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Syllabus : Unit – I : Fundamentals and Finite Automata 

 
Strings - Alphabets and languages - Finite state systems – Basic Definitions - Finite Automata - 

Deterministic finite automata – Non deterministic finite automata - Equivalence of DFA and NFA - 

Equivalence of NFA with and without ε –moves - Minimization of  FA - Finite automata with output 

– More machines and mealy machines. 

 

Introduction 

 
 Definition of TOC 

TOC describes the basic ideas and models underlying computing. TOC 

suggests various abstract models of computation, represented mathematically. 

 
 History of Theory of Computation 

 1936 Alan Turing invented the Turing machine, and proved that there exists 

an unsolvable problem. 
 1940’s Stored-program computers were built.  

 1943 McCulloch and Pitts invented finite automata. 

 1956 Kleene invented regular expressions and proved the equivalence of 

regular expression and finite automata 

 1956 Chomsky defined Chomsky hierarchy, which organized languages 

recognized by different automata into hierarchical classes. 

 1959 Rabin and Scott introduced nondeterministic finite automata and proved 

its equivalence to (deterministic) finite automata. 

 1950’s-1960’s More works on languages, grammars, and compilers 

 1965 Hartmantis and Stearns defined time complexity, and Lewis, Hartmantis 

and Stearns defined space complexity. 

 1971 Cook showed the first NP-complete problem, the satisfiability problem. 

 1972 Karp Showed many other NP-complete problems. 

 1976 Diffie and Helllman defined Modern Cryptography based on NP-

complete problems. 

 1978 Rivest, Shamir and Adelman proposed a public-key encryption scheme, 

RSA.  

 

Finite State systems 

 
A finite automaton can also be thought of as the device shown below consisting of a tape 

and a control circuit which satisfy the following conditions:  

 The tape has the left end and extends to the right without an end.  

 The tape is dividing into squares in each of which a symbol can be written prior to the 

start of the operation of the automaton.  

 The tape has a read only head. 

 The head is always at the leftmost square at the beginning of the operation.  

 The head moves to the right one square every time it reads a symbol.  

It never moves to the left. When it sees no symbol, it stops and the automaton 

terminates its operation.  

 There is a finite control which determines the state of the automaton and also controls 

the movement of the head. 
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Basic Definitions 

 
 Symbol :  

Symbol is a character.   

Example : a,b,c,… , 0,1,2,3,….9 and special characters. 

 

 Alphabet :  
An alphabet is a finite, nonempty set of symbol. It is denoted by ∑. 

  Example : 

a) ∑ = {0,1}, the set of binary alphabet. 

b) ∑ = {a,b……..z}, the set of all lowercase letters. 

c) ∑ = {+, &,…..}, the set of all special characters. 

 

 String or Word : 
  A string is a finite set sequence of symbols chosen from some alphabets. 

  Example : 

a) 0111010 is a string from the binary alphabet ∑ = {0,1} 

b) aabbaacab is a string from the alphabet ∑ = {a,b,c} 

 

 Empty String : 
The empty string is the string with zero occurrences of symbols (no symbols).  

It is denoted by є. 

 

 Length of String : 
  The length of a string is number of symbols in the string. It denoted by |w|.  

 

Example : 

 w = 010110101 from binary alphabet ∑ = {0,1} 

 Length of a string |w| = 9  
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 Power of an Alphabet: 
 If ∑ is an alphabet, we can express the set of all strings of certain length 

from that alphabet by using an exponential notation. It is denoted by ∑
k
  is 

the set of strings of length k, each of whose symbols is in ∑. 

 

  Example : 

∑ = {0,1} has 2 symbols 

i) ∑
1
  = {0,1}           ( 2

1
 = 2) 

ii) ∑
2
  = {00, 01, 10, 11}   ( 2

2
 = 4) 

iii) ∑3
  = {000,001,010,011,100,101,110,111} ( 2

3
 = 8) 

 

 The set of strings over an alphabet ∑ is usually denoted by ∑
*
. 

  For instance, ∑
*
 = {0,1}

*
 = {є,0,1,00,01,10,11}   

         (∑
*
=∑

0
∑

1
∑

2
……) - with є symbol. 

 

 The set of strings over an alphabet ∑ excluding є is usually denoted by ∑
+
. 

For instance, ∑
+
 = {0,1}

+
 = {0,1,00,01,10,11}   

         (∑
+
=∑

*
- {є}

  
 or  ∑

1
∑

2
∑

3
…..…)  

          - without є symbol. 

 

 Concatenation of String 
Join the two or more strings. Let x and y be two strings. Concatenation of 

strings x and y is appending symbols of y to right end of x. 

   x  = a1a2a3……………an   and    y = b1b2b3……………bn 

   Concatenation of  String xy = a1a2a3……an b1b2b3….…bn 

 

    Example : 

    s = ababa             and      t = cdcddc 

    Concatenation st = ababacdcddc 

 

 Languages: 

If Σ is an alphabet, and L  Σ* then L is a language. 
Examples: 

o The set of legal English words 

o The set of legal C programs 

o The set of strings consisting of n 0's followed by n 1's 

{ ϵ, 01,0011,000111, …} 

 

 Operations on Languages 
 Complementation 

Let L be a language over an alphabet Σ. The complementation of L, denoted 

byL, is Σ*–L. 

 Union 

Let L1 and L2 be languages over an alphabet Σ. The union of L1 and L2,   

denoted by L1L2,   is {x | x is in L1 or L2}. 

 Intersection 

Let L1 and L2 be languages over an alphabet Σ. The intersection of L1 and L2, 

denoted by L1L2, is { x | x is in L1 and L2}. 
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 Concatenation 

Let L1 and L2 be languages over an alphabet Σ. The concatenation of L1 and 

L2, denoted by L1L2, is {w1w2| w1 is in L1 and w2 is in L2}. 

 Reversal 

Let L be a language over an alphabet Σ. The reversal of L, denoted by L
r
, is 

{w
r
| w is in L}. 

 Kleene’s closure 

Let L be a language over an alphabet Σ. The Kleene’s closure of L, denoted by 

L*, is {x | for an integer n  0 x = x1 x2 … xn and x1, x2 , …, xn are in L}. 

          ∞   

L
*
 = U Li

         (e.g. a
*
 ={,a,aa,aaa,……}) 

                i=0 

  

 Positive Closure 

Let L be a language over an alphabet Σ. The closure of L, denoted by L+, is { 

x |for an integer n  1, x = x1x2…xn and x1, x2 , …, xn are in L} 
                  ∞   

L
+
 = U Li

         (e.g. a
*
 ={a,aa,aaa,……}) 

                   i=1 

 

Finite Automata 
Automaton is an abstract computing device. It is a mathematical model of a system, 

with discrete inputs, outputs, states and set of transitions from state to state that occurs on 

input symbols from alphabet Σ. 

 It representations: 

o Graphical (Transition Diagram or Transition Table) 
o Tabular  (Transition Table) 
o Mathematical (Transition Function or Mapping Function) 

 Formal Definition of Finite Automata 

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)  

where 

Q is a finite set called the states 

Σ is a finite set called the alphabet 

δ : Q ×Σ → Q is the transition function 

q0 ∈ Q is the start state also called initial state 

F ⊆ Q is the set of accept states, also called the final states 

 

 Transition Diagram (Transition graph) 

It is a directed graph associated with the vertices of the graph corresponds to 

the states of the finite automata. (or) It is a 5-tuple graph used state and edges 

represent the transitions from one state to other state. 

Example: 

 

 

 

 

 

q0 q1 q2 

0 1 
1 

0 1 
q2 

Start or Initial State Final or Accepting State 
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 Transition Table. 

It is the tabular representation of the DFA. For a transition table the transition 

function is used. 

Example: 

 

 

 

 

 

 

 

 Transition Function. 

- The mapping function or transition function denoted by δ.  

- Two parameters are passed to this transition function: (i) current state and 

(ii) input symbol.  

- The transition function returns a state which can be called as next state. 

 δ ( current_state, current_input_symbol ) = next_state 

Example: 

 δ ( q0, a ) = q1 

 

 Computation of a Finite Automaton 

o The automaton receives the input symbols one by one from left to right. 

o After reading each symbol, M1 moves from one state to another along the 

transition that has that symbol as its label. 

o When M1 reads the last symbol of the input it produces the output: accept if 

M1 is in an accept state, or reject if M1 is not in an accept state. 

 

 Applications 

o It plays an important role in complier design. 

o In switching theory and design and analysis of digital circuits automata theory 

is applied. 

o Design and analysis of complex software and hardware systems. 

o To prove the correctness of the program automata theory is used. 

o To design finite state machines such as Moore and mealy machines. 

o It is base for the formal languages and these formal languages are useful of the 

programming languages. 

 

 Types of Finite Automata 

o Finite Automata without output 

o Deterministic Finite Automata (DFA) 

o Non-Deterministic Finite Automata (NFA or NDFA) 

o Non-Deterministic Finite Automata with ε move (ε-NFA or ε-NDFA) 

o Finite Automata with output 

o Moore Machine 

o Mealy Machine 

 

 

 

States  
Input 

0 1 

{q0} {q1} {q0} 

{q1} - {q2} 

*{q2} - - 
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Deterministic Finite Automata (DFA) 

 
Deterministic Finite Automaton is a FA in which there is only one path for a specific 

input from current state to next state. There is a unique transition on each input symbol. 

 

 Formal Definition of Deterministic Finite Automata 

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)  

where 

Q is a finite set called the states 

Σ is a finite set called the alphabet 

δ : Q ×Σ → Q is the transition function 

q0 ∈ Q is the start state also called initial state 

F ⊆ Q is the set of accept states, also called the final states 

 

 

 

 

 

 

 

 

 

 

 

Non-Deterministic Finite Automata (NDFA or NFA) 

 
Non-Deterministic Finite Automaton is a FA in which there many paths for a 

specific input from current state to next state. 

 

 Formal Definition of Non-Deterministic Finite Automata 

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)  

where 

Q is a finite set called the states 

Σ is a finite set called the alphabet 

δ : Q ×Σ → 2
Q
 is the transition function 

q0 ∈ Q is the start state also called initial state 

F ⊆ Q is the set of accept states, also called the final states 

 

 

 

 

 

 

 

 

 

S0 

S2 

q2 S1 1 

0 

1 1 

0 

0 

q2 q0 q1 q2 
0 1 

 0 
 1 

 1 
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Finite Automaton with ε- moves 
The finite automata is called NFA when there exists many paths for a specific input 

or ε from current state to next state. The  is a character used to indicate null string. 

 

 Formal Definition of Non-Deterministic Finite Automata 

A finite automaton is a 5-tuples; they are M=(Q, Σ, δ, q0, F)  

where 

Q is a finite set called the states 

Σ is a finite set called the alphabet 

δ : Q ×(Σ  {ε}) → 2
Q
 is the transition function 

q0 ∈ Q is the start state also called initial state 

F ⊆ Q is the set of accept states, also called the final states 

 

 

 

 

 

 

Differentiate DFA and NFA  
Sl. No DFA NFA 

1. 
DFA is Deterministic Finite 

Automata 

NFA is Non-Deterministic Finite 

Automata 

2. 

For given state, on a given input 

we reach to deterministic and 

unique state. 

For given state, on a given input 

we reach to more than one state. 

3. 
DFA is a subset of NFA Need to convert NFA to DFA in 

the design of complier. 

4. 
δ : Q ×Σ → Q  

Example: δ(q0, a) = {q1} 

δ : Q ×Σ → 2
Q
 

Example : δ(q0, a) = {q1, q2} 

 

Problems for Finite Automata 
1. Design FA which accepts odd number of 1’s and any number of 0’s. 

 

 

 

 

 

 
  

  

 

 

2.  Design FA to accept the string that always ends with 00. 

 

 

 

 

 

q2 q0 q1 q2 
  

 0 
 1 

 1 

S0 

S2 

q2 S1 1 

0 

 

1 1 

0 

0 

q2 q0 q1 q2 
0 0 

1 

1 

1 

0 
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3.  Design FA to check whether given unary number is divisible by three. 

 

 

 

 

 

 

 

4. Design FA to check whether given binary number is divisible by three. 

 

 

 

 

 

 

 

 

 

 

5. Obtain the  closure of states q0 and q1 in the following NFA with  transition. 

 

 

 

 

 
 

Solution: 

 - CLOSURE {q0} = {q0, q1,q2} 

 - CLOSURE {q1} = {q1,q2} 
 

6. Obtain  closure of each state in the following NFA with  move. 

 

 

 

 

 

 

Solution: 

 - CLOSURE {q0} = {q0, q1,q2} 

 - CLOSURE {q1} = {q1,q2} 

 - CLOSURE {q2} = {q2} 

 

Tutorial: 

 

7. Design Finite Automata which accepts the only 0010 over the input Σ = {0, 1}.  

8. Design Finite Automata which checks whether given binary number is even or 

odd over the input Σ = {0, 1}.  

9. Design Finite Automata which accepts only those strings which starts with ‘a’ 

and end with ‘b’ over the input Σ = {a, b}.  

q0 q1 q2 

0 1 
2 

  
q2 

1 1 1 
q2 q0 q1 q2 q1 

1 

q0 q1 q2 

a b c 

 
 

S0 

S2 

q2 S1 0 

1 

1 1 

0 

S3 

0 

0 

0 
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10. Design a DFA to accept the language L = {w | w has both an even number of 0’s 

and an even number of 1’s. 

11. Design a DFA to accept the language L = {w | w has both an odd number of 0’s 

and an odd number of 1’s. 

12. Obtain  closure of each state in the following NFA with  move. 

 

 

 

 

 

 

 

Equivalence of NFA and DFA 
 

For every NFA, there exists an equivalent DFA. 

 

Theorem: 

  

For every NFA, there exists a DFA which simulates the behavior of NFA. If L is the set 

accepted by NFA, then there exists a DFA which also accepts L. 

Or 

Let L be a set accepted by NFA (L(M)), then there exists a DFA that accepts (L(Mʹ)). 

 

Proof: 

 

Let M = (Q, Σ, δ, q0, F) be an NFA for language L, then define DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ). 

 The states of Mʹ are all the subset of M. 

 The elements in Qʹ will be denoted by [q1, q2, q3, … , qi] and the elements in Q are 
denoted by {q1, q2, q3, … , qi}. 

 Initial state of NFA is q0, and also an initial state of DFA is q0ʹ =[q0].  

 we define  
 δʹ ([q1, q2, q3, …, qi],a) = [p1, p2, p3, …, pi] 

if only if 

δ({q1, q2, q3, …, qi},a) = {p1, p2, p3, …, pi} 

  

This means that whenever in NFA, at the current state {q1, q2, q3, …, qi} if we 

get input ‘a’ and it goes to the next states {p1, p2, p3, …, pi} then while constructing 

DFA for it the current state is assumed to be [q1, q2, q3, …, qi]. At this state, the input 

is ‘a’ and it goes to the next state is assumed to be [p1, p2, p3, …, pi]. On applying 

transition function on each of the state’s q1, q2, q3, …, qi the new state may be any of 

the state’s from p1, p2, p3, …, pi. 

 

Theorem can be proved with the induction method by assuming length of input string ‘x’. 

 

δʹ(q0ʹ, x) = [q1, q2, q3, …, qi] 

if only if 

δ(q0, x) = {q1, q2, q3, …, qi} 

b 

q2 q0 q1 q2 
ε ε 

a, b 

a, b 
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Basis method: 

 If the input string length is 0. ie. |x|=0 where x = {ε}, then q0ʹ = [q0]. 

 

Induction method:  

  

 If we assume that the hypothesis is true for the length of input string is less than or 

equal to ‘m’. Then if ‘xa’ is a length of string is m+1. Hence the transition function (δʹ) could 

be written as, 

    

  δʹ (q0ʹ, xa)  = δʹ (δʹ (q0ʹ, x),a) 

 

By induction hypothesis, 

  

δʹ(q0ʹ, x) = [p1, p2, p3, …, pi] 

if only if 

δ(q0, x)   = {p1, p2, p3, …, pi} 

 

By definition of δʹ 

     

δʹ( [p1, p2, p3, …, pi], a) = [r1, r2, r3, …, ri] 

if only if 

δ({p1, p2, p3, …, pi}, a) = {r1, r2, r3, …, ri} 

Thus, 

  δʹ (q0ʹ, xa)  = [r1, r2, r3, …, ri] 

if only if 

  δ (q0, xa)    = {r1, r2, r3, …, ri} 

 

Shown by induction hypothesis, 

 

L(M) = L(Mʹ) 

 

 
Extended Transition Function (δʹʹ or δ^) 

 
 This is used to represent transition functions with a string of input symbols ‘w’ and returns a 

set of states. It is represented by δʹʹ or δ^ 

 

Suppose  w = xa 

δ (q, x)    = {p1, p2, p3, …, pk} 

then 

         ∞   

      U    δʹʹ(pi,a)  =  {r1, r2, r3, …, rm} 

          i=0 

 

δʹʹ(pi, xa) = δʹʹ( δ(q,x) a)) 
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Example Problems for Converting NFA into DFA 
 

1. Obtain the DFA equivalent to the following NFA. 
 

 

 

  

 

 

 Solution : 

  The transition table for given NFA can be drawn as follows 

    

 

 

 

 

 

 

Let the DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ) then, transition function (δʹ) will be computed as, 

 

  δʹ([q0], 0)  =  [q0, q1] - a new state - A   

  δʹ([q0], 1) =  [q0]     

  δʹ([q1], 0) =   - 

  δʹ([q1], 1) = [q2] 

  δʹ([q2], 0) =  -       

δʹ([q2], 1) =  - 

  δʹ([qo,q1],0) = [q0,q1] 

  δʹ([qo,q1],1) = [q0,q2] a new state - B 

δʹ([qo,q2],0) = [q0,q1] 

  δʹ([qo,q2],0) = [q0] 

 

The transition table for DFA 

 

 

 

 

 

 

 

 

 The transition diagram for DFA 
 

 

 

 

 

 

 

 

States  
Input 

0 1 

{q0} {q0}{q1} {q0} 

{q1} - {q2} 

*{q2} - - 

States  
Input 

0 1 

[q0] [q0, q1] [q0] 

[q1] - [q2] 

*[q2] - - 

[q0, q1] [q0, q1] [q0, q2] 

*[q0, q2] [q0, q1] [q0] 

q2 q0 q1 q2 
0 1 

0, 1 

1 
0 

q2 q0 A B 
0 1 

1 0 

q21 

 
q1 

 

q2

1 

 

1 
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2. Let M = ({q0, q1}, {0,1}, δ, q0, {q1}) be NFA. Where δ (q0, 0) = {q0, q1},   

       δ (q0, 1) = {q1},  δ (q1, 0) = {},  δ (q1, 1) = {q0, q1}. Construct its equivalent DFA. 

 

Solution : 

  The transition table for NFA  

 

 

 

 

 

The transition diagram for NFA  

 

 

 

 

 

 

 

 

Let the DFA Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ) then, transition function (δʹ) will be computed as, 

 

  δʹ ([q0], 0)  =  [q0, q1] -a new state A   

  δʹ([q0], 1) =  [q1] 

  δʹ([q1], 0) =   

  δʹ([q1], 1) = [q0] 

  δʹ([q0,q1],0) = [q0,q1]    

  δʹ([qo,q1],1) = [q0,q1] 

 

The transition table for DFA 
 

 

 

 

 

 

 

The transition diagram for DFA 
 

 

 

 

 

 

 

 

 

 

 

 

States  
Input 

0 1 

{q0} {q0}{q1} {q1} 

*{q1}  {q0}{q1} 

States  
Input 

0 1 

[q0] [q0, q1] [q1] 

*[q1]  [q0] 

*[q0, q1] [q0, q1] [q0, q1] 

0 

q2 q0 q1 

0, 1 

1 

1 

0 

 

q0  

[q0,q1] 

1 
q1 

1 

0, 1 
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Tutorial: 

 

3. Obtain the DFA equivalent to the following NFA. 
 

 

 

 

 

 

4. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be NFA. Where δ (q0, 0) = {q0, q1},   

       δ (q0, 1) = {q1},  δ (q1, 0) = {q2,q3},  δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2},  

       δ (q2, 1) = {q0, q3}, δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, Construct its equivalent  

       DFA. 

 

 

Equivalence of NDFA’s with and without ε-moves 

 
Theorem: 

  

If L is accepted by NFA with ε-moves, then there exists L which is accepted by NFA 

without ε-moves. 

 

Proof: 

Let M = (Q, Σ, δ, q0, F) be an NFA with ε-moves for language L, then define NFA without           

ε-moves Mʹ = (Qʹ, Σʹ, δʹ, q0ʹ, Fʹ). 

 The elements in Qʹ will be denoted by [q1, q2, q3, … , qi] and the elements in Q are 
denoted by {q1, q2, q3, … , qi}. 

 Initial state of NFA with ε-moves is q0, and also an initial state of NFA without ε-moves 
is q0ʹ =[q0].  

 Fʹ =  

 δʹ can be denoted by δʹʹ with some input. 
 

Basis: 

 |X| = 1, where X is a symbol ‘a’. 

 δʹ(q0,a) = δʹʹ(q0,a) 

Induction: 

 |X| > 1, Let X = wa 

 δʹ(q0,wa) = δʹ( δʹʹ(q0,w),a) 

By induction hypothesis, 

 δʹ(q0,w) =  δʹʹ(q0,w) = p 

Now we will show that 

 δʹ(p,a) = δ(q0,wa) 

But, 

 δʹ(p,a) = δʹ(q,a) = δʹʹ(q,a)  as  p = δʹʹ(q0,w) 

We have 

δʹʹ(q,a) =  δʹʹ(q0,wa)  

Thus by definition of δʹʹ 

δʹ(q0,wa) =  δʹʹ(q0,wa)  

a, b 

q2 q0 q1 q2 
b a 

a, b 

a, b 
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Example Problems for Converting NFA with   into NFA without  

 

1.  Construct NFA without  from NFA with . 

 

 

 

 

 

 

 

Solution: 

Find the ε – closure function of all states: 

ε – closure (q0) = {q0, q1, q2} 

ε – closure (q1) = {q1, q2} 

ε – closure (q2) = {q2} 

 

Compute δʹ function: 

 δʹ(q0,0) = δʹʹ (q0,0)  =  ε – closure (δ(δʹ(q0,ε),0)) 

    =  ε – closure (δ({q0,q1,q2},0)) 

    =  ε – closure (q0)  = {q0,q1,q2} 

  δʹ(q0,1) = δʹʹ (q0,1)  =  ε – closure (δ(δʹ(q0,ε),1)) 

    =  ε – closure (δ({q0,q1,q2},1)) 

    =  ε – closure (q1)  = {q1,q2} 

 δʹ(q0,2) = δʹʹ (q0,2)  =  ε – closure (δ(δʹ(q0,ε),2)) 

    =  ε – closure (δ({q0,q1,q2},2)) 

    =  ε – closure (q2)  = {q2} 

 δʹ(q1,0) = δʹʹ (q1,0)  =  ε – closure (δ(δʹ(q1,ε),0)) 

    =  ε – closure (δ({q1,q2},0)) 

    =  ε – closure ()  = {} 
 δʹ(q1,1) = δʹʹ (q1,1)  =  ε – closure (δ(δʹ(q1,ε),1)) 

    =  ε – closure (δ({q1,q2},1)) 

    =  ε – closure (q1)  = {q1,q2} 

 δʹ(q1,2) = δʹʹ (q1,2)  =  ε – closure (δ(δʹ(q1,ε),2)) 

    =  ε – closure (δ({q1,q2},2)) 

    =  ε – closure (q2)  = {q2} 

 δʹ(q2,0) = δʹʹ (q2,0)  =  ε – closure (δ(δʹ(q2,ε),0)) 

    =  ε – closure (δ({q2},0)) 

    =  ε – closure ()  = {} 

 δʹ(q2,1) = δʹʹ (q2,1)  =  ε – closure (δ(δʹ(q2,ε),1)) 

    =  ε – closure (δ({q2},1)) 

    =  ε – closure ()  = {} 
 δʹ(q2,2) = δʹʹ (q2,2)  =  ε – closure (δ(δʹ(q2,ε),2)) 

    =  ε – closure (δ({q2},2)) 

    =  ε – closure (q2)  = {q2} 

 

 

 

 

 

q0 q1 q2 

0 1 
2 

  
q2 

ε – closure (q0) 

= { q0,q1,q2} 
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The transition table for NFA 
 

 

 

 

 

 

The transition diagram for NFA 
 

 

 

 

 

 

 

 

2.  Construct NFA without  from NFA with . 

 

 

 

 

 

 

 

Solution: 

Find the ε – closure function of all states: 

ε – closure (q0) = {q0, q1} 

ε – closure (q1) = {q1} 

 

Compute δʹ function: 

 δʹ(q0,0) = δʹʹ (q0,0)  =  ε – closure (δ(δʹ(q0,ε),0)) 

    =  ε – closure (δ({q0,q1},0)) 

    =  ε – closure (q0)  = {q0,q1} 

  δʹ(q0,1) = δʹʹ (q0,1)  =  ε – closure (δ(δʹ(q0,ε),1)) 

    =  ε – closure (δ({q0,q1},1)) 

    =  ε – closure (q1)  = {q1} 

 δʹ(q1,0) = δʹʹ (q1,0)  =  ε – closure (δ(δʹ(q1,ε),0)) 

    =  ε – closure (δ({q1},0)) 

    =  ε – closure ()  = {} 

 δʹ(q1,1) = δʹʹ (q1,1)  =  ε – closure (δ(δʹ(q1,ε),1)) 

    =  ε – closure (δ({q1},1)) 

    =  ε – closure (q1)  = {q1} 

  

 The transition table for NFA 
 

 

 

 

 

States  
Input 

0 1 2 

q0 {q0,q1,q2} {q1,q2} {q2} 

q1 {} {q1,q2} {q2} 

*q2 {} {} {q2} 

States  
Input 

0 1 

*q0 {q0,q1} {q1} 

*q1 {} {q1} 

q0 q1 q2 

0 1 
2 

1,2 0,1 
q2 

0,1,2 

0 

q2 q0 

1 

q2 q1 

ε 
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The transition diagram for NFA 

 

 

 

 

 

 

 

Tutorial: 

 

1. Obtain the NFA equivalent to the following NFA with -move. 
 

 

 

 

 

 

 

2. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be -NFA.  

Where δ (q0, 0) = {q0, q1},  δ (q0, 1) = {q1},  δ (q1, 0) = {q2,q3}, δ (q1, ε) = {q1},  

δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2}, δ (q2, ε) = {q3}, δ (q2, 1) = {q0, q3,},  

δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, δ (q3, ε) = {q0}. Construct its equivalent 

NFA. 

 

Example Problems for Converting NFA with -move into DFA 

 

1. Construct DFA from the following -NFA. 

 

 

 

 

 

 

Solution: 

ε – closure (q0)  =  {q0, q1, q2}    A     new state in DFA 

 

ε – closure (δ (A, a))  =  ε – closure (q0,q2)   

   =  {q0, q1, q2}    A      

ε – closure (δ (A, b))  =  ε – closure (q0,q1,q2)   

   =  {q0, q1, q2}    A     

  

The transition table for DFA 

 

 

 

 

 

 

The transition diagram for DFA 

States  
Input 

A b 

*A A A 

0 

q2 q0 

1 

q2 q1 

0,1 

b 

q2 q0 q1 q2 
ε ε 

a, b 

a, b 

b 

q2 q0 q1 q2 
ε ε 

a, b 

a, b 

a,b 

q2 A 
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2. Construct DFA from the following -NFA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

ε – closure (p)  =  {p,q,r}    A     new state in DFA 

 

ε – closure (δ (A, 0))  =  ε – closure (p,r)  = ε – closure (p)  ε – closure (r)   

   =  {p,q,r}   {r,s}  = {p,q,r,s}  B     new state in DFA 

 

ε – closure (δ (A, 1))  =  ε – closure (q,s)  = ε – closure (q)  ε – closure (s)   

   =  {q,r}   {p,q,r,s}  = {p,q,r,s}  B      
 

ε – closure (δ (B, 0))  =  ε – closure (p,r)  = ε – closure (p)  ε – closure (r)   

   =  {p,q,r}   {r,s}  = {p,q,r,s}  B 

 

ε – closure (δ (B, 1))  =  ε – closure (q,s)  = ε – closure (q)  ε – closure (s)   

   =  {q,r}   {p,q,r,s}  = {p,q,r,s}  B      

  

The transition table for DFA 

 

 

 

 

 

 

 

The transition diagram for DFA 
 

 

 

 

 

 

 

 

States  
Input 

0 1 

A B B 

*B B B 

0 

p 

q2 s 

1 

q 

0 

r 

ε 

0 

ε ε 

0 

ε 

1 

0,1 

q2 B A 
0,1 
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Tutorial: 

 

1. Obtain the DFA equivalent to the following NFA with -move. 
 

 

 

 

 

 

 

2. Let M = ({q0, q1,q2,q3}, {0,1}, δ, q0, {q2,q3}) be -NFA.  

Where δ (q0, 0) = {q0, q1},  δ (q0, 1) = {q1},  δ (q1, 0) = {q2,q3}, δ (q1, ε) = {q1},  

δ (q1, 1) = {q0, q1}, δ (q2, 0) = {q2}, δ (q2, ε) = {q3}, δ (q2, 1) = {q0, q3,},  

δ (q3, 0) = {q3}, δ (q3, 1) = {q2, q3}, δ (q3, ε) = {q0}. Construct its equivalent 

DFA. 

 

Minimization of DFA 
 DFA minimization stands for converting a given DFA to its equivalent DFA with 

minimum number of states. 

 Suppose there is a DFA M = (Q, ∑, q0, δ, F) which recognizes a language L. Then the 

minimized DFA  M = (Q’, ∑, q0, δ’, F’) can be constructed for language L as: 

 

1. We will divide Q (set of states) into two sets. One set will contain all final states 

and other set will contain non-final states. This partition is called P0. 

2. Initialize k = 1 

3.  Find Pk by partitioning the different sets of Pk-1. In each set of Pk-1, we will take 

all possible pair of states. If two states of a set are distinguishable, we will split the 

sets into different sets in Pk. 

4. Stop when Pk = Pk-1 (No change in partition) 

5. All states of one set are merged into one. No. of states in minimized DFA will be 

equal to no. of sets in Pk. 

 

 

Example:  
Consider the following DFA into minimized DFA. 

 

 
 

 

q0 q1 q2 

0 1 
2 

  
q2 

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/fig-11.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/03/fig-11.png
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Solution: 

 

Transition Table for DFA 

 

States 
Inputs 

0 1 

q0 q3 q1 

*q1 q2 q5 

*q2 q2 q5 

q3 q0 q4 

*q4 q2 q5 

q5 q5 q5 

 

Step 1: Divide into two sets. One set is containing final states and other set containing 

non-final states. 

   

States 
Inputs Partition 

(P0) 0 1 

q0 q3 q1 
Non-Final 

States 
q3 q0 q4 

q5 q5 q5 

*q1 q2 q5 

Final States *q2 q2 q5 

*q4 q2 q5 

 

 

Step 2: To calculate P1, we will check whether sets of partition P0 can be partitioned or 

not: 

 

For set { q1, q2, q4 } : 

 δ ( q1, 0 ) = δ ( q2, 0 ) = q2 and δ ( q1, 1 ) = δ ( q2, 1 ) = q5, So q1 and q2 are 
not distinguishable. 

 Similarly, δ ( q1, 0 ) = δ ( q4, 0 ) = q2 and δ ( q1, 1 ) = δ ( q4, 1 ) = q5, So q1 
and q4 are not distinguishable. 

 So, q2 and q4 are not distinguishable. So, {q1, q2, q4} set will not be 

partitioned in P1. 

 

States 
Inputs Partition 

(P0) 0 1 

q0 q3 q1 
Non-Final 

States 
q3 q0 q4 

q5 q5 q5 

*q1 q2 q5 

Final States *q2 q2 q5 

*q4 q2 q5 

 

 



SITAMS – B.Tech – II Year - II Sem CSE  Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., 

18CSE225 – Formal Languages and Automata Theory   Professor in CSE, 

Unit – I 

 

20 / 28 

 

Step 3: Remove q2 and q4 row from the table and replace q2 and q4 into q1 where 

however present in the table. 

States 
Inputs Partition 

(P0) 0 1 

q0 q3 q1 
Non-Final 

States 
q3 q0 q4   q1 

q5 q5 q5 

*q1 q1 q5 
Final 

States 

 

Step 4:  

 δ ( q0, 0 ) = q3 and δ ( q3, 0 ) = q0 - Moves of q0 and q3 on input symbol 0 

are q3 and q0 respectively which are in same set in partition P0. 

 δ ( q0, 1) = δ ( q3, 1 ) = q1 - Moves of q0 and q3 on input symbol 1 is q1 
which are in same set in partition P0. 

 So, q0 and q3 are not distinguishable. 
 

Step 5: Remove q3 row from the table and replace q3 into q0 where however present in 

the table. 

 

States 
Inputs Partition 

(P0) 0 1 

q0 q3    q0 q1 
Non-Final 

States 
q3 q0 q1 

q5 q5 q5 

*q1 q1 q5 
Final 

States 

 

Step 6: Final Transition Table for DFA (no more not distinguishable) 

 

States 
Inputs Partition 

(P0) 0 1 

q0  q0 q1 Non-Final 

States q5 q5 q5 

*q1 q1 q5 
Final 

States 

 

 

Step 7: Transition Diagram for minimized DFA 

 

 

 

 

 

 

 

 

 

q2 q1 q0 
q5 

0 0 
0,1 

1 1 
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Tutorial: 

 

1. Consider the following DFA into minimized DFA. 

 
2. Consider the following DFA into minimized DFA. 

 

 
 

Finite automata with Output 
 Finite automata may have outputs corresponding to each transition. There are two model 

or machine for finite automata with output. 

 

 
 

Mealy Machine 

 

 A Mealy Machine is an FSM whose output depends on the present state as well as the 

present input. 

 The value of the output function z(t) depends only on the present state q(t) and present 

input λ (t),  i.e. z(t) = λ (q(t), x(t)) 

 The length of output for a mealy machine is equal to the length of input. If input string , 

the output string is also . 

 

 

Finite Automata 

with Output 

Mealy Machine Moore Machine 
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 It can be described by a 6 tuples M =  (Q, ∑, Δ, δ, λ, q0)  

where 

 Q is a finite set of states. 

 ∑ is a finite set of input symbols 

 Δ  is a finite set of output symbols  

 δ is the input transition function where δ: Q × ∑ → Q 

 λ is the output transition function where λ : Q × ∑ → Δ 

 q0 is the initial state  

 

 Transition table of mealy machine: 

Present State 
Input = 0 Input = 1 

Next State Output Next State Output 

q0 q1 0 q2 0 

q1 q1 0 q2 1 

q2 q1 1 q2 0 

 

 Transition diagram of mealy machine: 

 

Moore Machine 

 

  Moore machines are FSM whose output depends on the present state as well as the 

previous state. 

 The value of the output function z(t) depends only on the present state q(t) and 

independent of the current input x(t), i.e. z(t) = λ (q(t)) 

 The length of output for a moore machine is greater than input by 1. If input string , the 

output string is Δ= λ (q(t)). 

 It can be described by a 6 tuples M =  (Q, ∑, Δ, δ, λ, q0)  

where 

 Q is a finite set of states. 

 ∑ is a finite set of input symbols 

 Δ  is a finite set of output symbols  

 δ is the input transition function where δ: Q × ∑ → Q 

 λ is the output transition function where λ : Q  → Δ 

 q0 is the initial state  
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 Transition table of moore machine: 

 

Present State 

Next State  

Output 
Input = 

0 

Input = 

1 

q0 q1 q2 0 

q1 q1 q3 0 

q2 q4 q2 0 

q3 q4 q2 1 

q4 q1 q3 1 

 

 Transition diagram of moore machine: 

 

Mealy Machine vs. Moore Machine 

Mealy Machine Moore Machine 

Output depends both upon the present state 

and the present input 

Output depends only upon the present state. 

Generally, it has fewer states than Moore 

Machine. 

Generally, it has more states than Mealy 

Machine. 

The value of the output function is a 

function of the transitions and the changes, 

when the input logic on the present state is 

done. 

The value of the output function is a function 

of the current state and the changes at the 

clock edges, whenever state changes occur. 

Mealy machines react faster to inputs. They 

generally react in the same clock cycle. 

In Moore machines, more logic is required to 

decode the outputs resulting in more circuit 

delays. They generally react one clock cycle 

later. 
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Transforming Mealy Machine into Moore Machine 

 

 Transform Mealy Machine into Moore Machine for the given input string and the output 

string as same (except for the first symbol). 

 Algorithm: 

 Step 1: Look into the next state column for any state (example q0,q1, …. qi) and 
determine the number of different outputs associated with qi in that column 

(output column values are same or different). 

 Step 2: qi into several different states. The number of such states being equal to 

the number of outputs associated with qi. 

 Step 3: qi replaced by qi0 for output 0 and  qi1 for output 1 

 Step 4:  Convert Mealy Structure to Moore Structure  

 Step 5: Add new start state with output 0 and next states same as the next states of 
first state. 

 

 

 Example: 

Consider the Mealy machine described by the transition table given below. To 

construct a Moore machine, this is equivalent to mealy machine. 

 

Present State 

a = 0 a = 1 

Next State Output Next State Output 

q1 q3 0 q2 0 

q2 q1 1 q4 0 

q3 q2 1 q1 1 

q4 q4 1 q3 0 

 

Solution: 

 Step 1: Look into the next state column for any state (example q0,q1, …. qi) and 

determine the number of different outputs associated with qi in that column (output column 

values are same or different). 

 

Present State 

a = 0 a = 1 
Determine same or 

different output 

Next State Output Next State Output  

q1 q3 0 q2 0 same 

q2 q1 1 q4 0 different 

q3 q2 1 q1 1 same 

q4 q4 1 q3 0 different 

 



SITAMS – B.Tech – II Year - II Sem CSE  Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., 

18CSE225 – Formal Languages and Automata Theory   Professor in CSE, 

Unit – I 

 

25 / 28 

 

Step 2: q2 split into q20 and q21 states. Similarly q4 split into q40 and q41. 

 

Present State 

a = 0 a = 1 

Next State Output Next State Output 

q1 q3 0 q2 0 

                     q20 

          q2 

                      q21 

q1 1 q4 0 

q3 q2 1 q1 1 

                     q40 

          q4 

                      q41 

q4 1 q3 0 

 

Present State 

a = 0 a = 1 

Next State Output Next State Output 

q1 q3 0 q2 0 

q20 q1 1 q4 0 

q21 q1 1 q4 0 

q3 q2 1 q1 1 

q40 q4 1 q3 0 

q41 q4 1 q3 0 

Step 3: q2 replaced by q20 for output 0 and  q21 for output 1, similarly q4 replaced by  q40 

for output 0 and  q41 for output 1 

              

Present State 

a = 0 a = 1 

Next State Output Next State Output 

q1 q3 0 q20 0 

q20 q1 1 q40 0 

q21 q1 1 q40 0 

q3 q21 1 q1 1 

q40 q41 1 q3 0 

q41 q41 1 q3 0 
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Step 4:  Convert Mealy Structure to Moore Structure  

 

Present State 

Next State  

Output 

a = 0 a = 1 

q1 q3 q20 1 

q20 q1 q40 0 

q21 q1 q40 1 

q3 q21 q1 0 

q40 q41 q3 0 

q41 q41 q3 1 

 

Step 5: Add new start state with output 0 and next states same as the next states of first state. 

 

Present State 

Next State  

Output 

a = 0 a = 1 

q0 q3 q20 0 

q1 q3 q20 1 

q20 q1 q40 0 

q21 q1 q40 1 

q3 q21 q1 0 

q40 q41 q3 0 

q41 q41 q3 1 

Transition Diagram for Moore Machine 
 

 
 

 

1 
q0/ 
0 

1 

0 

0 q3/ 
0 

 

q20/
0 

 

q1/ 
1 

 

0 

1 

0 

q40/

0 

 
1 

q21/
1 

 

1 

1 

0 
1 

q41/

1 

 

0 

1 
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Transforming Moore Machine into Mealy Machine 

 Transform Mealy Machine into Moore Machine for the given input string and the output 

string as same. 

 Algorithm: 

 Step 1:  Remove output column from moore table and add output column to 
mealy table 

 Step 2: Fill the output column from moore table. 

 

Example: 

Consider the Moore machine described by the transition diagram given below. To 

construct a Mealy machine, which is equivalent to moore machine. 

 

 

 

 

 

 
 

 

 

 

 

 

 Transition Table for Moore Machine 

Present State 

Next State  

Output 

a = 0 a = 1 

q0 q3 q1 0 

q1 q1 q2 1 

q2 q2 q3 0 

q3 q3 q0 1 

Solution: 

Step 1:  Remove output column from moore table and add output column to mealy table 

 Transition Table for Mealy: 

Present State 

a = 0 a = 1 

Next State Output Next State Output 

q0 q3 1 q1 1 

q1 q1 1 q2 0 

q2 q2 0 q3 1 

q3 q3 1 q0 0 

 
q0/ 

0 

1 

0 

0 

q3/ 

1 

 

q1/ 

1 

 

q2/ 
0 

 

1 

1 
0 

0 

1 
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Transition Diagram for Mealy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tutorial Problems: 

1.  Construct the moore machine from the given mealy machine. 

 
 

2.  Construct the moore machine from the given mealy machine. 

 

 
 

 

 

 

 

q0 

1/1 

0/1 

0/1 q3 

 

q1 

 

q2 

 

1/0 

1/1 
0/0 

0/1 

1/0 
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Syllabus : Unit – II : Regular Expressions and Regular sets 

Regular expressions – Regular languages - Identity rules for regular expressions – Equivalence of 
finite automata and regular expressions – Pumping lemma for regular sets – Applications of the 
Pumping lemma - Closure proportions of regular sets (Without proof) 

  

Equivalence of finite Automaton and regular expressions 

 

Regular Languages 
A language is called regular language if there exists a finite automaton that recognizes 

it. For example finite automaton M recognizes the language L if L = {w | M accepts w}. 

 

 Operations on Regular Languages 

Let A and B be languages. We define regular operations union, concatenation, 

and star as follows: 

- Union   : A ∪  B = {x | x ∈  A ∨  x ∈  B} 

- Concatenation  : A ◦ B = {xy | x ∈  A ∧  y ∈  B} 

- Star   : A* = {x1x2 . . . xk | k ≥ 0 ∧  xi ∈  A, 1 ≤ i ≤ k} 

 

Regular Expression 
Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are 

defined recursively as follows: 

a. Ø is a regular expression and denotes the empty set. 

b.  is a regular expression and denotes the set {} 

c. For each ‘a’ Σ, ‘a’ is a regular expression and denotes the set {a}. 

d. If  ‘r’ and ‘s’ are regular expressions denoting the languages L1 and L2 

respectively then 

 Union   :  r + s is equivalent to L1 U L2  

 Concatenation  :  rs is equivalent to L1L2     

 Closure   :  r
*
 is equivalent to L1

*
    

 

Problems for Regular Expression 

 
1. Write the regular expression for the language accepting all combinations of a’s 

over the set   = {a}. 

 

L = { a,aa,aaa,………………….} 
 

R= a
*  

(i.e. kleen closure) 

 

2. Write regular expression for the language accepting  the strings which are 

starting with  1  and ending with  0, over the set  = {0,1}. 

 

L = { 10,1100,1010,100010………………….} 
 

R= 1(0+1)
*
0 
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3. Show that  (0*1*)*  =  (0+1)*. 

 

LHS :   (0*1*)* =  { , 0,1,00,11,0011,011,0011110……………….} 

RHS : (0+1)*   =   { , 0,1,00,11,0011,011,0011110……………….} 

 Hence  

LHS = RHS is proved 

 

4. Show that  (r+s)*    r* + s*. 

 

LHS :   (r+s)*    =  { , r,s,rs,rr,ss,rrrsssr,……………….} 

RHS : r* + s*  =   { , r,rr,rrr………….}U { , s,ss,sss,………….} 

   =    { , r,rr,rrr,s,ss,ssss……………..} 

 Hence  

LHS ≠ RHS is proved 

 

5. Describe the following by regular expression 

a. L1 = the set of all strings of 0’s and 1’s ending in 00. 

b. L2 = the set of all strings of 0’s and 1’s beginning with 0 and ending with . 

 

r1 = (0+1)*00 

r2 = 0(0+1)*1 

 

6. Show that (r*)* = r* for a regular expression r. 

LHS  = r*  = { ε, r,rr,rrr, …………….) 

             (r*)*    = { ε, r,rr,rrr, …………….)* 

(r*)*     = { ε, r,rr,rrr, …………….) = r* 

LHS = RHS 

7. If L = {The language starting and ending with ‘a’  and having any combinations 

of b’s in between, that what is r? 

 

r1 = a b*a 

 

8. Give regular expression for L= L1  L2  over alphabet {a,b}  

where L1 = all strings of even length,   

L2 = all strings starting with ‘b’. 

 

 r = r1 + r2  

 r = a
n
b

n
 + b (a+b)* 
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Syllabus : Unit – III : Regular Grammars and Context Free Grammars 

 

Types of Grammars - Regular grammars – Right Linear and Left Linear grammars - 

Equivalence of regular grammar and Finite Automata - Context free Grammars - Motivation 

and introduction - Derivations - Leftmost derivation - Rightmost derivation - Derivation tree 

– Ambiguity -  Simplification of CFG’s - Chomsky Normal Form - Greibach Normal  Form. 

  

Introduction 
 Language: “A language is a collection of sentences of finite length all constructed 

from a finite alphabet of symbols.”  

 Grammar: “A grammar can be regarded as a device that enumerates the sentences of 

a language.” 

 

 A formal grammar is a quad-tuple G = (N, T, P, S)  

where  

N is a finite set of non-terminals  

T is a finite set of terminals and is disjoint from N  

P is a finite set of production rules of the form w (NT)∗ → w (NT)∗  

S  N is the start symbol 
 

 Chomsky Hierarchy (Types of grammars) 
 

Class Grammars Languages Automaton Rules 

Type-0 Unrestricted  

Grammar 

Recursively 

enumerable 

Language  

Turing 

machine 

 

Rules are of the form:  

α → β,  

where α and β are arbitrary strings 

over a vocabulary V and α ≠ ε 

Type-1  Context-

sensitive 

Grammar 

Context-

sensitive 

Language 

Linear-

bounded 

automaton 

Rules are of the form:  

αAβ → αBβ  

S → ε  

where  

A, S  N  

α, β, B (N T)∗ B ≠ ε 

Type-2  Context-free  

Grammar 

Context-free 

Language 

Pushdown 

automaton 

Rules are of the form:  

A → α  

where A  N  

α  (N  T)∗ 

Type-3  Regular  

Grammar 

Regular 

Language 

Finite 

automaton 

Rules are of the form:  

A → ε  

A → α  

A → αB  

where A, B N and α T 
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 Scope of each type of grammar  

A figure shows the scope of each type of grammar: 
 

 
 

 Type - 3 Grammar 

 Type-3 grammars generate regular languages. Type-3 grammars must have a 
single non-terminal on the left-hand side and a right-hand side consisting of a 

single terminal or single terminal followed by a single non-terminal. 

 The productions must be in the form  

X → a  

X → aY 

 

where X, Y ∈ N (Non terminal) and a ∈ T (Terminal) 

 The rule S → ε is allowed if S does not appear on the right side of any rule. 

 Example 
X → ε  

X → a | aY 

Y → b  

 

 Type - 2 Grammar 

 Type-2 grammars generate context-free languages. These languages generated by 

these grammars are be recognized by a non-deterministic pushdown automaton. 

 The productions must be in the form  
A → γ 

where A ∈ N (Non terminal)  and γ ∈ (T ∪ N)* . 

 Example 

S → X a  

X → a  

X → aX  

X → abc  

X → ε 

 

 Type - 1 Grammar 

 Type-1 grammars generate context-sensitive languages.  

 The productions must be in the form 
α A β → α γ β 

Where A ∈ N (Non-terminal) and α, β, γ ∈ (T ∪ N)*  
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 The strings α and β may be empty, but γ must be non-empty. 

 The rule S → ε is allowed if S does not appear on the right side of any rule. The 

languages generated by these grammars are recognized by a linear bounded 

automaton. 

 Example 
AB → AbBc  

A → bcA  

B → b  

 

 Type - 0 Grammar 

 Type-0 grammars generate recursively enumerable languages. The productions 
have no restrictions. They are any phase structure grammar including all formal 

grammars. 

 They generate the languages that are recognized by a Turing machine. 

 The productions can be in the form of  

α → β  

where α is a string of terminals and non-terminals with at least one non-

terminal and α cannot be null. β is a string of terminals and non-terminals. 

 Example 
S → ACaB  

Bc → acB  

CB → DB  

aD → Db  

 

Regular grammars  
 Formal Definition of Regular Grammars 

 A regular grammar is a mathematical object, G, with four components,  

G = (N, T, P, S) 

Where 

N is a nonempty, finite set of non-terminal symbols 

T is a finite set of terminal symbols 

P is a set of grammar rules, each of one having one of the forms 

A → aB 

A → a 

A → ε, for A, B  N, a  T, and ε the empty string 

S is the start symbol S ∈ N  

 

 Definition: The Language Generated by a Regular Grammar 

 Let G = (N, T, P, S) be a regular grammar.  We define the language generated by 
G to be L(G) 

 L(G) = {w | S ⇒ * w, where w T*}  
 

Linear grammar 
 A linear grammar is a context-free grammar that has at most one non-terminal symbol 

on the right hand side of each grammar rule.  

S → aA  

A → aB 

B → Bb 
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Left Linear grammars 
 A left linear grammar is a linear grammar in which the non-terminal symbol always 

occurs on the left side. 

 In a grammar if all productions are in the form  

A→ B α  

A→  α  where A,B  V and α  T
* 

 

 Example 

A →  Aa / Bb / b 

 

Right Linear grammars  
 A right linear grammar is a linear grammar in which the non-terminal symbol always 

occurs on the right side. 

 In a grammar if all productions are in the form  

A→  α B  

A→ α   where A,B  V and α  T
* 

 

 Example 

A →  aA / bB / b 

 

Converting Left Linear grammars into Right Linear grammars  
  Algorithm: 

1. If the left linear grammar has a rule S → a, then make that a rule in the right 

linear grammar 

2. If the left linear grammar has a rule A → a, then add the following rule to the 

right linear grammar:   S → aA  

3. If the left linear grammar has a rule B → Aa, add the following rule to the 

right linear grammar:  A → aB  

4. If the left linear grammar has a rule S → Aa, then add the following rule to the 

right linear grammar:  A → a  

 

 Example 1: 

 

 

 

 

 Example 2: 

Left Linear Grammar 

S → Ab 

S → Sb 

A → Aa  

A → a  

Step 1: Make new non-terminal 

 S0 → S  

S → Ab 

S → Sb 

A → Aa  

A → a 

Left Linear Grammar 
S  → Aa  

A →  ab  

 

Right Linear Grammar 
S  →  abA 

A →  a 
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Step 2: If the left linear grammar has this rule A → p, then add the following 

rule to the right linear grammar: S → pA 

Left Linear Grammar   Left Linear Grammar 

S0 → S        S0 → aA  

S → Ab 

S → Sb 

A → Aa  

A → a 

 

Step 3:   If the left linear grammar has a rule B → Ap, add the following rule 

to the right linear grammar: A → pB  

Left Linear Grammar   Left Linear Grammar 

S0 → S        S0 → aA  

S → Ab       A → bS  

S → Sb       A → aA  

A → Aa        S → bS  

A → a      

 

Step 4:   If the left linear grammar has S → Ap, then add the following rule to 

the right linear grammar: A → p 

Left Linear Grammar   Left Linear Grammar 

S0 → S        S0 → aA  

S → Ab       A → bS  

S → Sb       A → aA  

A → Aa        S → bS  

A → a        S → ε  

 

Step 5:   Equivalent Right Linear Grammar: 

S0 → aA  

A → bS  

A → aA  

S → bS  

S → ε  

  

Equivalence of regular grammar and Finite Automata  

 
 Conversion of Finite Automata to Right Linear Regular Grammar 

1. Algorithm:  

1. Repeat the process for every state. 

2. Begin the process from start state. 

3. Write the production as the output followed by the state on which the 

transition is going. 

4. And at the last add ε because that’s required to end the derivation. 
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 Problems for Finite Automata to Right Linear Regular Grammar:  

 

1. Construct Right Linear Grammar from the given Finite Automata 

 
1) Pick start state and output is on symbol 'a' we are going on state B 

So, we will write as : 

A → aB  

2) Then we will pick state B and then we will go for each output. 

So, we will get the below production. 

B→aB/bB/ε 

3) So, final we got right linear grammar as:  

          A → aB 

         B → aB/bB/ε 

 

2. Construct Right Linear Grammar from the given Finite Automata 

 
1) Pick start state and output is on symbol 'ab' we are going on state A 

So, we will write as :     

S → abA 

2) Pick start state and output is on symbol 'ba' we are going on state B 

So, we will write as : 

S → baA 

3) Pick start state and output is on symbol 'ε ' we are going on state B and C 

So, we will write as : 

S → B  and  S → ε    (C is final state) 

4) Then we will pick state A and then we will go for each output. 

So, we will get the below production. 

A→ bS   and  A→ b    ( C is final state) 

5) Then we will pick state B and then we will go for each output. 

So, we will get the below production. 

B→ aS 

6) Then we will pick state C and then we will go for each output. 

So, we will get the below production. 

C→ ε 

7) So, final we got right linear grammar as:  

S → abA / baA / B / ε 

A→ bS / b 

B → aS 

C → ε 
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 Conversion of Regular language to Right Linear Regular Grammar 

Algorithm:  

1. Construct Finite automata from regular language. 

2. Repeat the process for every state. 

3. Begin the process from start state. 

4. Write the production as the output followed by the state on which the 

transition is going. 

5. And at the last add ε because that’s required to end the derivation. 

 

 Problems for Regular language to Right Linear Regular Grammar:  

 

3. Construct Regular language from the given Finite Automata 

L = {All strings start with ‘a’ over  = (a+b)*}. 
 

1) Construct Finite automata from given regular language. 

 
2) Pick start state and output is on symbol 'a' we are going on state B 

So, we will write as : 

A → aB  

3) Then we will pick state B and then we will go for each output. 

So, we will get the below production. 

B→aB/bB/ε 

4) So, final we got right linear grammar as:  

          A → aB 

         B → aB/bB/ε 

 

 Conversion of Regular expression to Right Linear Regular Grammar 

Algorithm:  

1. Construct Finite automata from regular expression. 

2. Repeat the process for every state. 

3. Begin the process from start state. 

4. Write the production as the output followed by the state on which the 

transition is going. 

5. And at the last add ε because that’s required to end the derivation. 

 

 Problems for Regular language to Right Linear Regular Grammar:  

 

4. Construct Regular Expression from the given Finite Automata 

r = a(a+b)* 

 

1) Construct Finite automata from given regular expression. 
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2) Pick start state and output is on symbol 'a' we are going on state B 

So, we will write as : 

A → aB  

3) Then we will pick state B and then we will go for each output. 

So, we will get the below production. 

B→aB/bB/ε 

4) So, final we got right linear grammar as:  

          A → aB 

         B → aB/bB/ε 

 

Tutorial Questions: 

5. Construct Right Linear Grammar from the given Finite Automata 

 

 

 

 

 

 

 

 

 

6. Construct Right Linear Grammar from the given Finite Automata 

 

 
7. Construct Right Linear Grammar from the given Finite Automata 

 

 

 

 

 

 

 

8. Construct Right Linear Grammar from the following Regular Languages. 

a. L = {All the strings starting and ending with ‘a’ and having any 

combinations of b’s in between over  = (a, b)}. 

b. L = {The set of all strings of 0’s and 1’s ending in 00 over  = (0, 1)}. 
c. L = {The set of all strings of 0’s and 1’s beginning with 0 and ending with 

1 over   = (0, 1)}. 

 

9. Construct Right Linear Grammar from the following Regular Expressions. 

a. r = (0+1)*11 

b. r = a(a+b)*b 

 

1 
0 

q2 S A B 
0 1 

1 0 

a, b 

q2 q0 q1 q2 
b a 

a, b 

a, b 
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 Conversion of Right Linear Regular Grammar to Finite Automata  

Algorithm:  

Given a regular grammar G, a finite automata accepting L(G) can be obtained as 

follows: 

1. The number of states in the automata will be equal to the number of non-

terminals plus one. Each state in automata represents each non-terminal in the 

regular grammar. The additional state will be the final state of the automata. 

The state corresponding to the start symbol of the grammar will be the initial 

state of automata. If L(G) contains ϵ that is start symbol is grammar devices to 

ϵ, then make start state also as final state. 

2. The transitions for automata are obtained as follows: 

 For every production A → aB, then make δ(A, a) = B that is make an 

are labeled ‘a’ from A to B. 

 For every production A → a, then make δ(A, a) = final state. 

 For every production A → ϵ, then make δ(A, ϵ) = A and A will be final 

state. 

 

 Problems for Right Linear Regular Grammar to Finite Automata 

1. Construct a Finite Automata from the given Right Linear Grammar  

A →  aB/bA/b 

  B →  aC/bB 

  C →  aA/bC/a 

 

  Solution: 

   Step 1:  Take the ‘A’ productions, then will make transition functions 

A →  aB  δ(A, a) = B 

A →  bA  δ(A, b) = A 

A →  b   δ(A, b) = Final State 

 

Step 2: Take the ‘B’ productions, then will make transition functions 

B →  aC  δ(B, a) = C 

B →  bB  δ(B, b) = B 

 

Step 3: Take the ‘C’ productions, then will make transition functions 

C →  aA  δ(C, a) = A 

C →  bC  δ(C, b) = C 

C →  b   δ(C, b) = Final State 

 

Step 4: Construct Finite Automata 

 

 

 

 

 

 

 

 

 

        * State D is a new final State 
 D 

A B 

b 

a 
C 

a 

b 

a 

b 

b a 



SITAMS – B.Tech – II Year - II Sem CSE  Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE 

18CSE225 – Formal Languages and Automata Theory  Professor in CSE, 

Unit – III 

 

10 / 35 

 

2. Construct a Finite Automata from the given Right Linear Grammar  

S →  A / B / ε 

  A →  0S/1B/0 

  B →  0S/1A/1 

 

 

  Solution: 

   Step 1:  Take the ‘S’ productions, then will make transition functions 

S →  A  δ(S, ε) = A 

S →  B   δ(S, ε) = B 

S →  ε   δ(S, ε) = S and S is make Final State 

 

Step 2: Take the ‘A’ productions, then will make transition functions 

A →  0S  δ(A, 0) = S 

A →  1B  δ(A, 1) = B 

A →  0   δ(A, 0) = Final State 

 

Step 3: Take the ‘B’ productions, then will make transition functions 

B →  0S   δ(B, 0) = S 

B →  1A  δ(B, 1) = A 

B →  1   δ(B, 1) = Final State 

 

Step 4: Construct Finite Automata 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* State C is a new final State 

 

 

Step 5: Reconstructed Finite Automata (after removing state C) 

 

 

 

 

 

 

 

 

 S A 
ε 

B 
1 

ε 

0 1 

0 

 C 

0 

1 

 S A 
ε 

B 
1 

ε 

0 

0,1 

1 
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Tutorial Questions: 

 

3. Construct a Finite Automata from the given Right Linear Grammar  

S → abA / baA / B / ε 

A→ bS / b 

B → aS 

C → ε 

 

4. Construct a Finite Automata from the given Right Linear Grammar  

A → aB 

      B → aB/bB/ε 

5. Give the Finite Automata from the given Right Linear Grammar  

S → 0S/1A/1/0B/0 

A → 0A/1B/0/1 

B → 0B/1A/0/1 

 

 

 Conversion of Finite Automata to Left Linear Regular Grammar 

Algorithm:  

1. Take reverse of the finite automata 

2. Remove unreachable state. 

3. Then write right linear grammar using the following steps 

i. Repeat the process for every state. 

ii. Begin the process from start state. 

iii. Write the production as the output followed by the state on which 

the transition is going. 

iv. And at the last add ε because that’s required to end the derivation. 

4. Then take reverse of the right linear grammar 

5. And you will get the final left linear grammar 

 

 Problems for Finite Automata to Left Linear Regular Grammar:  

 

1. Construct Left Linear Grammar from the given Finite Automata 

 
1) Take reverse of the finite automata (make final state as initial state and vice-

versa) 

 

 

 

 

 

2) Remove unreachable state. 

There is no unreachable state 

 

 

B q2 A 
a 

a,b 



SITAMS – B.Tech – II Year - II Sem CSE  Dr. D. Jagadeesan, B.E., M.Tech., Ph.D., MISTE 

18CSE225 – Formal Languages and Automata Theory  Professor in CSE, 

Unit – III 

 

12 / 35 

 

3) Then write right linear grammar  

a. Pick start state and output is on symbol 'a'  we are going on state A and 

B. So, we will write as : 

B → aA / aB 

b. Pick start state and output is on symbol 'b'  we are going on state B. So, 

we will write as : 

B → bB 

c. Then we will pick state A and then we will go for each output. 

So, we will get the below production. 

A→ ε 

d. So, final we got right linear grammar as:  

          B→ aA / aB / bB 

           A → ε 

4) Then take reverse of the right linear grammar 

B→ Aa / Ba / Bb 

 A → ε 

5) Final left linear grammar 

B→ Aa / Ba / Bb 

A → ε 

 

2. Construct Left Linear Grammar from the given Finite Automata 

 

 

 

 

 

 

 

 

 

 

1) Take reverse of the finite automata (make final state as initial state and vice-

versa) 

 

 

 

 

 

 

 

 

 

2) Remove unreachable state. 

State C is unreachable state, So remove state from the above FA 
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3) Then write right linear grammar  

a. Pick start state and output is on symbol 'a'  we are going on state A and 

B. So, we will write as : 

B → aA / aB 

b. Pick start state and output is on symbol 'b'  we are going on state B. So, 

we will write as : 

B → bB 

c. Then we will pick state A and then we will go for each output. 

So, we will get the below production. 

A→ ε 

d. So, final we got right linear grammar as:  

          B→ aA / aB / bB 

           A → ε 

4) Then take reverse of the right linear grammar 

B→ Aa / Ba / Bb 

 A → ε 

5) Final left linear grammar 

B→ Aa / Ba / Bb 

A → ε 

 

Tutorial Questions: 

 

3. Construct Left Linear Grammar from the given Finite Automata 

 

 

 

 

 

 

 

 

 

4. Construct Left Linear Grammar from the given Finite Automata 

 

 
5. Construct Left Linear Grammar from the given Finite Automata 

 

 

 

 

 

 

 

1 
0 

q2 S A B 
0 1 

1 0 

a, b 

q2 q0 q1 q2 
b a 

a, b 

a, b 
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 Conversion of Left Linear Regular Grammar to Finite Automata  

Algorithm:  

Given a regular grammar G, a finite automata accepting L(G) can be obtained as 

follows: 

1. Take reverse of CFG 

2. The number of states in the automata will be equal to the number of non-

terminals plus one. Each state in automata represents each non-terminal in the 

regular grammar. The additional state will be the final state of the automata. 

The state corresponding to the start symbol of the grammar will be the initial 

state of automata. If L(G) contains ϵ that is start symbol is grammar devices to 

ϵ, then make start state also as final state. 

3. The transitions for automata are obtained as follows: 

 For every production A → aB, then make δ(A, a) = B that is make an 

are labeled ‘a’ from A to B. 

 For every production A → a, then make δ(A, a) = final state. 

 For every production A → ϵ, then make δ(A, ϵ) = A and A will be final 

state. 

4. Then again take reverse of the FA and that will be our final output 

5. Start State: It will be the first production's state 

6. Final State: Take those states which end up with input alphabets. 

 

 Problems for Finite Automata to Left Linear Regular Grammar 

 

1. Construct a Finite Automata from the given Left Linear Grammar  

A →  Ba/Ab/b 

 B →  Ca/Bb 

 C →  Aa/Cb/a 

 

Solution: 

Step 1: Take reverse of CFG 

A →  aB/bA/b 

  B →  aC/bB 

  C →  aA/bC/a 

 

   Step 2:  Take the ‘A’ productions, then will make transition functions 

A →  aB  δ(A, a) = B 

A →  bA  δ(A, b) = A 

A →  b   δ(A, b) = Final State 

 

Step 3: Take the ‘B’ productions, then will make transition functions 

B →  aC  δ(B, a) = C 

B →  bB  δ(B, b) = B 

 

Step 4: Take the ‘C’ productions, then will make transition functions 

C →  aA  δ(C, a) = A 

C →  bC  δ(C, b) = C 

C →  b   δ(C, b) = Final State 
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Step 5: Construct Finite Automata 

 

 

 

 

 

 

 

 

 

                                        

                * State D is a new final State 

 

 

Step 6: Again take reverse of the FA, this is final output. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Construct a Finite Automata from the given Left Linear Grammar  

S  →  A / B / ε 

  A →  S0/B1/0 

  B →  S0/A1/1 

 

Solution: 

Step 1: Take reverse of CFG 

S →  A / B / ε 

    A →  0S/1B/0 

    B →  0S/1A/1 

   Step 2:  Take the ‘S’ productions, then will make transition functions 

S →  A  δ(S, ε) = A 

S →  B   δ(S, ε) = B 

S →  ε   δ(S, ε) = S and S is make Final State 

Step 3: Take the ‘A’ productions, then will make transition functions 

A →  0S  δ(A, 0) = S 

A →  1B  δ(A, 1) = B 

A →  0   δ(A, 0) = Final State 

Step 4: Take the ‘B’ productions, then will make transition functions 

B →  0S   δ(B, 0) = S 

B →  1A  δ(B, 1) = A 

B →  1   δ(B, 1) = Final State 

 D 

A B 

b 

a 
C 

a 

b 

a 

b 

b a 

 A 

D 

B 

b 

a 
C 

a 

b 

a 

b 

b a 
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Step 5: Construct Finite Automata 

 

 

 

 

 

 

 

 

 

 

 

 

* State C is a new final State 

 

 

Step 6: Reconstructed Finite Automata (remove state C) 

 

 

 

 

 

 

 

 

 

Step 7: Again take reverse of the FA, this is final output. 

 

 

 

 

 

 

 

 

 

Tutorial Questions: 

3. Construct a Finite Automata from the given Left Linear Grammar  

S → Aab / Aba / B / ε 

A→ Sb / b 

B → Sa 

C → ε 

4. Construct a Finite Automata from the given Left Linear Grammar  

A → Ba 

      B → Ba/Bb/ε 

5. Give the Finite Automata from the given Left Linear Grammar  

S → S0/A1/1/B0/0 

A → A0/B1/0/1 

B → B0/A1/0/1 

 S A 
ε 

B 
1 

ε 

0 1 

0 

 C 

0 

1 

 S A 
ε 

B 
1 

ε 

0 

0,1 

1 

 S A 
ε 

B 
1 

ε 

0 

0,1 

1 
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Context free Grammars  
 Motivation and introduction 

 A Context Free Grammar is a “machine” that creates a language. 

 A language created by a CF grammar is called A Context Free Language. 

 The class of Context Free Languages Properly Contains the class of Regular 
Languages. 

 

 Definition: 

A Context Free Grammar is consists of four components. They are finite set of 

non-terminals, finite set of terminals, set of productions and start symbol. 

 
 Formal Definition of Context Free Grammars (CFG) 

 A CFG is a mathematical object, G, with four components,  
G = (N, T, P, S) 

Where 

N is a nonempty, finite set of non-terminal symbols 

T is a finite set of terminal symbols 

P is a set of grammar rules, each of one having one of the forms 

A → α  

Where A  N and   α  (N  T)* 

S is the start symbol S ∈ N  

 Example 

Let G = ({S},{0,1,},P,S) be a CFG, where productions are S→ 0S0/1S1/ 

 

 Context Free Language: The Language Generated by a Regular Grammar 

 Let G = (N, T, P, S) be a regular grammar.  We define the language generated by 
G to be L(G). 

 L(G) = {w | w can be derived from G (or) S 
∗
⇒ w, where w T*}  

 

 Conversion of Context Free Language (CFL) into Context Free Grammar (CFG) 

 
1. Construct a CFG representing the set of palindromes over (0+1)*. 

The possible strings are  

        {,0,1,00,11,000,111,010,101,0000,1111,00100,11011, 01110,10101,....}  

       The CFG for a palindrome is given by 

  S → 0 / 1 /   
 S → 0S0 / 1S1 

 

2. Construct a CFG for the language L = {   ; n is odd}. 

The possible strings are {, a, aaa, aaaaa, aaaaaaa, ....} 
  The productions are 

   G:   S → a / aaS 

 
3. Construct a CFG for the language L = {     ; n ≥ 0}. 

The possible strings are {, ab, aabb, aaabbb, aaaabbbb, ....} 

  The productions are 

   G:   S → ab / aSb /  
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4. Construct a CFG for the language L = {     ; n ≥ 1}. 
The possible strings are {01, 0011, 000111, 00001111, ....} 

  The productions are 

   G:   S → 01 / 0S1  

 

5. Construct a CFG for the language L = {      ; n ≥ 0}. 

The possible strings are {c, acb, aacbb, aaacbbb, aaaacbbbb, ....} 

  The productions are 

   G:   S → c / aSb 

 

6. Construct a CFG for the language L = {     ; w  (a+b)*}. 
The possible strings are {c, aca, bcb, abcba, aacaa, bbcbb, bacab, abacaba,  

                                           bbacabba,….} 

  The productions are 

   G:   S → aSa / bSb  / c 

 

7. Construct a CFG for the language L = {                          }. 

The possible strings are {aabbab, aabbbababaab, aabbbabbababaabaab,….} 

  The productions are 

   G:   S → ABCD 

          A → aab 

          B → bba / bbaB 

          C → bab 

          D → aab / aabD 

 

      Tutorial Questions: 

8. Construct a CFG for the language L = {      ; n, m ≥ 0}. 

9. Construct a CFG for the language L = {        ; n ≥ 1}. 

10. Construct a CFG for the language L = {     ; n ≥ 0, m = n+2}. 

 

 Conversion of Context Free Grammar (CFG) into Context Free Language (CFL)  

1. Construct a CFL from the given grammar  

G = ({S}, {0,1, } , P, S) 
 Where 

S → 0 / 1 /   

  S → 0S0 / 1S1 

Solution: 

         If String Length = 1, The Strings are , 0, 1  
                If String Length = 2, The Strings are 00, 11 

          If String Length = 3, The Strings are 000, 111, 010, 101 

If String Length = 4, The Strings are 0000,1111 

If String Length = 5, The Strings are 00000,11111, 01010, 10101,  

                                                            11011, 00100, 01110, 10001 

..... 

If String Length > 5, The Strings are                 
So, The CFL is  

    L = { w;  All strings are palindrome over {0,1}} 
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2. Construct a CFL from the given grammar  

G = ({S}, {0,1, } , P, S) 
 Where 

S → a / aaS  

      Solution: 

If String Length = 1, The String is a 

                If String Length = 2, The String is aaa 

          If String Length = 3, The String is aaaaa 

If String Length = 4, The String is aaaaaaa 

..... 

If String Length > n, The String is aaa......aaaa, n is odd 

So, The CFL is    

   L = {   ; n  is odd}.   

 
3. Construct a CFL from the given grammar  

G = ({S}, {a, b, c} , P, S) 

Where 

S → aSa / bSb  / c 

      Solution: 

If String Length = 1, The String is c 

                If String Length = 3, The Strings are aca, bcb 

          If String Length = 5, The Strings are aacaa, bbcbb, abcba, bacab 

..... 

If String Length > n, The Strings are  aaa...c...aaa, bb...c...bb,  

                                                             aba..c..aba, bba....c...bba, ... 

So, The CFL is    

      L = {     ; w  (a+b)*}. 

 

 

Tutorial Questions: 

 

4. Construct a the CFL from the following grammar  

S → c / aSb 

5. Construct a the CFL from the following grammar  

 S → ABCD 

 A → aab 

B → bba / bbaB 

C → bab 

D → aab / aabD 

6. Construct a the CFL from the grammar G = ({S},{a,b},P,S)}, with productions 

S → aSa, 

S → bSb, 

S → ε 
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Derivations  

 A derivation of a string for a grammar is a sequence of grammar rule applications that 

transform the start symbol into the string. A derivation proves that the string belongs 

to the grammar's language.  ie. S 
∗
⇒ w, where w T* and w  L(G) 

 A derivation is fully determined by giving, for each step: 

o The rule applied in that step 

o The occurrence of its left-hand side to which it is applied 

 Example 

Consider G whose productions are S → aAS / a,  A→ SbA / SS / ba,  

 show that S ⇒ aabbaa. 

Solution:         

S  ⇒  aAs 

 ⇒ aSbAs [A → SbA] 

 ⇒ aabAS [S → a] 

 ⇒ aabbaS [A → ba] 

 ⇒ aabbaa [S → a] 

S  
∗
⇒  aabbaa 

 

Leftmost derivation (LMD) 

 A leftmost derivation is obtained by applying production to the leftmost variable or 

non-terminal in each step. 

ie. S 
∗
⇒
  

 w, where w T* and w  L(G) 

 

 Problems for LMD 

1. Consider G whose productions are S → aAS / a,  A→ SbA / SS / ba,  

     Show that S ⇒ aabbaa. 

 

Solution:         

S  ⇒  aAS 

 ⇒ aSbAS [A→ SbA] 

 ⇒ aabAS [S→ a] 

 ⇒ aabbaS [A→ ba] 

 ⇒ aabbaa [S→ a] 

 

S  

∗
⇒
  

  aabbaa 
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2. Find a left most derivation for “aaabbabbba” with the productions. 

P :  S →  aB / bA,  A → a /S / bAA,  B → b / bS / aBB 

 

Solution: 

 S  ⇒  aB 

 ⇒ aaBB  [B→ aBB] 

 ⇒ aaaBBB  [B→ aBB] 

 ⇒ aaabBB   [B→ b] 

 ⇒ aaabbB  [B→ b] 

 ⇒ aaabbaBB [B→ aBB] 

 ⇒ aaabbabB [B→ b] 

 ⇒ aaabbabbS [B→ bS] 

 ⇒ aaabbabbbA [S→ bA] 

 ⇒ aaabbabbba [A→ a] 

 

S  

∗
⇒
  

 aaabbabbba 

 

Rightmost derivation 

 A rightmost derivation is obtained by applying production to the rightmost variable or 

non-terminal in each step. 

ie. S 
∗
⇒
  

 w, where w T* and w  L(G) 

 

 Problems for RMD 

1. Consider G whose productions are S → aAS / a,  A→ SbA / SS / ba,  

      Show that S ⇒ aabbaa. 

Solution:         

S  ⇒  aAS 

 ⇒ aAa [S→ a] 

 ⇒ aSbAa [S→ SbA] 

 ⇒ aSbbaa [A→ ba] 

 ⇒ aabbaa [S→ a] 

 

S  

∗
⇒
  

  aabbaa 
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2. Find a right most derivation for “aaabbabbba” with the productions. 

  P :  S →  aB / bA,  A → a /S / bAA,  B → b / bS / aBB 

Solution: 

 S  ⇒  aB 

 ⇒ aaBB  [B→ aBB] 

 ⇒ aaBbS  [B→ bS] 

 ⇒ aaBbbA  [S→ bA] 

 ⇒ aaBbba  [A→ a] 

 ⇒ aaaBBbba [B→ aBB] 

 ⇒ aaaBbbba [B→ b] 

 ⇒ aaabSbbba [B→ bS] 

 ⇒ aaabbAbbba [S→ bA] 

 ⇒ aaabbabbba [A→ a] 

S  
∗
⇒
  

 aaabbabbba 

 

 Sentential Form or Partial Derivation 

o A partial derivation is a part of a derivation. The strings are derived from the 

start symbol is called as Sentential form.  

o If G =(V,T,P,S) is a CFG, then α (V  T)* 

S 
∗
⇒
 

 α, where α (V  T)*    -   Sentential Form 

S 
∗
⇒
  

 α, where α (V  T)*    -   Left Sentential Form 

S 
∗
⇒
  

 α, where α (V  T)*    -   Right Sentential Form 

 

Derivation Tree or Parse Tree - (Pictorial representation of derivation) 

 A derivation tree or parse tree is an ordered rooted tree that graphically represents the 

semantic information a string derived from a context-free grammar. 

 Representation Technique 

o Root vertex − Must be labelled by the start symbol. 

o Vertex − Labelled by a non-terminal symbol. 

o Leaves − Labelled by a terminal symbol or ε. 

 

 

 

 

 

 

S 

A B a 

a  
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 Types of Derivation Tree 

o Leftmost derivation tree 

 A leftmost derivation tree is obtained by applying production to the 

leftmost vertex in each step. 

 

 Example: S → ABa, A → a, B →  

 

 

 

 

 

... 

 

 

 

o Rightmost derivation tree 

 A rightmost derivation tree is obtained by applying production to the 

rightmost vertex in each step. 

 

 Example: S → ABa, A → a, B →  

 

 

 

... 

 

 

 

 

  

S 

A B a 

a  

S 

A B a 

a 

S 

A B a 

a  

S 

A B a 

a  

S 

A B a 

 

S 

A B a 

a  
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Ambiguity 

 If a context free grammar G has more than one derivation tree (leftmost or rightmost 

derivation tree) for some string wL(G), it is called an ambiguous grammar. There 

exist multiple right-most or left-most derivations for some string generated from that 

grammar. 

 

 Problems for Ambiguity in Context-Free Grammars 

1. Check whether the grammar G with production rules S → S+S / S*S / S / a is 

ambiguous or not. 

Solution:  

 Let’s assume a  string w = a+a*a 

 Parse Tree 1 :     Parse Tree 2 : 

 

 

 

 

 

 

 

 

 

  Thus we have two parse trees, So the given grammar is ambiguous. 

2. Check whether the grammar G with production rules S → E+E / E*E / (E) / id is 

ambiguous or not. 

Solution:  

 Let’s assume a  string w = (id*id+id) 

 Parse Tree 1 :     Parse Tree 2 : 

 

 

 

 

 

 

 

 

 

 

 
Thus we have two parse trees, so the given grammar is ambiguous. 

S 

 

S + S 

 

 

a S * S 

 

 

a  a 

 

 

S 

 

S * S 

 

 

S + S   a 

 

 

a  a 

 

 

E 
 

( E ) 

 

 

   E * E 

 

 

   id E + E 

  

                       id            id 

E 

 

( E ) 

 

 

   E + E 

 

 

    E    *  E id 

  

     id                id            
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Tutorial Questions: 

 

1. Show that the grammar defined by the productions   

S → SS / a /b is ambiguous. 

 

2. If G is the grammar S → SbS / a, Show that G is ambiguous. 

 

3. Prove that the grammar defined by the productions   

S → A1B, A → 0A / , B → 0B / 1B /  is unambiguous. 
 

4. Let the production of the grammar be S →  0B / 1A, A →  0 / 0S / 1AA,  

B → 1 / 1S / 0BB and the string 0110. 

a. Find the left most derivation and associated derivation tree. 

b. Find the right most derivation and associated derivation tree.   

c. Find the G is ambiguous or not. 

d. Find a L(G). 

5. G denotes the context-free grammar defined by the following rules.  

S→ASB / ab / SS  

A→aA / A  

B→bB / A 

a. Give a left most derivation of “aaabb” in G. Draw the associated parse 

tree. 

b. Give a right most derivation of “aaabb” in G. Draw the associated parse 

tree.  

c. Show that G is ambiguous. 

d. Find a L(G). 

 

 

Simplification of CFG’s 

 In a CFG, it may happen that all the production rules and symbols are not needed for 

the derivation of strings. Besides, there may be some null productions, useless 

symbols and unit productions. Elimination of these productions and symbols is 

called simplification of CFGs.  

 Simplification essentially comprises of the following steps 

o Elimination of Useless Symbols or Productions 

o Elimination of Null Productions (ie. ) 

o Elimination of Unit Productions 
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 Elimination of Useless Symbols or Productions 

o The productions that can never take part in derivation of any string are called 

useless productions. Similarly, a symbol that can never take part in derivation 

of any string is called a useless symbol or variable. 

o Example 

1. Eliminate the useless symbols or productions from the given grammar 

G:  S → abS / abA / abB 

A → cd 

B → aB 

C → dc 

Solution: 

Step 1: 

The production ‘B →aB’ is useless because there is no way it 

will ever terminate. If it never terminates, then it can never 

produce a string, then remove all the productions in which 

variable ‘B’ occurs. 

After eliminating B production and B symbols: 

         G1:  S → abS / abA  

     A → cd 

     C → dc 

Step 2: 

The production ‘C → dc’ is useless because the variable ‘C’ 

will never occur in derivation of any string, then remove all the 

productions in which variable ‘C’ occurs. 

After eliminating C production: 

G2:   S → abS / abA  

         A → cd 

Step 3: Resultant Grammar 

G’:   S → abS / abA  

 

         A → cd 

Tutorial Questions: 

2. Eliminate the useless symbols or productions from the given grammar 

S → AC / B, A → a, C → c / BC, E → aA /  

3. Remove the useless symbol from the given context free grammar: 

S → aB / bX 

A → Bad / bSX / a 

B → aSB / bBX 

X → SBD / aBx / ad 
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 Elimination of Null Productions (ie. ) 

o The productions A →  are called  productions (also null productions). These 

productions can only be removed from those grammars that do not generate  
(an empty string).  

o To remove null productions, we first have to find all the nullable variables. A 

variable A is called nullable if  can be derived from A.  

 For all the productions A→  , A is a nullable variable.  

 For all the productions of type B → A1A2…An, where all ’Ai’s are 

nullable variables, B is also a nullable variable. 

o If all the variables on the RHS of the production are nullable , then we do not 

add A →  to the new grammar.  

 

o Example: 

 

1. Eliminate the  productions from the given grammar 

G:  S → ABCd 

A → BC 

B → bB /  

C → cC /  
 

 

Solution: 

Step 1: Remove the productions B→ and C→ 

G:  S → ABCd / ACd / ABd / Ad  

     A → BC / C / B /  
     B → bB / b 

     C → cC  / c 

Step 2: Remove the production A→ 

G:  S → ABCd / ACd / ABd / Ad / BCd / Cd / Bd / d 

     A → BC / C / B 

     B → bB / b 

     C → cC / c 

Step 2: Resultant Grammar 

G’:  S → ABCd / ACd / ABd / Ad / BCd / Cd / Bd / d 

     A → BC / C / B 

     B → bB / b 

     C → cC / c 
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Tutorial Questions: 

2. Eliminate the  productions from the given grammar 

S → ABAC 

A → aA /  

B → bB /  
C → c 

3. Remove the  productions from the given grammar 

S → ASA / aB / b, A → B, B → b /  

 

 Elimination of Unit Productions 

o Any production rules in the form A → B where A, B ∈  Non-terminal is 

called unit production. 

o Steps for eliminate unit productions: 

 Step 1: To remove A → B, add production A → x to the grammar rule 

whenever B → x occurs in the grammar. [x ∈  Terminal, x can be Null] 

 Step 2: Delete A → B from the grammar. 

 Step 3:  Repeat from step 1 until all unit productions are removed. 

 

o Example 

1. Eliminate the unit production from the given grammar 

G:  S → Aa / B 

A →b / B 

B → A / a 

 

 

Solution: 

Step 1: Remove the production B→ A 

G:  S → Aa / B 

A →b / A / a 

B → A / a 

Step 2: Remove the production A→A 

G:  S → Aa / B  

A →b / a 

B → A / a 

Step 3: Remove the production B→A 

G:  S → Aa / B 

A → b / a 

B → b / a 
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Step 4: Remove the production S→B 

G:  S → Aa / b / a 

A → b / a 

B → b / a 

Step 4: Resultant Grammar 

G’:  S → Aa / b / a 

 A → b / a 

 B → b / a 

 

Tutorial Questions: 

 

2. Eliminate the useless symbols or productions from the given grammar 

S → XY, X → a, Y → Z / b, Z → M, M → N, N → a 

 

3. Remove the useless symbol from the given context free grammar: 

S →  AB 

A →  a 

B →  C / b 

C →  D 

D →  E 

E →  a 

 

4. Consider the grammar  

S→ 0A0 / 1B1 / BB 

A→ C 

B→ S / A 

C→ S / ε   and simplify using the same order  

a. Eliminate ε-Productions  

b. Eliminate unit productions  

c. Eliminate useless symbols 

 

 

Normal Form  

 A CFG is convert into a specific form is called as Normal forms. 

 There are two types of Normal Norms. 

o Chomsky Normal Form (CNF) 

o Greibach Normal Form (GNF) 
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Chomsky Normal Form (CNF) 

 A CFG is said to be in Chomsky Normal Form if every production is of one of these 

two forms:  

1. Non-Terminal → Non-Terminal . Non-Terminal 

Example: A → BC where A,B,CV (right side is two Non-Terminal).    

2. Non-Terminal → Terminal  

Example: A → a where a  T (right side is a single Terminal).   

 Algorithms for converting CFG into CNF: 

Step 1: Eliminate Null productions.  

Step 2: Eliminate Unit productions. 

Step 3: Eliminate Useless Symbols or Productions. 

Step 4:  Replace each production A → B1…Bn where n > 2 with A → B1C. 

 Where C → B2 …Bn. Repeat this step for all productions having  more than  

 two non-terminals in the right side. 

Step 5:  If the right side of any production is in the form A → aB where a is a terminal  

 and A, B are non-terminal, then the production is replaced by A → XB and  

X → a. Repeat this step for every production which is in the form A → aB. 

 

 Problems for converting CGF into CNF: 

1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions 

S → bA / aB 

A → bAA / aS / a 

B → aBB / bS / b.    

Convert it into CNF. 

Solution: 

Step 1: Eliminate Null productions.  

  There is no Null production. 

Step 2: Eliminate Unit productions.  

  There is no Unit production. 

Step 3: Eliminate Useless Symbols or Productions. 

  There is no Useless Symbols or Productions. 

Step 4: Find the productions which are already in CNF. 

  A → a 

  B → b 

Step 5: Replace all remaining productions into CNF. 

Non-Terminal → Non-Terminal . Non-Terminal 

Non-Terminal → Terminal  

 

i)  S → bA 

 S → CbA 

 Cb → b 
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ii)  S → aB 

 S → CaB 

 Ca → a 

iii) A → bAA  

 A → CbD1 

 D1 → AA 

 Cb → b 

iv)  A → aS 

A → CaS 

Ca → a 

v)  B → aBB 

B → Ca D2 

D2 → BB 

Ca → a 

v)  B → bS 

B → CbS 

Cb → b 

 

Step 3: Final Resultant Grammar 

G:    S → CbA / CaB 

A → CbD1 / CaS / a 

       B → Ca D2  / CbS / b 

D1 → AA  

D2 → BB 

 Ca → a 

Cb → b 

 

2. Convert the given grammar into CNF. 

  G = ({S,A,B},{a,b}, P, S} 

   The Productions are    

S→ 0A0 / 1B1 / BB  

A→ C  

B→ S / A  

C→ S / ε. 

 

Solution:  

Step 1: Eliminate ε-Productions 

1.1 Remove the production C→  ε  

S→ 0A0 / 1B1 / BB  

A→ S / ε 

B→ S / A  

C→ S 

1.2 Remove the production A→  ε  

S→ 0A0 / 00 / 1B1 / BB  

A→ S 

B→ S / ε 

C→ S 
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1.3 Remove the production B→  ε  

S→ 0A0 / 00 / 1B1 / 11 / BB / B  

A→ S 

B→ S 

C→ S 

 

Step 2: Eliminate Unit productions.  

2.1 Remove the production C→ S 

S→ 0A0 / 00 / 1B1 / 11 / BB / B  

A→ S 

B→ S 

2.2 Remove the production B→ S 

S→ 0A0 / 00 / 1S1 / 11 / SS / S 

A→ S 

2.3 Remove the production A→ S 

S→ 0S0 / 00 / 1S1 / 11 / SS / S 

2.4 Remove the production S→ S 

S→ 0S0 / 00 / 1S1 / 11 / SS 

 

Step 3: Eliminate useless symbols 

There is no Unit production.  

Resultant Grammar (after simplifications) 

G’ :  S→ 0S0 / 00 / 1S1 / 11 / SS 

Step 4: Find the productions which are already in CNF. 

S→ SS 

 

Step 5: Replace all productions into CNF.  

Non-Terminal → Non-Terminal . Non-Terminal  

Non-Terminal → Terminal  

 

i) S→ 0S0 

S → AB 

B→ SA 

A→ 0 

 

ii) S→  00  

S → AA 

A → 0 

 
iii) S→ 1S1  

S → DC 

C → SD 

D → 1 

iv) S→ 11  

S → DD 

D → 1 
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Step 5: Resultant Grammar 

G’:     S → AB / AA / DC / DD 

B→ SA 

A→ 0 

C → SD 

D → 1 

 

Tutorial Questions: 

3. Convert the following CFG to CNF  

S →  ASA / aB   

A → B / S   

B → b / ε  

4. Convert the following CFG to CNF  

S → AB / Aa 

A→ aAA / a  

B→ bBB / b 

5. Find a grammar in Chomsky Normal form equivalent to  

S→aAD 

A→aB / bAB 

B→b 

D→d 

6. Consider G = ({S,A}, {a,b}, P, S}  where P consists of  

S→aAS / a 

A→ SbA / SS / ba 

Convert it to its equivalent CNF 

 

 

Greibach Normal  Form (GNF) 

 A CFG is said to be in Greibach Normal Form if every production is of one of these 

two forms:  

1. Non-Terminal → Terminal . Any no. of Non-Terminal 

Example:  A → aBC   or  

2. Non-Terminal → Terminal  

Example: A → a (right side is a single Terminal). 

          (Or) 

A → aα , where aT and αV* 

 

 Algorithms for converting CFG into GNF: 

Step 1: Eliminate Null productions.  

Step 2: Eliminate Unit productions. 

Step 3: Eliminate Useless Symbols or Productions. 

Step 4: Check whether the CFG is already in CNF and convert it to CNF if it is not. 
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Step 5:  Rename the variables like A1, A2, ...An starting with S = A1. (Ai in ascending  

order of i) 

Step 6:  No need to modify the productions like Ai → Aj where i < j  

Step 7:  Modify the productions like Ai → Aj where i ≥ j 

(a) If Ai → Aj  where i > j, then substitute for Aj productions. 
Suppose Aj → Ak / AL, then the new set of productions are 

 Ai → Ak  / AL 

(b) It Ai → Aj  where i = j, then do the following steps: 
Introduce a new variable Bi  

Then  

 Bi → Ak    

 Bi →  Bi   

and remove the production Ai → Aj  

(c) For each production Ai →  where  does not begin with Ai , then add the 

production   

Ai →  Bi  
 

Step 7:  Convert all the productions into GNF form. A → aα where aT and αV* 

 

 

 Problems for converting CFG into GNF: 

1. Consider the Grammar G = ({S,A,B},{a,b}, P, S} as the productions 

S → AB 

A → BS / b 

B → SA / a    

Convert it into CNF. 

Solution: 

Step 1: Eliminate Null productions.  

  There is no Null production. 

Step 2: Eliminate Unit productions.  

  There is no Unit production. 

Step 3: Eliminate Useless Symbols or Productions. 

  There is no Useless Symbols or Productions. 

 Step 4: All production rules are already in CNF form. 

Step 5:  Rename the variables S, A, B as A1, A2, A3 respectively. 

A1 → A2 A3   ------ (1) 

A2 → A3 A1 / b  ------ (2) 

A3 → A1 A2 / a     ------ (3) 

 

 In (1), i < j, no need to modify the production. 

 In (2), i < j, no need to modify the production. 

 In (3), i > j, substitute A1 productions in (3) 

  A3 → A2 A3 A2 / a     -------(4) 

 

 In (4), i > j, substitute A2 productions in (4) 

A3 → A3 A1 A3 A2 / b A3 A2 / a  -------(5) 
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In (5), i = j, introduce new non-terminal B3, then B3 productions are 

B3 → A1 A3 A2 / A1 A3 A2 B3     and 

A3 → b A3 A2 / a  has been modified to  

             A3 → b A3 A2 / a / b A3 A2 B3 / a B3 

   

Step 6: Resultant productions are 

A1 → A2 A3    -------- (1)  

A2 → A3 A1 / b   -------- (2) 

B3 → A1 A3 A2 / A1 A3 A2 B3  -------- (3) 

A3 → b A3 A2 / a / b A3 A2 B3 / a B3 -------- (4) 

  Step 7: Convert into GNF form 

   Non-Terminal = Terminal .any no. of Non-Terminals  

   Non-Terminal = Terminal 

    

   Substitute A2 in (1) 

    A1 → A3 A1 A3 / b A3   -------- (5) 

   Substitute A3 in (5) 

    A1 → b A3 A2 A1 A3 / a A1 A3 / b A3 A2 B3 A1 A3 /  

          a B3 A1 A3 / b A3 

Substitute A3 in (2) 

A2 → b A3 A2 A3 A1 / a A3 A1/ b A3 A2 B3 A3 A1 / 

          a B3 A3 A1 / b   
Substitute A1 in (3) 

B3 → b A3 A2 A3 A2 / a A3 A2 / b A3 A2 B3 A3 A2 / a B3 A3 A2 / 

              b A3 A2 A3 A2 B3 / a A3 A2 B3 / b A3 A2 B3 A3 A2 B3 / 

                                                                                      a A3 A2 B3B3 

 

  Step 8: The equivalent GNF productions are  

   A1 → b A3 A2 A1 A3 / a A1 A3 / b A3 A2 B3 A1 A3 / a B3 A1 A3 / b A3 

A2 → b A3 A2 A3 A1 / a A3 A1/ b A3 A2 B3 A3 A1 /  a B3 A3 A1 / b  

A3 → b A3 A2 / a / b A3 A2 B3 / a B3 

B3 → b A3 A2 A3 A2 / a A3 A2 / b A3 A2 B3 A3 A2 / a B3 A3 A2  

B3 → b A3 A2 A3 A2 B3 / a A3 A2 B3 / b A3 A2 B3 A3 A2 B3  

                                                       B3 → a A3 A2 B3B3 

 

Tutorial Questions: 

2. Convert the following CFG to GNF  

S →  AA / a   

A → SS / b   
    (or) 

Convert the following CFG to GNF  

A1 → A2A2 / a   

A2→ A1A1 / b   
3. Convert the following CFG to GNF  

S → AB / Aa 

A→ aAA / a  

B→ bBB / b 

4. Convert the following CFG to GNF  

S → ABA   A→ aA /   B→ bB /  
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Syllabus : Unit – IV : Push Down Automata 

 
Definitions - Model of PDA – Acceptance by PDA - Design of PDA - Equivalence of PDA’s and 

CFL’s - Deterministic PDA - pumping lemma for CFL  - Closure properties of CFL (Without proof)  

 

Definition for Push Down Automata 
 Formal Definition of Pushdown Automaton 

A pushdown automaton consists of seven tuple  

M = (Q, Σ, Γ, δ, q0, Z0, F),  

Where  

Q - Finite set of states   

Σ - Finite input alphabet  

Γ - Finite alphabet of pushdown symbols  

δ - Transition function Q × (Σ ∪ {ε}) × Γ → Q×Γ
 
 

q0 - start / initial state q0  Q 

Z0 - start symbol on the pushdown Z0  Γ 

F  - set of final states F  Q 
 

Model of PDA  
 Pushdown Automata is a finite automaton with extra memory called stack which helps 

Pushdown automata to recognize Context Free Languages. 

 A DFA can remember a finite amount of information, but a PDA can remember an 

infinite amount of information. 

 The PDA consists of a finite set of states, a finite set of input symbols and a finite set of 

push down symbols. 

 The finite control has control of both the input tape and the push down store. 

 The stack head scans the top symbol of the stack. 

 A pushdown automaton has three components: 

o input tape 

o control unit, and 

o stack with infinite size. 

 A stack does two operations: 

o Push − a new symbol is added at the top. 

o Pop − the top symbol is read and removed. 
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Acceptance by PDA 

 There are two different ways to Acceptance by PDA 

o Acceptance by Final State 

 In final state acceptability, a PDA accepts a string when, after reading the 

entire string, the PDA is in a final state. From the starting state, we can 

make moves that end up in a final state with any stack values. The stack 

values are irrelevant as long as we end up in a final state. 

 Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA, then the language accepted by 

the set of final states F is 

L(M) = {w ; (q0, w, z0) ⊢* (p, ε, ), p ∈ F,   ∈ ⊢*} 

o Acceptance by Empty Stack 

 In empty stack acceptability, a PDA accepts a string when, after reading 

the entire string and also stack is empty, the PDA is in any state.  

 Let M = (Q, ∑, Γ, δ, q0, Z0, {q}) be a PDA, then the language accepted by 

the empty stack is: 

N(M) = {w ; (q0, w, z0) ⊢* (q, ε, ε), q ∈ Q} 

 

Instantaneous Description (ID) 
 The ID must record the state and stack contains 

If M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

then 

  (q0, aw, zα) ⊢ (q0, w, α)  if (q, a, z) = (p, ) 

 

 

Equivalence of Acceptance of PDA from Empty Stack to Final state 
If L is N(M1) (the language accepted by empty stack) for some PDA M1, then L is L(M2) 

(language accepted by final state) for some PDA M2  i.e.  L = N(M1) = L(M2) 

     (or)  

Prove that if L=N(PN) for some PDA PN = (Q, Ʃ,  , δ, q0, Z0, F), then there is a PDA PF such 

that L=L(PF).  

     (or) 

If L is L(M2) for some PDA M2 then  N(M1)=L(M2),L is N(M1) for some PDA M1. 

 

Theorem: 

If M1 = (Q, Ʃ,  , δ, q0, Z0, ∅) is a PDA accepting L by empty store, then construct  a 

PDA M2 = (Q’, Ʃ’,  ’, δ’, q0’, Z0’, F) which accepts L by final state i.e.,  L = N(M1) = 
L(M2). 

 

Proof: 
 M2 is constructed in such a way that  

a) by the initial state moves M2 of , it reaches an initial id of M1 

b) by the final move of B, it reaches its final state. 

c) all intermediate moves of B are in A. 
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 Let us define M2 as follows 

  M2 = (Q’, Ʃ’,  ’, δ’, q0’, Z0’, F)  
         Where  

   Q’= Q ∪ {p0, pf} 

   Ʃ’ = Ʃ    

    =   {Z0’} 

   F’ = {pf} - New final state (not in Q) 

   q0’ = p0   - New start state 

   Z0’ = New start symbol for stack. 

   δ' is given by rules: 

         R1 :  δ’(p0, ɛ,  Z0’)  =  {(q0, Z0Z0’)} 

          R2:  δ’(q, a, Z)  =  δ(q, a, Z) for all q in Q, a in (Ʃ ∪ ɛ) and Z in . 

    R3:  δ’ (q, ɛ, Z0’) = {(pf, ɛ)}. 

 By Rule R1, the PDA M2 moves from initial ID of M2 to an initial ID of M1. 
R1 gives a ‘ɛ’ move. As a result of R1, M2 moves to the initial state of A with 

the start symbol z0 on top of the stack. 

 By Rule R2 is used to simulate M1. Once M2 reaches an initial ID of M1, R2 is 
used to simulate moves of M1. We can repeatedly apply R2 until Z0’ is pushed 

to the top of the stack. 

 By Rule R3 is also a ‘ɛ’ move. Using R3, M2 moves to new final state pf by 
erasing Z0’ in stack. 

 

We have to show N(M1) = L(M2). 

  Let  w ϵ N(M1) then by definition of N(M1), 

   M1 : (q0, w, Z0) ⊢* (q, ɛ, ɛ) for some q  Q 

By theorem   

   (q, x, α) ⊢*  (p, y, β)  (q, xw, αy) ⊢*  (p, yw, βγ) 

we get  

   M1 : (q0, w, Z0Z0’)  ⊢*  (q, ɛ, Z0’) 

Since empty store (δ) is a subset of δ’ i.e. δ⊂ δ’ 
we have 

   M2 : (q0, w, Z0Z0’) ⊢* (q, ɛ, Z0’)  

Therefore we conclude that 

M2 :  (p0, w, z0’)  ⊢    (q0, w, zz0’) 

                            ⊢* (q, ɛ, z0’)  

    ⊢  (pf, ɛ, ɛ) 

pf 
p0 q0 

ɛ, Z0’ / Z0Z0’  

ɛ, Z0’ / ɛ  

ɛ, Z0’ / ɛ  

ɛ, Z0’ / ɛ  

ɛ, Z0’ / ɛ  

ɛ, Z0’ / ɛ  

M1 
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Equivalence of Acceptance of PDA from final state to empty stack 
 

If L is N(M1) for some PDA M1,then L if L(M2) for some PDA M2. 

(or) 

If A= (Q, Ʃ,  , δ, q0, Z0, F) accept by final state, we can find a PDA B, accepting L by 

empty store i.e., L = T(A) = N(B). 

 

If M1 = (Q, Ʃ,  , δ, q0, Z0, F) accept by final state, we can find a PDA M2, accepting L 
by empty store i.e., L = L(M1) = N(M2). 

 

Theorem: 

If M1 = (Q, Ʃ,  , δ, q0, Z0, F) is a PDA accepting L by final state, then construct  a 

PDA M2 = (Q’, Ʃ’,  ’, δ’, q0’, Z0’, ) which accepts L by empty store.  

      i.e.,  L = L(M1) = N(M2). 

 

Proof: 

M2 is constructs from M1 in such a way that  

a) by the initial move of M2 as initial ID of M1 is reached. 

b) once M2 reaches an initial ID of M1, it behaves like M1 until a final state of M1 

is reached. 

c) when M2 reaches final state of M1, it checks whether the input string is 

exhausted. Then M2 simulates M1 or it erases all the symbols in stack. 

 

 

 

 

 

  

 

 

 

 

 

 Let us define M2 as follows 

M2 = (Q’, Ʃ’,  ’, δ’, q0’, Z0’, )  

         Where  

   Q’= Q ∪ {p0, p} 
   Ʃ’ = Ʃ    

    =   {Z0’} 

   F’ = {p} - New final state (not in Q) 

   q0’ = p0   - New start state 

   Z0’ = New start symbol for stack. 

  δ' is given by rules: 

   R1 : δ’(p0, ɛ, Z0’) = {(q0, Z0Z0’)} 

   R2 : δ’(q0, ɛ, Z) = {(qf, ɛ)} for all Z    
 
∪ {Z0’}. 

   R3 : δ’(q, a, Z) = δ(q, a, Z) for all a  Z, q  Q, Z    . 

R4 : δ’(q, ɛ, Z) = δ(q, ɛ, z) ∪ {(p, ɛ )} for all Z    
 
∪ {Z0’} and q  F. 

 

qf 

p0 q0 

ɛ, Z0’ / Z0Z0’  

ɛ, Z0’ / ɛ  

ɛ, Z0’ / ɛ  

M1 

qf 
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 Using R1, M2 enters an initial ID of M1 and start symbol Z0 is placed on top of 
stack. 

 R2 is a ɛ move, using this M2 erases all the symbols on stack. 

 R3 is used to make M2 simulate M1 until it reaches the final state of M1. 
 

We have to show that L(M1) = N(M2) 

Let w  L(M1) then 

M1: (q0, w, z0) ⊢* (q, ɛ, α)  for some q F, α  ˫
*
 

Since δ’ ⊆ δ and by theorem  

                    M1: (q, x, α) ⊢*
 
(p, y, β)  (q, xw, αy) ⊢*

 
(p, yw, βγ) 

We can write has  

   M2: (q0, w, Z0Z0’) ⊢* (q, ɛ, αz0’) 

Then M2 can be computed has 

M2: (p0, w, Z0’)  ⊢   (q0, w, ZZ0’) 

   ⊢* (q, ɛ, Z0’)  

    ⊢  (pf, ɛ, ɛ) 

 

 

Design of PDA 

 
1. Construct a PDA that accepts L = {a

n
 b

n
 ; n ≥ 1} accepted by Final State. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, a, z0) = {(q0, az0)} 

2. (q0, a, a) = {(q0, aa)} 

 

3. (q0, b, a) = {(q1, )} 

4. (q1, b, a) = {(q1, )} 

 

5. (q1, , z0 ) = {(q2, z0)} -  
 

Transition Diagram: 

 

 

 

  

 

 

 

 

 

 

 

 

a, z0 / az0 

a, a / aa 

q2 q0 q1 q2 

b, a /  

b, a /  

, z0 / z0 

Push operations 

Pop operations 

Accept the Final State 
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2. Construct a PDA that accepts L = {a
n
 b

n
 ; n ≥ 1} accepted by empty stack. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, a, z0) = {(q0, az0)} 

2. (q0, a, a) = {(q0, aa)} 

 

3. (q0, b, a) = {(q1, )} 

4. (q1, b, a) = {(q1, )} 

 

5. (q1, , z0 ) = {(q2, )} -  
 

 

Transition Diagram: 

 

 

 

  

 

 

 

 

 

3. Construct a PDA that accepts L = {0
n
 1

n
 ; n ≥ 0} accepted by Final State. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, 0, z0) = {(q0, 0z0)} 

2. (q0, , z0) = {(q2, z0)} 

3. (q0, 0, 0) = {(q0, 00)} 

 

4. (q0, 1, 0) = {(q1, )} 

5. (q1, 1, 0) = {(q1, )} 

 

6. (q1, , z0 ) = {(q2, z0)}  -  
 

Transition Diagram: 

 

 

 

  

 

 

 

0, z0 / 0z0 

0, 0 / 00 

q2 q0 q1 q2 

1, 0 /  

1, 0 /  

, z0 / z0 

, z0 / z0 

Push operations 

Pop operations 

Accept the Final State 

a, z0 / az0 

a, a / aa 

q2 q0 q1 q2 

b, a /  

b, a /  

, z0 /  

Push operations 

Pop operations 

Accept the empty stack 
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4. Construct a PDA that accepts L = {0
n
 1

n
 ; n ≥ 0} accepted by empty stack. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, 0, z0) = {(q0, 0z0)} 

2. (q0, , z0) = {(q2, )} 

3. (q0, 0, 0) = {(q0, 00)} 
 

4. (q0, 1, 0) = {(q1, )} 

5. (q1, 1, 0) = {(q1, )} 
 

6. (q1, , z0 ) = {(q2, )}  -  

 

Transition Diagram: 

 

 

 

  

 

 

 

 

 

 

 

5. Construct a PDA that accepts L = {wcw
R
 ; w  (a+b)*} accepted by Final State. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, a, z0) = {(q0, az0) 

2. (q0, b, z0) = {(q0, bz0) 

3. (q0, a, a) = {(q0, aa) 

4. (q0, b, b) = {(q0, bb) 

5. (q0, a, b) = {(q0, ab) 

6. (q0, b, a) = {(q0, ba) 
 

7. (q0, c, a) = {(q1, a)} 

8. (q0, c, b) = {(q1, b)} 
 

9. (q1, a, a) = {(q1, )} 

10. (q1, b, b) = {(q1, )} 
 

11. (q1, , z0 ) = {(q2, z0)}  -  

 

0, z0 / 0z0 

0,0 / 00 

q2 q0 q1 q2 

1, 0 /  

1, 0 /  

, z0 /  

, z0 /  

Pop operations 

Accept the empty stack 

Push operations 

Accept the 

separator ‘c’ 

Accept the Final State 

Push operations 

Pop operations 
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Transition Diagram: 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

6. Construct a PDA that accepts L = {wcw
R
 ; w  (a+b)*} accepted by empty stack. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, a, z0) = {(q0, az0) 

2. (q0, b, z0) = {(q0, bz0) 

3. (q0, a, a) = {(q0, aa) 

4. (q0, b, b) = {(q0, bb) 

5. (q0, a, b) = {(q0, ab) 

6. (q0, b, a) = {(q0, ba) 
 

7. (q0, c, a) = {(q1, a)} 

8. (q0, c, b) = {(q1, b)} 
 

9. (q1, a, a) = {(q1, )} 

10. (q1, b, b) = {(q1, )} 
 

11. (q1, ,  ) = {(q2, )}  -  

 

Transition Diagram: 

 

 

 

  

 

 

 

 

 

 

c, z0 / z0 

a, z0 / az0 

b, z0 / bz0 

a, a / aa 

b, b / bb 

a, b / ab 

b, a / ba 

 

q2 q0 q1 q2 

c, a / a 

c, b / b 

 
, z0 / z0 

a, a /  

b, b /  

Push operations 

Accept the 

separator ‘c’ 

Accept the empty stack 

Pop operations 

a, z0 / az0 

b, z0 / bz0 

a, a / aa 

b, b / bb 

a, b / ab 

b, a / ba 

 

q2 q0 q1 q2 

c, a / a 
c, b / b 

 
, z0 /  

a, a /  

b, b /  
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7. Design a PDA that accepts L = {ww
R
 ; w  (0+1)*} accepted by final state.  
(or) 

Design a PDA for even length palindrome. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, 0, z0) = {(q0, 0z0) 

2. (q0, 1, z0) = {(q0, 1z0) 

3. (q0, 0, 0) = {(q0, 00) 

4. (q0, 1, 1) = {(q0, 11) 

5. (q0, 0, 1) = {(q0, 01) 

6. (q0, 1, 0) = {(q0, 10) 
 

7. (q0, , 0) = {(q1, 0)} 

8. (q0, , 1) = {(q1, 1)} 
 

9. (q1, 0, 0) = {(q1, )} 

10. (q1, 1, 1) = {(q1, )} 
 

11. (q1, , z0 ) = {(q2, z0)}  -  

 

Transition Diagram: 

 

 

 

  

 

 

 

 

 

 

 

 

8. Construct a PDA that accepts L = {a
n
b

m
a

n
 ;  m, n ≥1} accepted by empty store.  

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

The productions are: 

1. (q0, a, z0) = {(q0, az0) 

2. (q0, a, a) = {(q0, aa) 

3. (q0, b, a) = {(q1, a) 

4. (q1, b, a) = {(q1, a) 

5. (q1, a, a) = {(q2, ) 

6. (q2, a, a) = {(q2, ) 

7. (q2, , z0) = {(q2, ) 

Push operations 

Accept the 

separator ‘’ 

Accept the Final State 

Pop operations 

0, z0 / 0z0 

1, z0 / 1z0 

0, 0 / 00 

1, 1 / 11 

0, 1 / 01 

1, 0 / 10 

 

q2 q0 q1 q2 

, 0 / 0 

, 1 / 1 

 
, z0 / z0 

0, 0 /  

1, 1 /  
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Transition Diagram: 

 

 

 

 

 

 

 

 

 

9. Design a PDA that accepts L = {a
n
b

m
c

m
d

n
; n, m ≥ 1} accepted by empty store and 

check whether the string w = aaabcddd is accept or not. 

 

Solution: 

Let M = (Q, ∑, Γ, δ, q0, Z0, F) be a PDA 

 

The productions are: 

1. (q0, a, z0) = {(q0, az0) 

2. (q0, a, a) = {(q0, aa) 

3. (q0, b, a) = {(q1, ba) 

4. (q0, b, b) = {(q1, bb) 

5. (q0, c, b) = {(q1, ) 

6. (q1, c, b) = {(q1, ) 

7. (q1, d, a) = {(q2, ) 

8. (q2, d, a) = {(q2, ) 

9. (q2, , z0) = {(q3, ) 
 

Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

String w = aaabcddd 

 (q0, aaabcddd, z0)  ⊢ (q0, aabcddd, az0)     

           ⊢ (q0, abcddd, aaz0) 

 ⊢ (q0, bcddd, aaaz0) 

 ⊢ (q0, cddd, baaaz0) 

 ⊢ (q1, ddd, aaaz0) 

 ⊢ (q2, dd, aaz0) 

 ⊢ (q2, d, az0) 

 ⊢ (q2, , z0) 

 ⊢ (q3, , )  - Hence the string is accepted. 

a, z0 / az0 

a, a / aa 

q2 q0 q1 q3 
b, a / a 

 
a, a /  

b, a / a 

q2 

, z0 /  

a, a /  

a, z0 / az0 

a, a / aa 

b, a / ba 

b, b / bb 

 

q2 q0 q1 q3 
c, b /  

 
d, a /  

c, b /  

q2 

, z0 /  

d, a /  
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Tutorial Problems: 

10. Construct a PDA that accepts L = {a
n
b

2n
 ;   n ≥1} accepted by empty stack.  

11. Construct a PDA that accepts L = {a
n
ba

n
 ;  n > 0} accepted by final state.  

12. Design a PDA that accepts L = {a
n
ba

n
 ;  n > 0} accepted by final state.  

13. Construct a PDA that accepts L = {a
n
b

m
a

n
 ; n > 0 and m = n+1} accepted by empty 

store.  

14. Construct a PDA that accepts L = {a
n
b

m
; n > 0 and m ≥ n} accepted by empty store.  

15. Construct a PDA that accepts L = {a
n
b

m
c

m-n 
; m, n ≥  0 and m ≥ n} and check whether 

the given string is accepted or not.  (a) aabbbbcc    (b) aabbc 

 

 

Equivalence of PDA’s and CFL’s 

i)  Conversion of CFG to PDA 

Theorem: 

For any CFG L, there exists an PDA M such that L=L(M). 

 

Proof: 

Let G = (V, T, P, S) be a CFG.  

Construct the PDA M that accepts L(G) by empty stack as follows:  

M = ({q}, T, V ∪ T, δ, q, S)  

Where transition function δ is defined by:  

1. For each variable A, make δ(q, , A) = {(q, α) if A → α is a production 
of P}.  

2. For each terminal a, make δ(q, a, a) = {(q, )}. 

 

 Problems for CFG to PDA 

 

1. Construct a PDA from the following CFG. 

G = ({S, A}, {a, b}, P, S)   where the productions are  

S → AS / ε  

A → aAb / Sb / a 

  

 Solution: 

  Let the equivalent PDA,  M = ({q}, {a, b}, {a, b, A, S}, δ, q, S) 

where δ:  

δ(q, ε , S) = {(q, AS), (q, ε )} 

δ(q, ε , A) = {(q, aAb), (q, Sb), (q, a)} 

δ(q, a, a) = {(q, ε )} 

δ(q, b, b) = {(q, ε )} 
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2. Consider the grammar G = (V, T, P, S) with V = {S}, T = {a, b, c}, and P = {S → 

aSa, S → bSb, S → c} 

 

Solution: 

  Let the equivalent PDA,  M = ({q}, {a, b, c}, {a, b, c, S}, δ, q, S) 

where δ:  

δ(q, ε , S) = {(q, aSa), (q, bSb ), (q, c )} 

δ(q, a, a) = {(q, ε )} 

δ(q, b, b) = {(q, ε )} 

δ(q, c, c) = {(q, ε )} 

 

 

3. Consider the grammar G = (VN, VT, P, S) with P = { S → abA / baA / B / ε 

A→ bS / b, B → aS, C → ε} 

 

Solution: 

  Let the equivalent PDA,  M = ({q}, {a, b}, {a, b, S, A, B, C}, δ, q, S) 

where δ:  

δ(q, ε , S) = {(q, abA), (q, baA ), (q, B ), (q, ε )} 

δ(q, ε , A) = {(q, bS), (q, b)} 

δ(q, ε , B) = {(q, aS)} 

δ(q, ε , C) = {(q, ε )} 

δ(q, a, a) = {(q, ε )} 

δ(q, b, b) = {(q, ε )} 

 

 

4. Consider the grammar G = (VN, VT, P, S)  

Where P : 

S →  A / B / ε 

   A →  0S/1B/0 

   B →  0S/1A/1 

 

Solution: 

  Let the equivalent PDA,  M = ({q}, {0, 1}, {0, 1, S, A, B}, δ, q, S) 

where δ:  

δ(q, ε , S) = {(q, A), (q, B ), (q, ε )} 

δ(q, ε , A) = {(q, 0S), (q, 1B), (q, 0)} 

δ(q, ε , B) = {(q, 0S), (q, 1A), (q, 1)} 

δ(q, 0, 0) = {(q, ε )} 

δ(q, 1, 1) = {(q, ε )} 
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5. Construct a PDA  that will accept the language generated by the grammar G = ({S, 

A}, {a, b}, P, S) with the productions S →  AA / a, A → SA / b and test whether 

“abbabb” is in N(M). 

 

 

Solution: 

  Let the equivalent PDA,  M = ({q}, {a, b}, {a, b, S, A}, δ, q, S) 

where δ:  

δ(q, ε , S) = {(q, AA), (q, a } 

δ(q, ε , A) = {(q, SA), (q, b)} 

δ(q, a, a) = {(q, ε )} 

δ(q, b, b) = {(q, ε )} 

 

 

Test whether “abbabb” is in N(M): 

δ(q, abbabb , S) ⊢ δ(q, abbabb , AA)       by δ(q, ε , S) = {(q, AA)} 

    ⊢ δ(q, abbabb , SAA)    by δ(q, ε , A) = {(q, SA)} 

 ⊢ δ(q, abbabb , aAA)    by δ(q, ε , S) = {(q, a)} 

 ⊢ δ(q, abbabb , aAA)    by δ(q, a, a) = {(q, ε)} 

 ⊢ δ(q, bbabb , SAA)      by δ(q, ε , A) = {(q, SA)} 

 ⊢ δ(q, bbabb , AAAA)      by δ(q, ε , S) = {(q, AA)} 

 ⊢ δ(q, bbabb , bAAA)      by δ(q, ε , A) = {(q, b)} 

 ⊢ δ(q, babb , AAA)      by δ(q, b , b) = {(q, ε)} 

 ⊢ δ(q, babb , bAA)      by δ(q, ε , A) = {(q, b)} 

 ⊢ δ(q, abb , AA)       by δ(q, b , b) = {(q, ε)} 

 ⊢ δ(q, abb , SAA)      by δ(q, ε , A) = {(q, SA)} 

 ⊢ δ(q, abb , aAA)      by δ(q, ε , S) = {(q, a)} 

 ⊢ δ(q, bb , AA)     by δ(q, a, a) = {(q, ε)} 

 ⊢ δ(q, bb , bA)     by δ(q, ε , A) = {(q, b)} 

 ⊢ δ(q, b , A)     by δ(q, b , b) = {(q, ε)} 

 ⊢ δ(q, b , b)     by δ(q, ε , A) = {(q, b)} 

 ⊢ δ(q, ε , ε)     by δ(q, b , b) = {(q, ε)} 

 

Tutorial Problems: 

 

6. Consider the grammar G = (VN, VT, P, S) and test whether “abbabb” is in N(M). 

Where P : 

S → abA / baA / B / ε 

A→ bS / b 

B → aS 

C → ε 
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7. Consider the grammar G = (V, T, P, S)  

Where P : 

A → aB 

      B → aB/bB/ε 

8. Consider the grammar G = (V, T, P, S) and test whether “0101001” is in N(M). 

Where P : 

S → 0S/1A/1/0B/0 

A → 0A/1B/0/1 

B → 0B/1A/0/1 

9. Consider the grammar G = (V, T, P, S)  

Where P : 

A →  Ba/Ab/b 

B →  Ca/Bb 

C →  Aa/Cb/a 

10. Consider the grammar G = (V, T, P, S)  

Where P : 

A →  aB/bA/b 

B →  aC/bB 

C →  aA/bC/a 

11. Consider the grammar G = (V, T, P, S)  

Where P : 

S → ABCD 

A → aab 

B → bba / bbaB 

C → bab 

D → aab / aabD 

 

 

 

ii)  Conversion of PDA to CFG 

Theorem: 

If L is N(M) for some PDA M then L is CFL. 

 

Proof: 

Let M = (Q, ∑, Γ, δ, q0, Z0, Ø) be a PDA 

Construct the CFG G that accepts L(M) by empty stack as follows:  

G = (V, T, P, S) 

Where production P is defined by:  

 

 The productions in P are induced by moves of PDA as follows: 

 

Step 1: Rules for start symbol: 

S productions are given by S → [q0 Z0 q] for every qQ 

For example:  

We have two states (q0, q1), so two rules for starting variable. 

  S → [q0 Z0 q0] 

  S → [q0 Z0 q1] 
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Step 2: Rules for POP operations: 

Each erasing move δ(q, a, Z) = (q1, ) induces production [q Z q’] → a 

For example: 

 

 

 

  

 

 

 

 

 

 

Step 3: Rules for PUSH operations: 

Each non-erasing move δ(q, a, Z) = (q’, Z1 Z2 Z3 …. Zn) induces many 

productions of form. 

[q Z q’] → a [q1 Z1 q2] [q2 Z2 q3] …………….. [qn Zn q’]   

Where each state q’, q1, q2, …. qn can be any state in Q 

General Format 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Format 2: 

 

 

 

 

 

δ(q, a, Z) = (q1, ) 
 

 

[q Z q1] → a 

δ(q, , Z) = (q1, ) 

 

 

[q Z q1] →  

Filled with other states 

δ(q0, a, Z) = (q0, Z1Z2) 

 

 

[q0 Z ___] → a [q0 Z1 ____]  [_____Z2 ____]    

same 

same 

Example: δ(q0, a, Z0) = (q0, XZ0)  with two states (q0,q1) 

 

 

[q0 Z0 q0] → a [q0 X q0]  [q0 Z0 q0]    

[q0 Z0 q1] → a [q0 X q0]  [q0 Z0 q1]    

[q0 Z0 q0] → a [q0 X q1]  [q1 Z0 q0]    

[q0 Z0 q1] → a [q0 X q1]  [q1 Z0 q1]    

 

Filled with others states 

δ(q0, a, Z) = (q0, Z1) 

 

 

[q0 Z ___] → a [q0 Z1 ____]    

same 
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 Problems for CFG to PDA 

 

1. Convert the PDA P= ({p, q},{0,1},{X,Z0}, δ, q, Z0)  to a CFG , if is given by  

                 1. δ(q, 1, Z0)  ={(q, XZ0)}  

      2. δ(q, 1, X) = {(q, XX)} 

                 3. δ(q, 0, X)  = {(p, X)}        

                 4. δ(q, ε,  X)  = {(q, ε)}  

                 5. δ(p, 1, X)   = {(p, ε)}       

                 6. δ(p, 0, Z0)  = {(q, Z0)}             

  

 

 Solution: 

 

 Step 1: Find the push and pop operations: 

                 1. δ(q, 1, Z0)  ={(q, XZ0)}    -  Push  

      2. δ(q, 1, X) = {(q, XX)}    -  Push 

                 3. δ(q, 0, X)  = {(p, X)}                   -  Push  

                 4. δ(q, ε,  X)  = {(q, ε)}                   -  Pop 

                 5. δ(p, 1, X)   = {(p, ε)}                   -  Pop 

                 6. δ(p, 0, Z0)  = {(q, Z0)}                -  Push 

 

Step 2: Rules for start symbol: 

 We have two states q and p.  

So, S productions are 

1. S → [q Z0 q] 

2. S → [q Z0 p] 

Step 2: Rules for POP operations: 

  2. 1  Rules for δ(q, ε,  X)  = {(q, ε)}  --- (4) 

3. [q X q] → ε 

2. 2  Rules for δ(p, 1, X)   = {(p, ε)}  --- (5) 

4. [p X p] → 1 

Step 3: Rules for PUSH operations: 

  3. 1  Rules for δ(q, 1, Z0)  ={(q, XZ0)} --- (1) 

5. [q Z0 q] → 1 [q X q]  [q Z0 q]    

6. [q Z0 p] → 1 [q X q]  [q Z0 p]    

7. [q Z0 q] → 1 [q X p]  [p Z0 q]    

8. [q Z0 p] → 1 [q X p]  [p Z0 p]    

Example: δ(q0, a, Z0) = (q0, X)  with two states (q0,q1) 
 

 

[q0 Z0 q0] → a [q0 X q0]   

[q0 Z0 q1] → a [q0 X q1]    
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3. 2  Rules for δ(q,1, X) = {(q,XX)}  --- (2) 

9. [q X q] → 1 [q X q]  [q X q]    

10. [q X p] → 1 [q X q]  [q X p]    

11. [q X q] → 1 [q X p]  [p X q]    

12. [q X p] → 1 [q X p]  [p X p]    

3. 3  Rules for δ(q,0, X)  = {(p,X)}  --- (3) 

13. [q X q] → 0 [q X q]    

14. [q X p] → 0 [q X p]   

3. 4  Rules for δ(p, 0, Z0)  = {(q, Z0)}   --- (6) 

15. [p Z0 q] → 0 [q Z0 q]    

16. [p Z0 p] → 0 [q Z0 p]   

 
2. Convert the PDA P= ({q, p}, {0,1},{Z0, X}, δ, q, Z0,{p}) to a Context free grammar. 

                 1. δ(q,0, Z0)  ={(q, XZ0)} 

                 2. δ(q,0, X) = {(q, XX)} 

                 3. δ(q,1, X)  = {(q, X)}        

                 4. δ(q, ε, X)  = {(p, ε)}  

                 5. δ(p, ε, X)   = {(p, ε)}       

                 6. δ(p,1, X) = {(p, XX)} 

         7. δ(p,1, Z0)  = {(p, ε)} 

 

Solution: 

 Step 1: Find the push and pop operations: 

                 1. δ(q, 0, Z0)  ={(q, XZ0)}         -  Push  

      2. δ(q, 0, X) = {(q, XX)}         -  Push 

                 3. δ(q, 1, X)  = {(q, X)}                    -  Push  

                 4. δ(q, ε,  X)  = {(p, ε)}                    -  Pop 

                 5. δ(p, ε, X)   = {(p, ε)}                    -  Pop 

                 6. δ(p,1, X) = {(p, XX)} -  Push  

      7. δ(p,1, Z0)  = {(p, ε)}        -  Pop 

Step 2: Rules for start symbol: 

 We have two states q and p.  

So, S productions are 

1. S → [q Z0 q] 

2. S → [q Z0 p] 

Step 2: Rules for POP operations: 

  2. 1  Rules for δ δ(q, ε,  X)  = {(p, ε)}   --- (4) 

3. [q X p] → ε 

2. 2  Rules for δ(p, ε, X)   = {(p, ε)}  --- (5) 

4. [p X p] → ε 

2. 3  Rules for δ(p,1, Z0)  = {(p, ε)} --- (7) 

5. [p Z0 p] → 1 
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Step 3: Rules for PUSH operations: 

  3. 1  Rules for δ(q, 0, Z0)  ={(q, XZ0)}--- (1) 

6. [q Z0 q] → 0 [q X q]  [q Z0 q]    

7. [q Z0 p] → 0 [q X q]  [q Z0 p]    

8. [q Z0 q] → 0 [q X p]  [p Z0 q]    

9. [q Z0 p] → 0 [q X p]  [p Z0 p]    

3. 2  Rules for δ(q, 0, X) = {(q, XX)}--- (2) 

10. [q X q] → 0 [q X q]  [q X q]    

11. [q X p] → 0 [q X q]  [q X p]    

12. [q X q] → 0 [q X p]  [p X q]    

13. [q X p] → 0 [q X p]  [p X p]    

3. 3  Rules for δ(q, 1, X)  = {(q, X)}   --- (3) 

14. [q X q] → 1 [q X q]    

15. [q X p] → 1 [q X p]   

 

3. 4  Rules for δ(p,1, X) = {(p, XX)} ---- (6) 

16. [p X q] → 1 [p X q]  [q X q]    

17. [p X p] → 1 [p X q]  [q X p]    

18. [p X q] → 1 [p X p]  [p X q]    

19. [p X p] → 1 [p X p]  [p X p]    

 

Tutorial Problems: 

 

1. Construct a Context free grammar G which accepts N(M), where  

M=({q0,q1},{a,b},{z0,z},δ,q0,z0,Φ) and where δ is given by  

       δ(q0,b,z0) =  {(q0,zz0)},  δ(q0, ε,z0) = {(q0, ε)} 

δ(q0,b,z) = {(q0,zz)},   δ(q0,a,z) = {(q1,z)} 

δ(q1,b,z) = {(q1, ε)},        δ(q1,a,z0) = {(q0,z0)}  

 

2. Construct the grammar from the given PDA.  

    M=({q0, q1},{0,1},{X,Z0},δ,q0,Z0,Φ) and where δ is given by  

δ(q0,0,z0)  = {(q0,XZ0)},   δ(q0,0,X)   = {(q0,XX)}, 

δ(q0,1,X)  = {(q1, ε)},   δ(q1,1,X)  = {(q1, ε)}, 

δ(q1, ε,X)  = {(q1, ε)},   δ(q1, ε, Z0 )   = {(q1, ε)}.  

 

3. Let M =({q0,q1}, {0,1}, {S,A}, δ, q0, Z0, } to be a PDA            

      Where  is given by 

  (q0, 0, S)   = {(q0 , AS)} 

  (q0, 0, A)  =  {(q0, AA), (q1, S)} 

 (q0, 1, A)  =  {(q1, )} 

 (q1,  1, A)  =  {(q1,  )} 

 (q1,  , A)  =  {(q1,  )} 

 (q1,  , S)   =  {(q1,  )} Construct a CFG G = (V, T, P, S) generating N (M).  
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Deterministic PDA  
 In general terms, a deterministic PDA is one in which there is at most one possible 

transition from any state based on the current input.  

 A deterministic pushdown automaton (DPDA) is a 7-tuple  

M = (Q, Σ, Γ, δ, q0, Z0, F),  
Where  

Q - Finite set of states  

Σ - Finite input alphabet  

Γ - Finite alphabet of pushdown symbols  

δ - Transition function δ : Q × Σ *× Γ* → (Q × Γ*)  {∅} 

q0 - start / initial state q0  Q 

Z0 - start symbol on the pushdown Z0  Γ 

F  - set of final states F  Q 
 

Example:  Describe a DPDA that can recognize the language {w ; w contains more   

                  a’s than b’s}. 

 

Non-Deterministic PDA  
 In general terms, a non-deterministic PDA is one in which there is more than two 

possible transition from any state based on the current input.  

 A non-deterministic pushdown automaton (NPDA) is a 7-tuple  

M = (Q, Σ, Γ, δ, q0, Z0, F),  

Where  

Q - Finite set of states  

Σ - Finite input alphabet  

Γ - Finite alphabet of pushdown symbols  

δ - Transition function δ :  Q × Σ *× Γ *→ 2
(Q × Γ*)

 

q0 - start / initial state q0  Q 

Z0 - start symbol on the pushdown Z0  Γ 

F  - set of final states F  Q 

 

Example:  Define a NPDA that recognizes the language {ww
R
 ; w  Σ*}. 

 

Pumping Lemma 

If L is a context-free language, there is a pumping length p such that any string w ∈ 

L of length ≥ p can be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, 

uv
i
xy

i
z ∈ L. 

Applications of Pumping Lemma 

Pumping lemma is used to check whether a grammar is context free or not. Let us 

take an example and show how it is checked. 
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Problem 

1. Find out whether the language L = {xnynzn | n ≥ 1} is context free or not. 

Solution 

1. Let L is context free. Then, L must satisfy pumping lemma. 

2. At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n. 

3. Break z into uvwxy, where |vwx| ≤ n and vx ≠ ε. 

4. Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at 

least (n+1) positions apart. There are two cases: 

5. Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would 

have to be in L, has n 2s, but fewer than n 0s or 1s. 

6. Case 2 − vwx has no 0s. 

7. Here contradiction occurs. 

8. Hence, L is not a context-free language. 

 

 

2. The text uses the pumping lemma to show that {ww | w in ( 0 + 1)*} is not a CFL. 

1. Suppose L were a CFL.  

2. Let n be L’s pumping-lemma constant. 

3. Consider z = 0n10n10n.  

4. We can write z = uvwxy, where |vwx| < n, and |vx| > 1.  

5. Case 1: vx has no 0’s.  

6. Then at least one of them is a 1, and uwy has at most one 1, which no string in 

L does. 

7. Still considering z = 0n10n10n.  

8. Case 2: vx has at least one 0.  

9. vwx is too short (length < n) to extend to all three blocks of 0’s in 0n10n10n.  

10. Thus, uwy has at least one block of n 0’s, and at least one block with fewer 

than n 0’s.  

11. Thus, uwy is not in L. 

 

Closure properties of CFL (Without proof) 
1. CFLs are closed under union 

If L1 and L2 are CFLs, then L1 ∪ L2 is a CFL. 

2. CFLs are closed under concatenation 

If L1 and L2 are CFLs, then L1L2 is a CFL. 

3. CFLs are closed under Kleene closure 

If L is a CFL, then L
 ∗ is a CFL. 

4. CFLs are not closed under intersection 

If L1 and L2 are CFLs, then L1 ∩ L2 may not be a CFL. 

5. CFLs are not closed under complement 

If L is a CFL, then L may not be a CFL. 
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Syllabus : Unit – V : Turing Machine and Undecidabality  
 

Definition - Model - Language acceptance - Design of Turing Machine - Computable 

languages and functions -  Modifications of Turing machine - Universal Turing machine-  

Chomsky hierarchy of languages - Grammars and their  machine recognizers -   Undecidabile 

Post correspondence problem. 

 

Introduction 

 
 A Turing Machine is an accepting device which accepts the languages (recursively 

enumerable set) generated by type 0 grammars.  

 It was invented in 1936 by Alan Turing. 

 

Definition  
 A Turing Machine (TM) is a mathematical model which consists of  

o An infinite length tape divided into cells, each cell contains a symbol from 

some finite alphabet. The alphabet contains a special blank symbol (here 

written as '0') and one or more other symbols. The tape is assumed to be 

arbitrarily extendable to the left and to the right. 

o A head which reads the input tape.  

o A state register stores the state of the Turing machine.  

 After reading an input symbol, it is replaced with another symbol, its internal state is 

changed, and it moves from one cell to the right or left. If the TM reaches the final 

state, the input string is accepted, otherwise rejected. 

 

 A TM can be formally described as a 7-tuple M = (Q, , Γ, δ, q0, B, F)  
Where 

Q is a finite set of states 

 is the input alphabet 

Γ is the tape alphabet 

δ is a transition function; δ : Q × Γ → Q × Γ  × {L, R}. 

q0 is the initial state, q0  Q 

B is the blank symbol,  B  Γ 

F is the set of final states, F  Q 

 

Model of Turing Machine (TM) 

 

 B B a a b b B B  

 

 

 

 

 

 
 

 

Finite 

Control 

Infinite Input Tape 

Read / 

Write 

Head 
Output : 

M accepts w / 

M rejects w. 

 

Blank Symbol 
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 TM has three components:  

i. Finite state control:  

 It is in one of a finite number of states at each instant, and is connected 

to the tape head.  

ii. Tape head:  
 It is used to scans one of the tape symbol (cell) of the tape at each 

instant, and is connected to the finite state control. It can read and write 

symbols from/to the tape, and it can move left and right along the tape.  

iii. Tape:  

 It is consists of an infinite number of tape cells, each of which can 

store one of a finite number of tape symbols at each instant. The tape is 

infinite both to the left and to the right.  

 

Language acceptance  
 A TM accepts a language if it enters into a final state for any input string w. A 

language is recursively enumerable (generated by Type-0 grammar) if it is accepted 

by a Turing machine. 

 A string w is accepted by the TM, M = (Q, Σ, Γ, δ, q0, B, F) if q0w ⊢* α1qf α2 for some 

α1, α2  Γ*, qf  F.  
 The language accepted by the TM M is denoted as  

T(M) = {w ; w  Σ*, q0w ⊢* α1 qf α2 for some α1, α2  Γ*, qf  F} 

 

Moves in a TM 
Let M = (Q, , Γ, δ, q0, B, F) be a TM. The symbol is used to represent the move. 

 ⊢    - Single move 

 ⊢*  - Zero or more moves  

 

 δ(q, x) causes a change in ID of the TM. This is called as a move. 

Input head Move to Left side: 

 Suppose δ(q, xi) = (p, y, L) and the input string to be processed is x1x2x3 …. xn 

and the head is pointing to symbol xi. 

 Before processing: 

x1x2x3 … xi-1 q xi ……. xn 

 After processing: 

x1x2x3 … xi-2 q xi-1 y xi+1 ……. xn 

 

x1x2x3 … xi-1 q xi ……. xn  ⊢  x1x2x3 … xi-2 q xi-1 y xi+1 ……. xn 

 

Input head Move to Right side: 
 Suppose δ(q, xi) = (p, y, R) and the input string to be processed is x1x2x3 …. xn 

and the head is pointing to symbol xi. 

 Before processing: 

x1x2x3 … xi-1 q xi ……. xn 

 After processing: 

x1x2x3 … xi-2 xi-1 y q xi+1 ……. xn 

 

x1x2x3 … xi-2 xi-1 y q xi+1 ……. xn 
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Design of Turing Machine 
1. Design a TM to recognize the language L ={a

n
b

n
; n>0} and test whether the strings 

w= “aabb” and “abbb” are accepts or not. 

 

Solution: 

      The TM is designed using the following steps: 

Step 1 : M replaces the leftmost ‘a’ by ‘x’ and moves right to the leftmost ‘b’, 

replacing it by ‘y’. 

Step 2 : Then M moves left to find the rightmost ‘x’ and moves one cell right 

to the leftmost ‘a’ and repeat the step 1. 

Step 3 : While searching for a ‘b’, if a blank (B) is encountered, and then M 

halts without accepting. 

Step 4 : After changing a ‘b’ to ‘y’, if M finds no more a’s, then M checks no 

more b’s remains, M accepting the string else not. 

 

Let M = ({q0, q1, q2, q3, q4}, {a, b}, {a, b, B}, δ, q0, B, {q4}) be a TM. 

  δ is defined by: 

   δ (q0, a ) = ( q1, x, R)   δ (q1, a ) = ( q1, a, R) 

   δ (q1, y ) = ( q1, y, R)   δ (q1, b ) = ( q2, y, L) 

   δ (q2, a) = ( q2, a, L)   δ (q2, y) = ( q0, y, L) 

   δ (q2, x) = ( q0, x, R )   δ (q0, y ) = ( q3, y, R) 

   δ (q3, y ) = ( q3, y, R)   δ (q3, B) = ( q4, B, R) 

 

Transition Table: 

States 
Tape Symbols 

a b x y B 

q0 ( q1, x, R) - - ( q0, y, R) - 

q1 ( q1, a, R) ( q2, y, L) - ( q1, y, R) - 

q2 ( q2, a, L) - ( q0, x, R) ( q1, y, L) - 

q3 - - - ( q1, y, R) ( q4, B, R) 

*q4 - - - -  

 

Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

q1 q2 q0 

q2 

 
q4 

a / x  

 
b / y  

a / a  

y / y  

a / a  

y / y  

x / x  

q3 

y / y  

y / y  

B / B  
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i) Test whether the string w = “aabb” is in L(TM) 

q0 aabbB  ⊢ xq1abbB ⊢ xaq1bbB ⊢ xq2aybB ⊢ q2xaybB  

     ⊢ xq0aybB ⊢ xxq1ybB ⊢ xxyq1bB ⊢ xxq2yyB  

     ⊢ xq2xyyB ⊢ xxq0yyB ⊢ xxyq3yB ⊢ xxyyq3B 

         ⊢ xxyyBq4 

     Hence the string is accepted. 

 

i) Test whether the string w = “abbb” is in L(TM) 

q0 abbbB  ⊢ xq1bbbB ⊢ xq1bbbB ⊢ q2xybbB ⊢ xq0ybbB  

     ⊢ xyq3bbB  

     Hence the string is rejected. 

 

 

2. Design a TM to recognize the language L ={a
n
b

n
c

n
; n>0}. 

 

Solution: 

      The TM is designed using the following steps: 

Step 1 : M replaces the leftmost ‘a’ by ‘x’ and moves right to the leftmost ‘b’, 

replacing it by ‘y’ and moves right to the leftmost ‘c’, replacing it by 

‘z’. 

Step 2 : Then M moves left to find the rightmost ‘x’ and moves one cell right 

to the leftmost ‘a’ and repeat the step 1. 

Step 3 : While searching for a ‘b’ or ‘c’, if a blank (B) is encountered, and 

then M halts without accepting. 

Step 4 : After changing a ‘b’ to ‘y’ and ‘c’ to ‘z’, if M finds no more a’s, then 

M checks no more b’s and c’s remains, M accepting the string else 

not. 

 

Let M = ({q0, q1, q2, q3, q4, q5}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q5}) be a TM. 

  δ is defined by: 

   δ (q0, a ) = ( q1, x, R)   δ (q1, a ) = ( q1, a, R) 

   δ (q1, y ) = ( q1, y, R)   δ (q1, b ) = ( q2, y, R) 

    δ (q2, b ) = ( q2, b, R)   δ (q2, z ) = ( q2, z, R) 

δ (q2, c) = ( q3, z, L)   δ (q3, z) = ( q3, z, L) 

δ (q3, b) = ( q3, b, L)   δ (q3, y) = ( q3, y, L) 

δ (q3, a) = ( q3, a, L)   δ (q3, x) = ( q0, x, R) 

δ (q0, y ) = ( q4, y, R)   δ (q4, y) = ( q4, y, R) 

   δ (q4, z ) = ( q4, z, R)   δ (q4, B) = ( q5, B, R) 

 

Transition Table: 
States Tape Symbols 

a b c x y z B 

q0 (q1, x, R) - - - (q4, y, R) - - 

q1 (q1, a, R) (q2, y, R) - - (q1, y, R) - - 

q2 - (q2, b, R) (q3, z, L) - - (q2, z, R) - 

q3 (q3, a, L) (q3, b, L) - (q0, x, R ) (q3, y, L) (q3, z, L) - 
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q4 - - - - (q4, y, R) (q4, z, R) (q5, B, R) 

*q5 - - - - - - - 

 

Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3. Design a TM to recognize the language L ={ww

R
; w  (0+1)*} and check whether 

the string “010010” is accept or not. 

(or) 

Design A TM to accept the set of palindrome strings and check whether the string           

“010010” is accept or not. 

 

 Solution 

  

Let M = ({q0, q1, q2, q3, q4, q5, q6, q7}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q7}) be a TM. 

δ is defined by: 

   δ (q0, 0 ) = ( q1, B, R)   δ (q0, 1 ) = ( q4, B, R) 

   δ (q1, 0 ) = ( q1, 0, R)   δ (q4, 0 ) = ( q4, 0, R) 

    δ (q1, 1 ) = ( q1, 1, R)   δ (q4, 1 ) = ( q4, 1, R) 

δ (q1, B) = ( q2, B, L)   δ (q4, B) = ( q5, B, L) 

δ (q2, 0) = ( q3, B, L)   δ (q5, 1) = ( q6, B, L) 

δ (q3, 0) = ( q3, 0, L)   δ (q6, 0) = ( q6, 0, L) 

δ (q3, 1 ) = ( q3, 1, L)   δ (q6, 1 ) = ( q6, 1, L) 

   δ (q3, B) = ( q0, B, R)   δ (q6, B) = ( q0, B, R) 

δ (q0, B) = ( q8, B, R) 

 

 

 

 

 

 

q1 q2 q0 

q2 

 
q5 

a / x  

 
b / y  

a / a  

y / y  

b / b  

z / z  

x / x  

q4 

y / y  

y / y  

z / z  

 

B / B  

q3 
c / z  

y / y  

z / z  

b / b  

a / a  
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Transition Table: 

 

States 
Tape Symbols 

0 1 B 

q0 ( q1, B, R) ( q4, B, R) ( q8, B, R) 

q1 ( q1, 0, R) ( q1, 1, R) ( q2, B, L) 

q2 ( q3, B, L) - - 

q3 ( q3, 0, L) ( q3, 1, L) ( q0, B, R) 

q4 ( q4, 0, R) ( q4, 1, R) ( q5, B, L) 

q5 - ( q6, B, L) - 

q6 ( q6, 0, L) ( q6, 1, L) ( q0, B, R) 

*q7 - - - 

 

Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test whether the string “010010” is in L(TM): 

  q0010010B  ⊢ Bq110010B  ⊢ B1q10010B  ⊢ B10q1010B 

            ⊢ B100q110B  ⊢ B1001q10B  ⊢ B10010q1B 

            ⊢ B1001q20B  ⊢ B100q31BB  ⊢ B10q301BB 

            ⊢ B1q3001BB  ⊢ Bq31001BB  ⊢ q3B1001BB 

            ⊢ Bq01001BB  ⊢ BBq4001BB  ⊢ BB0q401BB 

            ⊢ BB00q41BB  ⊢ BB001q4BB  ⊢ BB00q51BB 

            ⊢ BB0q60BBB  ⊢ BBq600BBB ⊢ Bq6B00BBB 

            ⊢ BBq000BBB  ⊢ BBBq10BBB ⊢ BBB0q1BBB 

       ⊢ BBBq20BBB  ⊢ BBq3BBBBB ⊢ BBBq0BBBB 

       ⊢ BBBBq7BBB   - Hence the string is accepted. 

q1 q2 q3 

q0 

q6 

q2 

 
q7 

0 / B  
 

B / B  

0 / 0  

1 / 1  

0 / 0  

1 / 1  

B / B  

0 / B  

q4 q5 

1 / B  

 

B / B  

0 / 0  

1 / 1  

1 / B  

0 / 0  

1 / 1  

B / B  

B / B  
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4. Design a TM to recognize the language L ={wcw
R
; w  (a+b)*}. 

 

Solution 

 

 Let M = ({q0, q1, q2, q3, q4, q5, q6, q7, q8}, {a, b, c}, {a, b, c, B}, δ, q0, B, {q8}) be a TM. 

 

δ is defined by: 

 

   δ (q0, a ) = ( q1, B, R)   δ (q0, b ) = ( q4, B, R) 

   δ (q1, a ) = ( q1, a, R)   δ (q4, a ) = ( q4, a, R) 

    δ (q1, b ) = ( q1, b, R)   δ (q4, b ) = ( q4, b, R) 

δ (q1, c ) = ( q1, c, R)   δ (q4, c ) = ( q4, c, R) 

δ (q1, B) = ( q2, B, L)   δ (q4, B) = ( q5, B, L) 

δ (q2, a) = ( q3, B, L)   δ (q5, b) = ( q6, B, L) 

δ (q3, a) = ( q3, a, L)   δ (q6, a) = ( q6, a, L) 

δ (q3, b ) = ( q3, b, L)   δ (q6, b ) = ( q6, b, L) 

δ (q3, c ) = ( q3, c, L)   δ (q6, c ) = ( q6, c, L) 

   δ (q3, B) = ( q0, B, R)   δ (q6, B) = ( q0, B, R) 

δ (q0, c) = ( q7, B, R)   δ (q7, B) = ( q8, B, R) 

 

Transition Table: 

 

States 

Tape Symbols 

a b c B 

q0 ( q1, B, R) ( q4, B, R) ( q7, B, R) ( q8, B, R) 

q1 ( q1, 0, R) ( q1, 1, R) ( q1, c, R) ( q2, B, L) 

q2 ( q3, B, L) - - - 

q3 ( q3, 0, L) ( q3, 1, L) ( q3, c, L) ( q0, B, R) 

q4 ( q4, 0, R) ( q4, 1, R) ( q4, c, R) ( q5, B, L) 

q5 - ( q6, B, L) - - 

q6 ( q6, 0, L) ( q6, 1, L) ( q6, c, L) ( q0, B, R) 

q7 - - - ( q8, B, R) 

*q8 - - - - 
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Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tutorial Questions: 

 

5. Design a TM to recognize the language L ={All strings must be equal number of 0’s 

and 1’s}. 

6. Design a TM to accept the language L ={All strings must be odd number of a’s}. 

7. Design a TM to accept the language L ={ a
n
b

n
c

n 
d

n
; n > 0}. 

8. Design a TM to accept the language L ={ a
n
b

m
c

m 
d

n
; m, n > 0}. 

9. Design a TM to accept the language L ={ a
n
b

m
;  n > 0 and m = n+2}. 

10. Design a TM to accept the language L ={ a
n
bcd

n
; n > 0}. 

 

 

  

q1 q2 q3 

q0 

q6 

q2 

 
q7 

a / B  

 
B / B  

a / a  

b / b  

c / c  

a / a  

b / b  

c / c  

 

B / B  

a / B  

q4 q5 

b / B  
 

B / B  

a / a  

b / b  

c / c  

b / B  

a / a  

b / b  

c / c  

B / B  

c / B  

q5 

B / B  
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Computable languages and functions 

 
 A Turing machine computes a function f : Σ* → Σ* if, for any input word w, it always 

stops in a configuration where f(w) is on the tape. 

 

 

 Problems: 

 

1. Construct TM for concatenation of two strings of unary numbers.  

String 1 : 111 and String 2: 11 

 

Solution: 

 

Initial content in the tape: 

 

B 1 1 1 0 1 1 B 

 

Step 1 : M replaces the ‘0’ by ‘1’ and moves right to the leftmost ‘B’ 

Step 2 : Move to step back, then M replaces the ‘1’ by ‘B’ 

 

Final content in the tape after concatenation: 

 

B 1 1 1 1 1 B B 

 

 

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM. 

  δ is defined by: 
  δ (q0, 1 ) = ( q0, 1, R)    

δ (q0, 0 ) = ( q1, 1, R) 

δ (q1, 1 ) = ( q1, 1, R) 

   δ (q1, B) = ( q2, 1, R)    

 

 Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

q1 q0 q2 

 
q2 

0 / 1  
 

B / 1  

1 / 1  1 / 1  
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2. Construct TM for f(x) = x + 3. 

 

Solution: 

 Assume x = 5 (11111) 

 

Initial content in the tape: 

B 1 1 1 1 1 + 1 1 1 B 

 

Step 3 : M replaces the ‘+’ by ‘1’ and moves right to the leftmost ‘B’ 

Step 4 : Move to step back, then M replaces the ‘1’ by ‘B’ 

 

Final content in the tape after processing f(x) = x+3: 

 

B 1 1 1 1 1 1 1 1 B B 

 

 

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM. 

  δ is defined by: 
  δ (q0, 1 ) = ( q0, 1, R)    

δ (q0, + ) = ( q1, 1, R) 

δ (q1, 1 ) = ( q1, 1, R) 

   δ (q1, B) = ( q2, 1, R)    

 

 Transition Diagram: 

 

 

 

 

 

 

 

 

 
3. Construct TM for f(x, y) = x + y. 

 
Solution: 

 Assume x = 5 (11111) and y = 3 (111) 

 

Initial content in the tape: 

B 1 1 1 1 1 + 1 1 1 B 

 

Step 5 : M replaces the ‘+’ by ‘1’ and moves right to the leftmost ‘B’ 

Step 6 : Move to step back, then M replaces the ‘1’ by ‘B’ 

 

 

q1 q0 q2 

 
q2 

+ / 1  

 
B / 1  

1 / 1  1 / 1  
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Final content in the tape after processing f(x, y) = x + y: 

 

B 1 1 1 1 1 1 1 1 B B 

 

 

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM. 

  δ is defined by: 
  δ (q0, 1 ) = ( q0, 1, R)    

δ (q0, + ) = ( q1, 1, R) 

δ (q1, 1 ) = ( q1, 1, R) 

   δ (q1, B) = ( q2, 1, R)    

 

 Transition Diagram: 

 

 

 

 

 

 

 

 
4. Construct TM for f(x, y) = x – y; x ≥ y. 

 
Solution: 

 Assume x = 5 (11111) and y = 3 (111) 

 

Initial content in the tape: 

B 1 1 1 1 1 - 1 1 1 B 

 

Step 1 : M replaces the leftmost ‘1’ by ‘B’ and moves right to the 

leftmost ‘B’ 

Step 2 : Move to step back, then M replaces the ‘1’ by ‘B’ 

Step 3 : Do the step 1 and 2, until no more 1’s after  ‘-’ 

Step 4 : Finally M replaces the  ‘-’ by ‘1’ 

 

Final content in the tape after processing f(x, y) = x - y: 

 

B B B B 1 1 B B B B B 

 

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM. 

  δ is defined by: 
  δ (q0, 1 ) = ( q1, B, R)    

δ (q1, 1 ) = ( q1, 1, R) 

δ (q1, - ) = ( q2, -, R) 

q1 q0 q2 

 
q2 

+ / 1  

 
B / 1  

1 / 1  1 / 1  
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δ (q2, 1) = ( q2, 1, R) 

δ (q2, B) = ( q3, B, L) 

δ (q3, 1) = ( q3, B, L) 

δ (q4, 1) = ( q4, 1, L) 

δ (q4, B) = ( q0, B, R) 

δ (q3, - ) = ( q5, 1, R) 

      

 

 Transition Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Design a TM to compute f(x, y) = x * y. 

 
Solution: 

Initial content in the tape: 

B 1 1 1 * 1 1 0 B B B B B B B 

 

Final content in the tape after processing f(x, y) = x * y: 

 

B X X X * Y Y 0 1 1 1 1 1 1 B 

 

 Let M = ({q0, q1, q2}, {1, 0}, {1, 0, B}, δ, q0, B, {q2}) be a TM. 

  δ is defined by: 
 

States 
Tape symbols 

0 1 X Y * B 

q0 (q1, X, R) (q4, X, R) - - - - 

q1 (q1, 0, R) (q1, 1, R) - (q1, Y, R) (q3, *, R) (q2, *, L) 

q2 (q2, 0, L) (q2, 1, L) (q0, X, R) (q2, Y, L) (q2, *, L) - 

q3 (q3, 0, R) - - - - (q3, 0, L) 

q4 - (q5, X, R) - (q4, Y, R) - - 

q1 q0 

q2 

 
q5 

1 / B  

 
- / -  

1 / 1  

q2 

1 / 1  

q3 
B / B  

- / 1  

q4 
1 / B  

1 / 1  

B / B  
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q5 (q6, 0, L) - - - (q7, 0, L) - 

q6 - (q6, 1, L) (q6, 0, L) (q6, Y, L) - (q0, B, R) 

*q7 - (q7, B, L) (q7, B, L) (q7, B, L) - - 

 

 

Modifications of Turing machine 
Turing Machines with Two Dimensional Tapes 

This is a kind of Turing machines that have one finite control, one read-write head 

and one two dimensional tape. The tape has the top end and the left end but extends 

indefinitely to the right and down. It is divided into rows of small squares. For any Turing 

machine of this type there is a Turing machine with a one dimensional tape that is equally 

powerful, that is, the former can be simulated by the latter.  

To simulate a two dimensional tape with a one dimensional tape, first we map the 

squares of the two dimensional tape to those of the one dimensional tape diagonally as shown 

in the following tables:  

  

  

  

  

  

 

 

 

 

 

  

 

One Dimensional Tape  

                                 

  

  

The head of a two dimensional tape moves one square up, down, left or right.  Let us simulate 

this head move with a one dimensional tape. Let i be the head position of the two dimensional 

tape.  

 

Multitape TM     

A multi-tape Turing machine is like an ordinary Turing machine with several tapes. Each 

tape has its own head for reading and writing. Initially the input appears on tape 1, and the 

others start out blank. 

 

Universal TM    

Universal Turing machine (UTM) is a Turing machine that can simulate an arbitrary Turing 

machine on arbitrary input. 

Turing Machines with Multiple Tapes : 

This is a kind of Turing machines that have one finite control and more than one tapes 

each with its own read-write head. It is denoted by a 5-tuple (Q ,  ,  , q0,  ) . Its 

transition function is a partial function  

v v v v v v v . . . . . . 

h 1 2 6 7 15 16 . . . . . . 

h 3 5 8 14 17 26 . . . . . . 

h 4 9 13 18 25 . . . . . . . . . 

h 10 12 19 24 . . . . . . . . . . . . 

h 11 20 23 . . . . . . . . . . . . . . . 

h 21 22 . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

v 1 v 2 3 h 4 5 6 V 7 8 9 10 h 11 . . . . . . 
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 : Q x (   { } )
n
 -> ( Q  { h } ) x (   { } )

n
 x { R , L , S }

n
 .  

A configuration for this kind of Turing machine must show the current state the machine is in 

and the state of each tape.  

 

Turing Machines with Multiple Heads : 

This is a kind of Turing machines that have one finite control and one tape but more than one 

read-write heads. In each state only one of the heads is allowed to read and write. It is 

denoted by a 5-tuple (Q ,  ,  , q0, ). The transition function is a partial function 

  : Q x { H1 , H2 ... , Hn } x (   { } ) -> ( Q  { h } ) x (   { } x { R , L , S }  

 where H1 , H2 ... , Hn denote the tape heads.  

 

Turing Machines with Infinite Tape : 

This is a kind of Turing machines that have one finite control and one tape which 

extends infinitely in both directions. It turns out that this type of Turing machines are only as 

powerful as one tape Turing machines whose tape has a left end.  

 

Nondeterministic Turing Machines 

A nondeterministic Turing machine is a Turing machine which, like nondeterministic 

finite automata, at any state it is in and for the tape symbol it is reading, can take any action 

selecting from a set of specified actions rather than taking one definite predetermined action. 

Even in the same situation it may take different actions at different times. Here an action 

means the combination of writing a symbol on the tape, moving the tape head and going to a 

next state. For example let us consider the language L = { ww : w  { a , b }
*
 } . 

 

Chomsky hierarchy of languages & Grammars and their machine 

recognizers  

 
 Chomsky Hierarchy (Types of grammars) 
 

Class Chomsky 

hierarchy 

of 

languages 

Grammars and their 

machine recognizers  

Rules 

Type-0 Recursively 

enumerable 

Language  

Unrestricted  

Grammar 

Turing 

machine 

 

Rules are of the form:  

α → β,  where α and β are arbitrary 

strings over a vocabulary V and α ≠ ε 

Type-1  Context-

sensitive 

Language 

Context-

sensitive 

Grammar 

Linear-

bounded 

automaton 

Rules are of the form:  

αAβ → αBβ  or S → ε  

where A, S  N  

α, β, B (N T)∗ B ≠ ε 

Type-2  Context-free 

Language 

Context-free  

Grammar 

Pushdown 

automaton 

Rules are of the form:  

A → α where A  N, α  (N  T)∗ 

Type-3  Regular 

Language 

Regular  

Grammar 

Finite 

automaton 

Rules are of the form:  

A → ε  

A → α  

A → αB  

where A, B N and α T 
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 Scope of each type of grammar  

A figure shows the scope of each type of grammar: 
 

 
 Type - 3 Grammar 

 Type-3 grammars generate regular languages. Type-3 grammars must have a 

single non-terminal on the left-hand side and a right-hand side consisting of a 

single terminal or single terminal followed by a single non-terminal. 

 The productions must be in the form  
X → a  

X → aY 

 

where X, Y ∈ N (Non terminal) and a ∈ T (Terminal) 

 The rule S → ε is allowed if S does not appear on the right side of any rule. 

 Example 

X → ε  

X → a | aY 

Y → b  

 

 Type - 2 Grammar 

 Type-2 grammars generate context-free languages. These languages generated by 
these grammars are be recognized by a non-deterministic pushdown automaton. 

 The productions must be in the form  
A → γ 

where A ∈ N (Non terminal)  and γ ∈ (T ∪ N)* . 

 Example 
S → X a  

X → a  

X → aX  

X → abc  

X → ε 

 

 Type - 1 Grammar 

 Type-1 grammars generate context-sensitive languages.  

 The productions must be in the form 

α A β → α γ β 

Where A ∈ N (Non-terminal) and α, β, γ ∈ (T ∪ N)*  

 The strings α and β may be empty, but γ must be non-empty. 
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 The rule S → ε is allowed if S does not appear on the right side of any rule. The 
languages generated by these grammars are recognized by a linear bounded 

automaton. 

 Example 

AB → AbBc  

A → bcA  

B → b  

 

 Type - 0 Grammar 

 Type-0 grammars generate recursively enumerable languages. The productions 
have no restrictions. They are any phase structure grammar including all formal 

grammars. 

 They generate the languages that are recognized by a Turing machine. 
 

 The productions can be in the form of  
α → β  

where α is a string of terminals and non-terminals with at least one non-

terminal and α cannot be null. β is a string of terminals and non-terminals. 

 Example 

S → ACaB  

Bc → acB  

CB → DB  

aD → Db  

 

Undecidability  
Phrase Structure Grammar 

 It consists of four components  G =  ( V, T, P, S )  

Recursive Language 
 A language is recursive if there exists a Turing Machine that accepts every 

string of the language and reject every string that is not in the language. 

 

 

 

Recursively Enumerable Language 
 A language is recursive enumerable if there exists a Turing Machine that 

accepts every string of the language and does not accept strings that are not in 

the language. The strings that are not in the language may be rejected and it 

may cause the TM to go to an infinite loop. 

 

 

 

Decidability  
 A language is decidable (recursive) if and only if there is a TM M such that M 

accepts every string in L and rejects every string not in L (or) 

 A problem whose language is recursive is said to be a decidable. 

Example : 

 The strings over {a,b} that consists of alternating a’s and b’s. 

 The strings over {a,b} that contains an equal number of a’s and b’s  
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Undecidability  
 A problem is undecidable, if there is no algorithm, that can take as input an 

instance of the problem and determines whether the answer to that instance is 

‘Yes’ or ‘No’. 

Example : 

 Given a TM M and an input string w, does M halt on input w? (Halting 
Problem) 

 For a fixed machine M, given an input string w, does M halt on input w? 

 Membership problem is undecidable. 

 State entry problem is undecidable. 
 

 

Properties of Recursive and Recursively Enumerable Languages 

 Complement of a recursive language is recursive. 

 Union of two recursive languages is recursive. 

 Union of two recursive enumerable languages is also recursively enumerable. 

 L if L and complement of L (L) are recursively enumerable is recursive.  

 

Theorem : 

 The Complement of recursive language is recursive.  

Proof : 

Let L be a recursive language. Then there exists a TM M that halts on every string on L. 

    L  = ∑* - L  

Since L is recursive there is an “algorithm” (TM M) to accept L. Now construct an 

“algorithm” (TM M’) for L is as follows.  

 

     

 

 

 

 

 If M halts without accepting the string, then M’ halts accepting that string and if M halts on 

accepting it, M’ enters into the final state without accepting it. 

     Clearly L(M’) is the complement of L and thus L is a recursive language. 

 

Theorem : 
 If L1 and L2 are two recursive languages then L1 U L2 is also a recursive 

language.  

 

Proof : 

 Let L1 and L2 be recursive languages accepted by the TMs M1 and M2 respectively. 

 Construct a new TM M which first simulates M1. If M1 accepts, then M accepts. If M1 

reject, the simulates M2 and accepts if and only if M2 accepts. 

 Thus M has both accepting and rejecting criterion. So, M accepts L1 U L2.  
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Theorem : 
 If L1 and L2 are two recursively enumerable languages then L1 U L2 is also a 

recursively enumerable language.  

 

Proof : 

 Let L1 and L2 be recursively enumerable languages accepted by the TMs M1 and M2 

respectively.  

 Construct a new TM M which simultaneously simulates M1 and M2 on different tapes.  

 If M1 or M2 accepts, the M accepts. 

 

 

 

 

 

 

 

 

Theorem : 

 L if L and complement of L (L) are recursively enumerable is recursive.  

 

Proof : 

 Let M1 and M2 be the TMs designed for the languages L and L  respectively.  

 Construct a new TM M which simulates M1 and M2 simultaneously. 

 If M accepts w if M1 accepts w, M rejects w if M2 accepts w.  

 

 

 

 

 

 

 

 

Post Correspondence Problem (PCP) 
The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an 

undecidable decision problem. The PCP problem over an alphabet ∑ is stated as follows − 

Given the following two lists, M and N of non-empty strings over ∑ − 

M = (x1, x2, x3,………, xn) 

N = (y1, y2, y3,………, yn) 

We can say that there is a Post Correspondence Solution, if for some 

i1,i2,………… ik, where 1 ≤ ij ≤ n, the condition xi1 …….xik = yi1 …….yik satisfies. 

Example:  

Find whether the lists M = (abb, aa, aaa) and N = (bba, aaa, aa) have a Post Correspondence 

Solution? 
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Solution 

 x1 x2 x3 

M Abb aa aaa 

N Bba aaa aa 

Here, 

x2x1x3 = ‘aaabbaaa’  and y2y1y3 = ‘aaabbaaa’ 

We can see that 

x2x1x3 = y2y1y3 

Hence, the solution is i = 2, j = 1, and k = 3. 

 

Modified Post Correspondence Problem 

 
 We have seen an undecidable problem, that is, given a Turing machine M and an 

input w, determine whether M will accept w (universal language problem). 

 We will study another undecidable problem that is not related to Turing machine 

directly. 

 Given two lists A and B: 

 A = w1, w2, …, wk B = x1, x2, …, xk  

The problem is to determine if there is a sequence of one or more integers i1, i2, …, im 

such that: 

w1wi1wi2…wim = x1xi1xi2…xim  

(wi, xi) is called a corresponding pair. 

 

 Example 

 
 

 

 

 


