q,0, X) = {(q, XX)}

 3. δ(q,1, X) = {(q, X)}

 4. δ(q, ε, X) = {(p, ε)}

 5. δ(p, ε, X) = {(p, ε)}

 6. δ(p,1, X) = {(p, XX)}

 7. δ(p,1, Z0) = {(p, ε)}

Solution:

 Step 1: Find the push and pop operations:

 1. δ(q, 0, Z0) ={(q, XZ0)} - Push

 2. δ(q, 0, X) = {(q, XX)} - Push

 3. δ(q, 1, X) = {(q, X)} - Push

 4. δ(q, ε, X) = {(p, ε)} - Pop

 5. δ(p, ε, X) = {(p, ε)} - Pop

 6. δ(p,1, X) = {(p, XX)} - Push

 7. δ(p,1, Z0) = {(p, ε)} - Pop

Step 2: Rules for start symbol:

 We have two states q and p.

So, S productions are

1. S → [q Z0 q]

2. S → [q Z0 p]

Step 2: Rules for POP operations:

 2. 1 Rules for δ δ(q, ε, X) = {(p, ε)} --- (4)

3. [q X p] → ε

2. 2 Rules for δ(p, ε, X) = {(p, ε)} --- (5)

4. [p X p] → ε

2. 3 Rules for δ(p,1, Z0) = {(p, ε)} --- (7)

5. [p Z0 p] → 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

18 / 20

Step 3: Rules for PUSH operations:

 3. 1 Rules for δ(q, 0, Z0) ={(q, XZ0)}--- (1)

6. [q Z0 q] → 0 [q X q] [q Z0 q]

7. [q Z0 p] → 0 [q X q] [q Z0 p]

8. [q Z0 q] → 0 [q X p] [p Z0 q]

9. [q Z0 p] → 0 [q X p] [p Z0 p]

3. 2 Rules for δ(q, 0, X) = {(q, XX)}--- (2)

10. [q X q] → 0 [q X q] [q X q]

11. [q X p] → 0 [q X q] [q X p]

12. [q X q] → 0 [q X p] [p X q]

13. [q X p] → 0 [q X p] [p X p]

3. 3 Rules for δ(q, 1, X) = {(q, X)} --- (3)

14. [q X q] → 1 [q X q]

15. [q X p] → 1 [q X p]

3. 4 Rules for δ(p,1, X) = {(p, XX)} ---- (6)

16. [p X q] → 1 [p X q] [q X q]

17. [p X p] → 1 [p X q] [q X p]

18. [p X q] → 1 [p X p] [p X q]

19. [p X p] → 1 [p X p] [p X p]

Tutorial Problems:

1. Construct a Context free grammar G which accepts N(M), where

M=({q0,q1},{a,b},{z0,z},δ,q0,z0,Φ) and where δ is given by

 δ(q0,b,z0) = {(q0,zz0)}, δ(q0, ε,z0) = {(q0, ε)}

δ(q0,b,z) = {(q0,zz)}, δ(q0,a,z) = {(q1,z)}

δ(q1,b,z) = {(q1, ε)}, δ(q1,a,z0) = {(q0,z0)}

2. Construct the grammar from the given PDA.

 M=({q0, q1},{0,1},{X,Z0},δ,q0,Z0,Φ) and where δ is given by

δ(q0,0,z0) = {(q0,XZ0)}, δ(q0,0,X) = {(q0,XX)},

δ(q0,1,X) = {(q1, ε)}, δ(q1,1,X) = {(q1, ε)},

δ(q1, ε,X) = {(q1, ε)}, δ(q1, ε, Z0) = {(q1, ε)}.

3. Let M =({q0,q1}, {0,1}, {S,A}, δ, q0, Z0, } to be a PDA

 Where is given by

 (q0, 0, S) = {(q0 , AS)}

 (q0, 0, A) = {(q0, AA), (q1, S)}

 (q0, 1, A) = {(q1,)}

 (q1, 1, A) = {(q1,)}

 (q1, , A) = {(q1,)}

 (q1, , S) = {(q1,)} Construct a CFG G = (V, T, P, S) generating N (M).

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

19 / 20

Deterministic PDA
 In general terms, a deterministic PDA is one in which there is at most one possible

transition from any state based on the current input.

 A deterministic pushdown automaton (DPDA) is a 7-tuple

M = (Q, Σ, Γ, δ, q0, Z0, F),
Where

Q - Finite set of states

Σ - Finite input alphabet

Γ - Finite alphabet of pushdown symbols

δ - Transition function δ : Q × Σ *× Γ* → (Q × Γ*) {∅}

q0 - start / initial state q0 Q

Z0 - start symbol on the pushdown Z0 Γ

F - set of final states F Q

Example: Describe a DPDA that can recognize the language {w ; w contains more

 a’s than b’s}.

Non-Deterministic PDA
 In general terms, a non-deterministic PDA is one in which there is more than two

possible transition from any state based on the current input.

 A non-deterministic pushdown automaton (NPDA) is a 7-tuple

M = (Q, Σ, Γ, δ, q0, Z0, F),

Where

Q - Finite set of states

Σ - Finite input alphabet

Γ - Finite alphabet of pushdown symbols

δ - Transition function δ : Q × Σ *× Γ *→ 2
(Q × Γ*)

q0 - start / initial state q0 Q

Z0 - start symbol on the pushdown Z0 Γ

F - set of final states F Q

Example: Define a NPDA that recognizes the language {ww
R
 ; w Σ*}.

Pumping Lemma

If L is a context-free language, there is a pumping length p such that any string w ∈

L of length ≥ p can be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0,

uv
i
xy

i
z ∈ L.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let us

take an example and show how it is checked.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – IV

20 / 20

Problem

1. Find out whether the language L = {xnynzn | n ≥ 1} is context free or not.

Solution

1. Let L is context free. Then, L must satisfy pumping lemma.

2. At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.

3. Break z into uvwxy, where |vwx| ≤ n and vx ≠ ε.

4. Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at

least (n+1) positions apart. There are two cases:

5. Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would

have to be in L, has n 2s, but fewer than n 0s or 1s.

6. Case 2 − vwx has no 0s.

7. Here contradiction occurs.

8. Hence, L is not a context-free language.

2. The text uses the pumping lemma to show that {ww | w in (0 + 1)*} is not a CFL.

1. Suppose L were a CFL.

2. Let n be L’s pumping-lemma constant.

3. Consider z = 0n10n10n.

4. We can write z = uvwxy, where |vwx| < n, and |vx| > 1.

5. Case 1: vx has no 0’s.

6. Then at least one of them is a 1, and uwy has at most one 1, which no string in

L does.

7. Still considering z = 0n10n10n.

8. Case 2: vx has at least one 0.

9. vwx is too short (length < n) to extend to all three blocks of 0’s in 0n10n10n.

10. Thus, uwy has at least one block of n 0’s, and at least one block with fewer

than n 0’s.

11. Thus, uwy is not in L.

Closure properties of CFL (Without proof)
1. CFLs are closed under union

If L1 and L2 are CFLs, then L1 ∪ L2 is a CFL.

2. CFLs are closed under concatenation

If L1 and L2 are CFLs, then L1L2 is a CFL.

3. CFLs are closed under Kleene closure

If L is a CFL, then L
 ∗ is a CFL.

4. CFLs are not closed under intersection

If L1 and L2 are CFLs, then L1 ∩ L2 may not be a CFL.

5. CFLs are not closed under complement

If L is a CFL, then L may not be a CFL.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

1 / 19

Syllabus : Unit – V : Turing Machine and Undecidabality

Definition - Model - Language acceptance - Design of Turing Machine - Computable

languages and functions - Modifications of Turing machine - Universal Turing machine-

Chomsky hierarchy of languages - Grammars and their machine recognizers - Undecidabile

Post correspondence problem.

Introduction

 A Turing Machine is an accepting device which accepts the languages (recursively

enumerable set) generated by type 0 grammars.

 It was invented in 1936 by Alan Turing.

Definition
 A Turing Machine (TM) is a mathematical model which consists of

o An infinite length tape divided into cells, each cell contains a symbol from

some finite alphabet. The alphabet contains a special blank symbol (here

written as '0') and one or more other symbols. The tape is assumed to be

arbitrarily extendable to the left and to the right.

o A head which reads the input tape.

o A state register stores the state of the Turing machine.

 After reading an input symbol, it is replaced with another symbol, its internal state is

changed, and it moves from one cell to the right or left. If the TM reaches the final

state, the input string is accepted, otherwise rejected.

 A TM can be formally described as a 7-tuple M = (Q, , Γ, δ, q0, B, F)
Where

Q is a finite set of states

 is the input alphabet

Γ is the tape alphabet

δ is a transition function; δ : Q × Γ → Q × Γ × {L, R}.

q0 is the initial state, q0 Q

B is the blank symbol, B Γ

F is the set of final states, F Q

Model of Turing Machine (TM)

 B B a a b b B B

Finite

Control

Infinite Input Tape

Read /

Write

Head
Output :

M accepts w /

M rejects w.

Blank Symbol

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

2 / 19

 TM has three components:

i. Finite state control:

 It is in one of a finite number of states at each instant, and is connected

to the tape head.

ii. Tape head:
 It is used to scans one of the tape symbol (cell) of the tape at each

instant, and is connected to the finite state control. It can read and write

symbols from/to the tape, and it can move left and right along the tape.

iii. Tape:

 It is consists of an infinite number of tape cells, each of which can

store one of a finite number of tape symbols at each instant. The tape is

infinite both to the left and to the right.

Language acceptance
 A TM accepts a language if it enters into a final state for any input string w. A

language is recursively enumerable (generated by Type-0 grammar) if it is accepted

by a Turing machine.

 A string w is accepted by the TM, M = (Q, Σ, Γ, δ, q0, B, F) if q0w ⊢* α1qf α2 for some

α1, α2 Γ*, qf F.
 The language accepted by the TM M is denoted as

T(M) = {w ; w Σ*, q0w ⊢* α1 qf α2 for some α1, α2 Γ*, qf F}

Moves in a TM
Let M = (Q, , Γ, δ, q0, B, F) be a TM. The symbol is used to represent the move.

 ⊢ - Single move

 ⊢* - Zero or more moves

 δ(q, x) causes a change in ID of the TM. This is called as a move.

Input head Move to Left side:

 Suppose δ(q, xi) = (p, y, L) and the input string to be processed is x1x2x3 …. xn

and the head is pointing to symbol xi.

 Before processing:

x1x2x3 … xi-1 q xi ……. xn

 After processing:

x1x2x3 … xi-2 q xi-1 y xi+1 ……. xn

x1x2x3 … xi-1 q xi ……. xn ⊢ x1x2x3 … xi-2 q xi-1 y xi+1 ……. xn

Input head Move to Right side:
 Suppose δ(q, xi) = (p, y, R) and the input string to be processed is x1x2x3 …. xn

and the head is pointing to symbol xi.

 Before processing:

x1x2x3 … xi-1 q xi ……. xn

 After processing:

x1x2x3 … xi-2 xi-1 y q xi+1 ……. xn

x1x2x3 … xi-2 xi-1 y q xi+1 ……. xn

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

3 / 19

Design of Turing Machine
1. Design a TM to recognize the language L ={a

n
b

n
; n>0} and test whether the strings

w= “aabb” and “abbb” are accepts or not.

Solution:

 The TM is designed using the following steps:

Step 1 : M replaces the leftmost ‘a’ by ‘x’ and moves right to the leftmost ‘b’,

replacing it by ‘y’.

Step 2 : Then M moves left to find the rightmost ‘x’ and moves one cell right

to the leftmost ‘a’ and repeat the step 1.

Step 3 : While searching for a ‘b’, if a blank (B) is encountered, and then M

halts without accepting.

Step 4 : After changing a ‘b’ to ‘y’, if M finds no more a’s, then M checks no

more b’s remains, M accepting the string else not.

Let M = ({q0, q1, q2, q3, q4}, {a, b}, {a, b, B}, δ, q0, B, {q4}) be a TM.

 δ is defined by:

 δ (q0, a) = (q1, x, R) δ (q1, a) = (q1, a, R)

 δ (q1, y) = (q1, y, R) δ (q1, b) = (q2, y, L)

 δ (q2, a) = (q2, a, L) δ (q2, y) = (q0, y, L)

 δ (q2, x) = (q0, x, R) δ (q0, y) = (q3, y, R)

 δ (q3, y) = (q3, y, R) δ (q3, B) = (q4, B, R)

Transition Table:

States
Tape Symbols

a b x y B

q0 (q1, x, R) - - (q0, y, R) -

q1 (q1, a, R) (q2, y, L) - (q1, y, R) -

q2 (q2, a, L) - (q0, x, R) (q1, y, L) -

q3 - - - (q1, y, R) (q4, B, R)

*q4 - - - -

Transition Diagram:

q1 q2 q0

q2

q4

a / x

b / y

a / a

y / y

a / a

y / y

x / x

q3

y / y

y / y

B / B

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

4 / 19

i) Test whether the string w = “aabb” is in L(TM)

q0 aabbB ⊢ xq1abbB ⊢ xaq1bbB ⊢ xq2aybB ⊢ q2xaybB

 ⊢ xq0aybB ⊢ xxq1ybB ⊢ xxyq1bB ⊢ xxq2yyB

 ⊢ xq2xyyB ⊢ xxq0yyB ⊢ xxyq3yB ⊢ xxyyq3B

 ⊢ xxyyBq4

 Hence the string is accepted.

i) Test whether the string w = “abbb” is in L(TM)

q0 abbbB ⊢ xq1bbbB ⊢ xq1bbbB ⊢ q2xybbB ⊢ xq0ybbB

 ⊢ xyq3bbB

 Hence the string is rejected.

2. Design a TM to recognize the language L ={a
n
b

n
c

n
; n>0}.

Solution:

 The TM is designed using the following steps:

Step 1 : M replaces the leftmost ‘a’ by ‘x’ and moves right to the leftmost ‘b’,

replacing it by ‘y’ and moves right to the leftmost ‘c’, replacing it by

‘z’.

Step 2 : Then M moves left to find the rightmost ‘x’ and moves one cell right

to the leftmost ‘a’ and repeat the step 1.

Step 3 : While searching for a ‘b’ or ‘c’, if a blank (B) is encountered, and

then M halts without accepting.

Step 4 : After changing a ‘b’ to ‘y’ and ‘c’ to ‘z’, if M finds no more a’s, then

M checks no more b’s and c’s remains, M accepting the string else

not.

Let M = ({q0, q1, q2, q3, q4, q5}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q5}) be a TM.

 δ is defined by:

 δ (q0, a) = (q1, x, R) δ (q1, a) = (q1, a, R)

 δ (q1, y) = (q1, y, R) δ (q1, b) = (q2, y, R)

 δ (q2, b) = (q2, b, R) δ (q2, z) = (q2, z, R)

δ (q2, c) = (q3, z, L) δ (q3, z) = (q3, z, L)

δ (q3, b) = (q3, b, L) δ (q3, y) = (q3, y, L)

δ (q3, a) = (q3, a, L) δ (q3, x) = (q0, x, R)

δ (q0, y) = (q4, y, R) δ (q4, y) = (q4, y, R)

 δ (q4, z) = (q4, z, R) δ (q4, B) = (q5, B, R)

Transition Table:
States Tape Symbols

a b c x y z B

q0 (q1, x, R) - - - (q4, y, R) - -

q1 (q1, a, R) (q2, y, R) - - (q1, y, R) - -

q2 - (q2, b, R) (q3, z, L) - - (q2, z, R) -

q3 (q3, a, L) (q3, b, L) - (q0, x, R) (q3, y, L) (q3, z, L) -

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

5 / 19

q4 - - - - (q4, y, R) (q4, z, R) (q5, B, R)

*q5 - - - - - - -

Transition Diagram:

3. Design a TM to recognize the language L ={ww

R
; w (0+1)*} and check whether

the string “010010” is accept or not.

(or)

Design A TM to accept the set of palindrome strings and check whether the string

“010010” is accept or not.

 Solution

Let M = ({q0, q1, q2, q3, q4, q5, q6, q7}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q7}) be a TM.

δ is defined by:

 δ (q0, 0) = (q1, B, R) δ (q0, 1) = (q4, B, R)

 δ (q1, 0) = (q1, 0, R) δ (q4, 0) = (q4, 0, R)

 δ (q1, 1) = (q1, 1, R) δ (q4, 1) = (q4, 1, R)

δ (q1, B) = (q2, B, L) δ (q4, B) = (q5, B, L)

δ (q2, 0) = (q3, B, L) δ (q5, 1) = (q6, B, L)

δ (q3, 0) = (q3, 0, L) δ (q6, 0) = (q6, 0, L)

δ (q3, 1) = (q3, 1, L) δ (q6, 1) = (q6, 1, L)

 δ (q3, B) = (q0, B, R) δ (q6, B) = (q0, B, R)

δ (q0, B) = (q8, B, R)

q1 q2 q0

q2

q5

a / x

b / y

a / a

y / y

b / b

z / z

x / x

q4

y / y

y / y

z / z

B / B

q3
c / z

y / y

z / z

b / b

a / a

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

6 / 19

Transition Table:

States
Tape Symbols

0 1 B

q0 (q1, B, R) (q4, B, R) (q8, B, R)

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, B, L) - -

q3 (q3, 0, L) (q3, 1, L) (q0, B, R)

q4 (q4, 0, R) (q4, 1, R) (q5, B, L)

q5 - (q6, B, L) -

q6 (q6, 0, L) (q6, 1, L) (q0, B, R)

*q7 - - -

Transition Diagram:

Test whether the string “010010” is in L(TM):

 q0010010B ⊢ Bq110010B ⊢ B1q10010B ⊢ B10q1010B

 ⊢ B100q110B ⊢ B1001q10B ⊢ B10010q1B

 ⊢ B1001q20B ⊢ B100q31BB ⊢ B10q301BB

 ⊢ B1q3001BB ⊢ Bq31001BB ⊢ q3B1001BB

 ⊢ Bq01001BB ⊢ BBq4001BB ⊢ BB0q401BB

 ⊢ BB00q41BB ⊢ BB001q4BB ⊢ BB00q51BB

 ⊢ BB0q60BBB ⊢ BBq600BBB ⊢ Bq6B00BBB

 ⊢ BBq000BBB ⊢ BBBq10BBB ⊢ BBB0q1BBB

 ⊢ BBBq20BBB ⊢ BBq3BBBBB ⊢ BBBq0BBBB

 ⊢ BBBBq7BBB - Hence the string is accepted.

q1 q2 q3

q0

q6

q2

q7

0 / B

B / B

0 / 0

1 / 1

0 / 0

1 / 1

B / B

0 / B

q4 q5

1 / B

B / B

0 / 0

1 / 1

1 / B

0 / 0

1 / 1

B / B

B / B

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

7 / 19

4. Design a TM to recognize the language L ={wcw
R
; w (a+b)*}.

Solution

 Let M = ({q0, q1, q2, q3, q4, q5, q6, q7, q8}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q8}) be a TM.

δ is defined by:

 δ (q0, a) = (q1, B, R) δ (q0, b) = (q4, B, R)

 δ (q1, a) = (q1, a, R) δ (q4, a) = (q4, a, R)

 δ (q1, b) = (q1, b, R) δ (q4, b) = (q4, b, R)

δ (q1, c) = (q1, c, R) δ (q4, c) = (q4, c, R)

δ (q1, B) = (q2, B, L) δ (q4, B) = (q5, B, L)

δ (q2, a) = (q3, B, L) δ (q5, b) = (q6, B, L)

δ (q3, a) = (q3, a, L) δ (q6, a) = (q6, a, L)

δ (q3, b) = (q3, b, L) δ (q6, b) = (q6, b, L)

δ (q3, c) = (q3, c, L) δ (q6, c) = (q6, c, L)

 δ (q3, B) = (q0, B, R) δ (q6, B) = (q0, B, R)

δ (q0, c) = (q7, B, R) δ (q7, B) = (q8, B, R)

Transition Table:

States

Tape Symbols

a b c B

q0 (q1, B, R) (q4, B, R) (q7, B, R) (q8, B, R)

q1 (q1, 0, R) (q1, 1, R) (q1, c, R) (q2, B, L)

q2 (q3, B, L) - - -

q3 (q3, 0, L) (q3, 1, L) (q3, c, L) (q0, B, R)

q4 (q4, 0, R) (q4, 1, R) (q4, c, R) (q5, B, L)

q5 - (q6, B, L) - -

q6 (q6, 0, L) (q6, 1, L) (q6, c, L) (q0, B, R)

q7 - - - (q8, B, R)

*q8 - - - -

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

8 / 19

Transition Diagram:

Tutorial Questions:

5. Design a TM to recognize the language L ={All strings must be equal number of 0’s

and 1’s}.

6. Design a TM to accept the language L ={All strings must be odd number of a’s}.

7. Design a TM to accept the language L ={ a
n
b

n
c

n
d

n
; n > 0}.

8. Design a TM to accept the language L ={ a
n
b

m
c

m
d

n
; m, n > 0}.

9. Design a TM to accept the language L ={ a
n
b

m
; n > 0 and m = n+2}.

10. Design a TM to accept the language L ={ a
n
bcd

n
; n > 0}.

q1 q2 q3

q0

q6

q2

q7

a / B

B / B

a / a

b / b

c / c

a / a

b / b

c / c

B / B

a / B

q4 q5

b / B

B / B

a / a

b / b

c / c

b / B

a / a

b / b

c / c

B / B

c / B

q5

B / B

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

9 / 19

Computable languages and functions

 A Turing machine computes a function f : Σ* → Σ* if, for any input word w, it always

stops in a configuration where f(w) is on the tape.

 Problems:

1. Construct TM for concatenation of two strings of unary numbers.

String 1 : 111 and String 2: 11

Solution:

Initial content in the tape:

B 1 1 1 0 1 1 B

Step 1 : M replaces the ‘0’ by ‘1’ and moves right to the leftmost ‘B’

Step 2 : Move to step back, then M replaces the ‘1’ by ‘B’

Final content in the tape after concatenation:

B 1 1 1 1 1 B B

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM.

 δ is defined by:
 δ (q0, 1) = (q0, 1, R)

δ (q0, 0) = (q1, 1, R)

δ (q1, 1) = (q1, 1, R)

 δ (q1, B) = (q2, 1, R)

 Transition Diagram:

q1 q0 q2

q2

0 / 1

B / 1

1 / 1 1 / 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

10 / 19

2. Construct TM for f(x) = x + 3.

Solution:

 Assume x = 5 (11111)

Initial content in the tape:

B 1 1 1 1 1 + 1 1 1 B

Step 3 : M replaces the ‘+’ by ‘1’ and moves right to the leftmost ‘B’

Step 4 : Move to step back, then M replaces the ‘1’ by ‘B’

Final content in the tape after processing f(x) = x+3:

B 1 1 1 1 1 1 1 1 B B

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM.

 δ is defined by:
 δ (q0, 1) = (q0, 1, R)

δ (q0, +) = (q1, 1, R)

δ (q1, 1) = (q1, 1, R)

 δ (q1, B) = (q2, 1, R)

 Transition Diagram:

3. Construct TM for f(x, y) = x + y.

Solution:

 Assume x = 5 (11111) and y = 3 (111)

Initial content in the tape:

B 1 1 1 1 1 + 1 1 1 B

Step 5 : M replaces the ‘+’ by ‘1’ and moves right to the leftmost ‘B’

Step 6 : Move to step back, then M replaces the ‘1’ by ‘B’

q1 q0 q2

q2

+ / 1

B / 1

1 / 1 1 / 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

11 / 19

Final content in the tape after processing f(x, y) = x + y:

B 1 1 1 1 1 1 1 1 B B

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM.

 δ is defined by:
 δ (q0, 1) = (q0, 1, R)

δ (q0, +) = (q1, 1, R)

δ (q1, 1) = (q1, 1, R)

 δ (q1, B) = (q2, 1, R)

 Transition Diagram:

4. Construct TM for f(x, y) = x – y; x ≥ y.

Solution:

 Assume x = 5 (11111) and y = 3 (111)

Initial content in the tape:

B 1 1 1 1 1 - 1 1 1 B

Step 1 : M replaces the leftmost ‘1’ by ‘B’ and moves right to the

leftmost ‘B’

Step 2 : Move to step back, then M replaces the ‘1’ by ‘B’

Step 3 : Do the step 1 and 2, until no more 1’s after ‘-’

Step 4 : Finally M replaces the ‘-’ by ‘1’

Final content in the tape after processing f(x, y) = x - y:

B B B B 1 1 B B B B B

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM.

 δ is defined by:
 δ (q0, 1) = (q1, B, R)

δ (q1, 1) = (q1, 1, R)

δ (q1, -) = (q2, -, R)

q1 q0 q2

q2

+ / 1

B / 1

1 / 1 1 / 1

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

12 / 19

δ (q2, 1) = (q2, 1, R)

δ (q2, B) = (q3, B, L)

δ (q3, 1) = (q3, B, L)

δ (q4, 1) = (q4, 1, L)

δ (q4, B) = (q0, B, R)

δ (q3, -) = (q5, 1, R)

 Transition Diagram:

5. Design a TM to compute f(x, y) = x * y.

Solution:

Initial content in the tape:

B 1 1 1 * 1 1 0 B B B B B B B

Final content in the tape after processing f(x, y) = x * y:

B X X X * Y Y 0 1 1 1 1 1 1 B

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM.

 δ is defined by:

States
Tape symbols

0 1 X Y * B

q0 (q1, X, R) (q4, X, R) - - - -

q1 (q1, 0, R) (q1, 1, R) - (q1, Y, R) (q3, *, R) (q2, *, L)

q2 (q2, 0, L) (q2, 1, L) (q0, X, R) (q2, Y, L) (q2, *, L) -

q3 (q3, 0, R) - - - - (q3, 0, L)

q4 - (q5, X, R) - (q4, Y, R) - -

q1 q0

q2

q5

1 / B

- / -

1 / 1

q2

1 / 1

q3
B / B

- / 1

q4
1 / B

1 / 1

B / B

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

13 / 19

q5 (q6, 0, L) - - - (q7, 0, L) -

q6 - (q6, 1, L) (q6, 0, L) (q6, Y, L) - (q0, B, R)

*q7 - (q7, B, L) (q7, B, L) (q7, B, L) - -

Modifications of Turing machine
Turing Machines with Two Dimensional Tapes

This is a kind of Turing machines that have one finite control, one read-write head

and one two dimensional tape. The tape has the top end and the left end but extends

indefinitely to the right and down. It is divided into rows of small squares. For any Turing

machine of this type there is a Turing machine with a one dimensional tape that is equally

powerful, that is, the former can be simulated by the latter.

To simulate a two dimensional tape with a one dimensional tape, first we map the

squares of the two dimensional tape to those of the one dimensional tape diagonally as shown

in the following tables:

One Dimensional Tape

The head of a two dimensional tape moves one square up, down, left or right. Let us simulate

this head move with a one dimensional tape. Let i be the head position of the two dimensional

tape.

Multitape TM

A multi-tape Turing machine is like an ordinary Turing machine with several tapes. Each

tape has its own head for reading and writing. Initially the input appears on tape 1, and the

others start out blank.

Universal TM

Universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary Turing

machine on arbitrary input.

Turing Machines with Multiple Tapes :

This is a kind of Turing machines that have one finite control and more than one tapes

each with its own read-write head. It is denoted by a 5-tuple (Q , , , q0,) . Its

transition function is a partial function

v v v v v v v

h 1 2 6 7 15 16

h 3 5 8 14 17 26

h 4 9 13 18 25

h 10 12 19 24

h 11 20 23

h 21 22

.

v 1 v 2 3 h 4 5 6 V 7 8 9 10 h 11

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

14 / 19

 : Q x ({ })
n
 -> (Q { h }) x ({ })

n
 x { R , L , S }

n
 .

A configuration for this kind of Turing machine must show the current state the machine is in

and the state of each tape.

Turing Machines with Multiple Heads :

This is a kind of Turing machines that have one finite control and one tape but more than one

read-write heads. In each state only one of the heads is allowed to read and write. It is

denoted by a 5-tuple (Q , , , q0,). The transition function is a partial function

 : Q x { H1 , H2 ... , Hn } x ({ }) -> (Q { h }) x ({ } x { R , L , S }

 where H1 , H2 ... , Hn denote the tape heads.

Turing Machines with Infinite Tape :

This is a kind of Turing machines that have one finite control and one tape which

extends infinitely in both directions. It turns out that this type of Turing machines are only as

powerful as one tape Turing machines whose tape has a left end.

Nondeterministic Turing Machines

A nondeterministic Turing machine is a Turing machine which, like nondeterministic

finite automata, at any state it is in and for the tape symbol it is reading, can take any action

selecting from a set of specified actions rather than taking one definite predetermined action.

Even in the same situation it may take different actions at different times. Here an action

means the combination of writing a symbol on the tape, moving the tape head and going to a

next state. For example let us consider the language L = { ww : w { a , b }
*
 } .

Chomsky hierarchy of languages & Grammars and their machine

recognizers

 Chomsky Hierarchy (Types of grammars)

Class Chomsky

hierarchy

of

languages

Grammars and their

machine recognizers

Rules

Type-0 Recursively

enumerable

Language

Unrestricted

Grammar

Turing

machine

Rules are of the form:

α → β, where α and β are arbitrary

strings over a vocabulary V and α ≠ ε

Type-1 Context-

sensitive

Language

Context-

sensitive

Grammar

Linear-

bounded

automaton

Rules are of the form:

αAβ → αBβ or S → ε

where A, S N

α, β, B (N T)∗ B ≠ ε

Type-2 Context-free

Language

Context-free

Grammar

Pushdown

automaton

Rules are of the form:

A → α where A N, α (N T)∗

Type-3 Regular

Language

Regular

Grammar

Finite

automaton

Rules are of the form:

A → ε

A → α

A → αB

where A, B N and α T

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

15 / 19

 Scope of each type of grammar

A figure shows the scope of each type of grammar:

 Type - 3 Grammar

 Type-3 grammars generate regular languages. Type-3 grammars must have a

single non-terminal on the left-hand side and a right-hand side consisting of a

single terminal or single terminal followed by a single non-terminal.

 The productions must be in the form
X → a

X → aY

where X, Y ∈ N (Non terminal) and a ∈ T (Terminal)

 The rule S → ε is allowed if S does not appear on the right side of any rule.

 Example

X → ε

X → a | aY

Y → b

 Type - 2 Grammar

 Type-2 grammars generate context-free languages. These languages generated by
these grammars are be recognized by a non-deterministic pushdown automaton.

 The productions must be in the form
A → γ

where A ∈ N (Non terminal) and γ ∈ (T ∪ N)* .

 Example
S → X a

X → a

X → aX

X → abc

X → ε

 Type - 1 Grammar

 Type-1 grammars generate context-sensitive languages.

 The productions must be in the form

α A β → α γ β

Where A ∈ N (Non-terminal) and α, β, γ ∈ (T ∪ N)*

 The strings α and β may be empty, but γ must be non-empty.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

16 / 19

 The rule S → ε is allowed if S does not appear on the right side of any rule. The
languages generated by these grammars are recognized by a linear bounded

automaton.

 Example

AB → AbBc

A → bcA

B → b

 Type - 0 Grammar

 Type-0 grammars generate recursively enumerable languages. The productions
have no restrictions. They are any phase structure grammar including all formal

grammars.

 They generate the languages that are recognized by a Turing machine.

 The productions can be in the form of
α → β

where α is a string of terminals and non-terminals with at least one non-

terminal and α cannot be null. β is a string of terminals and non-terminals.

 Example

S → ACaB

Bc → acB

CB → DB

aD → Db

Undecidability
Phrase Structure Grammar

 It consists of four components G = (V, T, P, S)

Recursive Language
 A language is recursive if there exists a Turing Machine that accepts every

string of the language and reject every string that is not in the language.

Recursively Enumerable Language
 A language is recursive enumerable if there exists a Turing Machine that

accepts every string of the language and does not accept strings that are not in

the language. The strings that are not in the language may be rejected and it

may cause the TM to go to an infinite loop.

Decidability
 A language is decidable (recursive) if and only if there is a TM M such that M

accepts every string in L and rejects every string not in L (or)

 A problem whose language is recursive is said to be a decidable.

Example :

 The strings over {a,b} that consists of alternating a’s and b’s.

 The strings over {a,b} that contains an equal number of a’s and b’s

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

17 / 19

Undecidability
 A problem is undecidable, if there is no algorithm, that can take as input an

instance of the problem and determines whether the answer to that instance is

‘Yes’ or ‘No’.

Example :

 Given a TM M and an input string w, does M halt on input w? (Halting
Problem)

 For a fixed machine M, given an input string w, does M halt on input w?

 Membership problem is undecidable.

 State entry problem is undecidable.

Properties of Recursive and Recursively Enumerable Languages

 Complement of a recursive language is recursive.

 Union of two recursive languages is recursive.

 Union of two recursive enumerable languages is also recursively enumerable.

 L if L and complement of L (L) are recursively enumerable is recursive.

Theorem :

 The Complement of recursive language is recursive.

Proof :

Let L be a recursive language. Then there exists a TM M that halts on every string on L.

 L = ∑* - L

Since L is recursive there is an “algorithm” (TM M) to accept L. Now construct an

“algorithm” (TM M’) for L is as follows.

 If M halts without accepting the string, then M’ halts accepting that string and if M halts on

accepting it, M’ enters into the final state without accepting it.

 Clearly L(M’) is the complement of L and thus L is a recursive language.

Theorem :
 If L1 and L2 are two recursive languages then L1 U L2 is also a recursive

language.

Proof :

 Let L1 and L2 be recursive languages accepted by the TMs M1 and M2 respectively.

 Construct a new TM M which first simulates M1. If M1 accepts, then M accepts. If M1

reject, the simulates M2 and accepts if and only if M2 accepts.

 Thus M has both accepting and rejecting criterion. So, M accepts L1 U L2.

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

18 / 19

Theorem :
 If L1 and L2 are two recursively enumerable languages then L1 U L2 is also a

recursively enumerable language.

Proof :

 Let L1 and L2 be recursively enumerable languages accepted by the TMs M1 and M2

respectively.

 Construct a new TM M which simultaneously simulates M1 and M2 on different tapes.

 If M1 or M2 accepts, the M accepts.

Theorem :

 L if L and complement of L (L) are recursively enumerable is recursive.

Proof :

 Let M1 and M2 be the TMs designed for the languages L and L respectively.

 Construct a new TM M which simulates M1 and M2 simultaneously.

 If M accepts w if M1 accepts w, M rejects w if M2 accepts w.

Post Correspondence Problem (PCP)
The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an

undecidable decision problem. The PCP problem over an alphabet ∑ is stated as follows −

Given the following two lists, M and N of non-empty strings over ∑ −

M = (x1, x2, x3,………, xn)

N = (y1, y2, y3,………, yn)

We can say that there is a Post Correspondence Solution, if for some

i1,i2,………… ik, where 1 ≤ ij ≤ n, the condition xi1 …….xik = yi1 …….yik satisfies.

Example:

Find whether the lists M = (abb, aa, aaa) and N = (bba, aaa, aa) have a Post Correspondence

Solution?

SITAMS – B.Tech – II Year - II Sem CSE Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE

18CSE225 – Formal Languages and Automata Theory Professor in CSE,

Unit – V

19 / 19

Solution

 x1 x2 x3

M Abb aa aaa

N Bba aaa aa

Here,

x2x1x3 = ‘aaabbaaa’ and y2y1y3 = ‘aaabbaaa’

We can see that

x2x1x3 = y2y1y3

Hence, the solution is i = 2, j = 1, and k = 3.

Modified Post Correspondence Problem

 We have seen an undecidable problem, that is, given a Turing machine M and an

input w, determine whether M will accept w (universal language problem).

 We will study another undecidable problem that is not related to Turing machine

directly.

 Given two lists A and B:

 A = w1, w2, …, wk B = x1, x2, …, xk

The problem is to determine if there is a sequence of one or more integers i1, i2, …, im

such that:

w1wi1wi2…wim = x1xi1xi2…xim

(wi, xi) is called a corresponding pair.

 Example

