DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

Year / Sem : II / II

Sub. Code \& Subject : 18CSE225 - Formal Languages and Automata Theory
Prepared by
: Dr. D. Jagadeesan, Professor / CSE

QUESTION BANK

Unit - I

$\begin{aligned} & \text { Sl. } \\ & \text { No } \\ & \hline \end{aligned}$	Questions	CO	PO	BT
Part - A				
1	Write down the operations on set.	1	1	1
2	List any three applications of Automata Theory.	1	1	1
3	Define Finite Automation.	1	1	1
4	Define Deterministic Finite Automation.	1	1	1
5	Define Non-Deterministic Finite Automation.	1	1	1
6	Define NFA with ε transition.	1	1	1
7	Design FA which accepts odd number of 1's and any number of 0's.	1	2,3	6
8	Design FA to check whether given unary number is divisible by three.	1	2,3	6
9	Design FA to check whether given binary number is divisible by three.	1	2,3	6
10	Design FA to accept the string that always ends with 00.	1	2,3	6
11	Obtain the ε closure of states $q 0$ and q 1 in the following NFA with ε transition.	1	2	5
12	Obtain ε closure of each state in the following NFA with ε move.	1	2	5
13	Explain a transition diagram.	1	1	2
14	Explain a transition table.	1	1	2
15	Explain the transition function.	1	1	2
16	Differentiate DFA and NFA?	1	2	2
17	Write notes on Moore Machine.	1	1	6
18	Write the formal definition of Moore Machine.	1	1	6
19	Short notes on Mealy Machine.	1	1	1
20	Write the formal definition of Mealy Machine.	1	1	6
21	Compare the Mealy and Moore Model?	1	2	5
Part - B				
22	Design FA to accept the string that always ends with 00.	1	2,3	6
23	Design FA to check whether given binary number is divisible by three.	1	2,3	6
24	Show that "For every NFA, there exists a DFA which simulates the behavior of NFA. If L is the set accepted by NFA, then there exists a DFA which also accepts L".	1	2	1
25	Show that "If L is accepted by NFA with ε-moves, then there exists L which is accepted by NFA without ε-moves.	1	2	1
26	Construct DFA equivalent to the given NFA	1	2,3	6

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 27 \& \multicolumn{5}{|l|}{Let \(\mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1\},\{0,1\}, \delta, \mathrm{q} 0,\{\mathrm{q} 1\})\) be NFA. Where \(\delta(\mathrm{q} 0,0)=\{\mathrm{q} 0\), \(\mathrm{q} 1\}, \delta(\mathrm{q} 0,1)=\{\mathrm{q} 1\}, \delta(\mathrm{q} 1,0)=\{\phi\}, \delta(\mathrm{q} 1,1)=\{\mathrm{q} 0, \mathrm{q} 1\}\). Construct its equivalent DFA.} \& 1 \& 2,3 \& 6 \\
\hline 28 \& \multicolumn{5}{|l|}{\begin{tabular}{l}
Let \(\mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\},\{0,1\}, \delta, \mathrm{q} 0,\{\mathrm{q} 2, \mathrm{q} 3\})\) be \(\varepsilon\)-NFA. \\
Where \(\delta(\mathrm{q} 0,0)=\{\mathrm{q} 0, \mathrm{q} 1\}, \delta(\mathrm{q} 0,1)=\{\mathrm{q} 1\}, \delta(\mathrm{q} 1,0)=\{\mathrm{q} 2, \mathrm{q} 3\}, \delta(\mathrm{q} 1\), \\
\(\varepsilon)=\{\mathrm{q} 1\}, \delta(\mathrm{q} 1,1)=\{\mathrm{q} 0, \mathrm{q} 1\}, \delta(\mathrm{q} 2,0)=\{\mathrm{q} 2\}, \delta(\mathrm{q} 2, \varepsilon)=\{\mathrm{q} 3\}, \delta(\mathrm{q} 2\), \\
\(1)=\{q 0, q 3\},, \delta(q 3,0)=\{q 3\}, \delta(q 3,1)=\{q 2, q 3\}, \delta(q 3, \varepsilon)=\{q 0\}\). \\
Construct its equivalent DFA.
\end{tabular}} \& 1 \& 2,3 \& 6 \\
\hline \multirow{4}{*}{29} \& \multicolumn{5}{|l|}{Consider the following \(\varepsilon\)-NFA. Compute the \(\varepsilon\)-closure of each state and find it's equivalent DFA.} \& \multirow{4}{*}{1} \& \multirow{4}{*}{2,3} \& \multirow{4}{*}{5} \\
\hline \& \& \(\Phi\) \& \{p\} \(\{\mathrm{q}\}\) \& \(\Phi\) \& \& \& \& \\
\hline \& \& q \(\quad\{\mathrm{p}\}\) \& \{q\} \(\{\mathrm{r}\}\) \& \(\Phi\) \& \& \& \& \\
\hline \& \& *r \({ }^{\text {r }}\) [q\} \& \{r\} \(\quad\) ¢ \& \{p\} \& \& \& \& \\
\hline 30 \& \multicolumn{5}{|l|}{Convert a NFA which accepts the string ends with 01 to a DFA.} \& 1 \& 2,3 \& 5 \\
\hline 31 \& \multicolumn{5}{|l|}{Consider the Moore machine described by the transition diagram given below. To construct a Mealy machine, which is equivalent to moore machine} \& 1

1 \& 2,3 \& 5

\hline \multirow{7}{*}{32} \& \multicolumn{5}{|l|}{Consider the Mealy machine described by the transition table given below. To construct a Moore machine, which is equivalent to mealy machine?} \& \multirow{7}{*}{1} \& \multirow{7}{*}{2,3} \& \multirow{7}{*}{5}

\hline \& \multirow{2}{*}{Present State} \& \multicolumn{2}{|l|}{input $=0$} \& \multicolumn{2}{|l|}{input $=1$} \& \& \&

\hline \& \& Next State \& Output \& Next State \& Output \& \& \&

\hline \& $\rightarrow \mathrm{q} 1$ \& q3 \& 0 \& q2 \& 0 \& \& \&

\hline \& q2 \& q1 \& 1 \& q4 \& 0 \& \& \&

\hline \& q3 \& q2 \& 1 \& q1 \& 1 \& \& \&

\hline \& q4 \& q4 \& 1 \& q3 \& 0 \& \& \&

\hline
\end{tabular}

Unit - II

Sl. No	Questions	CO	PO	BT
Part - A				
1	State regular expression.	2	1	1
2	How the kleen's closure of L can be denoted?	2	1,2	4
3	How do you represent positive closure of L?	2	1,2	4
4	Write the regular expression for the language accepting all combinations of a's over the set $\sum=\{a\}$.	2	2,3	6
5	Write regular expression for the language accepting the strings which are starting with 1 and ending with 0 , over the set $\sum=\{0,1\}$.	2	2,3	6
6	Show that $\left(0^{*} 1^{*}\right)^{*}=(0+1)^{*}$.	2	2	2
7	Show that ($\mathrm{r}+\mathrm{s})^{*} \neq \mathrm{r}^{*}+\mathrm{s}^{*}$.	2	2	2
8	If $\mathrm{L}=\{$ The language starting and ending with ' a ' and having any combinations of b 's in between, that what is r ?	2	2,3	4
9	Give regular expression for $\mathrm{L}=\mathrm{L} 1 \cap \mathrm{~L} 2$ over alphabet $\{\mathrm{a}, \mathrm{b}\}$ where $\mathrm{L} 1=$ all strings of even length $\mathrm{L} 2=$ all strings starting with ' b '.	2	2,3	2
10	Explain the application of the pumping lemma.	2		3
11	Describe the following by regular expression a. $\mathrm{L} 1=$ the set of all strings of 0 's and 1 's ending in 00 . b. L2 $=$ the set of all strings of 0 's and 1 's beginning with 0 and ending with 1 .	2	2,3	1
12	Show that ($\left.\mathrm{r}^{*}\right)^{*}=\mathrm{r}^{*}$ for a regular expression r .	2	2	2
13	Write down the closure properties of regular language.	2	3	6
14	What is pumping lemma?	2	2	4
15	State Arden's theorem.	2	1	1
16	What is dead state?	2	2	4
Part-B				
17	Show that ' r ' be a regular expression, the there exists an NFA with ε transitions that accepts L\{r\}.	2	2	2
18	Construct the NFA with ε for the regular expression using Thomson construction method. a. $0(0+1) * 100$ b. $a(a+b) * b$	2	2,3	6
19	Obtain the equivalent DFA from the following regular expressions a. $(a+b) * a b b$ b. $(00+11)^{*}(0+1)^{*}$	2	2,3	5
20	Show that the following languages are not regular using pumping lemma a. $L=\left\{0^{i} 1^{i} ; i>=1\right\}$ b. $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{p}} ; \mathrm{p}\right.$ is prime $\}$	2	2,3	2
21	Find the regular expression for the set of all strings denotes by $\left(\mathrm{R}_{13}\right)^{2}$ from the deterministic finite automata given below	2	2,3	5

Unit - III

$\begin{array}{\|l} \hline \text { Sl. } \\ \text { No } \end{array}$	Questions	CO	PO	BT
Part - A				
1	Obtain the Right Linear Grammar from the given Left Linear Grammar	3	1	5
2	Let $\mathrm{G}=(\{\mathrm{S}, \mathrm{C}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S}\}$ where P consists of $\mathrm{S} \rightarrow \mathrm{aCa}, \mathrm{C} \rightarrow \mathrm{aCa}$, Find L(G))?	3	2	5
3	Consider G whose productions are $\mathrm{S} \rightarrow \mathrm{aAS} / \mathrm{a}, \mathrm{A} \rightarrow \mathrm{SbA} / \mathrm{SS} / \mathrm{ba}$, show that $S \rightarrow$ aabbaa and construct a derivation tree.	3	2	2
4	Find L(G) where G $=(\{\mathrm{S}\},\{0,1\},\{\mathrm{S} \rightarrow 0 \mathrm{~S} 1, \mathrm{~s} \rightarrow \varepsilon\}, \mathrm{S})$	3	2	5
5	Construct a CFL from the given grammar $\mathrm{S} \rightarrow \mathrm{aaA}, \mathrm{A} \rightarrow \mathrm{S} / \mathrm{a}$	3	2	6
6	Define a derivation tree for CFG.	3	1	1
7	Construct CFG L= $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} ; \mathrm{n} \geq 1\right\}$.	3	2,3	6
8	Find a LM derivation for aaabbabbba with the productions.	3	2	5
9	Find L(G), S \rightarrow aSb, $\mathrm{S} \rightarrow \mathrm{ab}$.	3	2	5
10	Show that id* id can be generated by two distinct leftmost derivation in the grammar	3	2	2

11	Write a CFG for the set of strings which does not produce any palindromes.	3	2	6
12	Find the derivation tree for the grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S}\}$ Where P is given by $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{Aa} / \mathrm{bB} \\ & \mathrm{~A} \rightarrow \mathrm{ab} \\ & \mathrm{~B} \rightarrow \mathrm{aBb} / \mathrm{a} \\ & \hline \end{aligned}$	3	2	5
13	Define parse tree.	3	1	1
14	What are the two major normal forms for context-free grammar?	3	2	4
15	What is a useless symbol?	3	2	4
16	Define Nullable Variable?	3	1	1
17	$\begin{aligned} & \text { Let } \mathrm{G}=(\mathrm{V}, \mathrm{~T}, \mathrm{P}, \mathrm{~S}) \text { with the productions given by } \\ & \mathrm{S} \rightarrow \mathrm{aSbS} / \mathrm{B} / \varepsilon \\ & \mathrm{B} \rightarrow \mathrm{abB} \\ & \text { Eliminate the useless production. } \\ & \hline \end{aligned}$	3	2	5
18	What is a useful production?	3	2	4
19	Determine whether the grammar G has a useless production? $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{~A} \\ & \mathrm{~A} \rightarrow \mathrm{aA} / \varepsilon \\ & \mathrm{B} \rightarrow \mathrm{bA} \end{aligned}$	3	2	4
20	Write a procedure to eliminate ε production.	3	2	6
21	Write the procedure to eliminate the unit productions.	3	2	6
22	Define CNF.	3	1	1
23	Define GNF.	3	1	1
Part - B				
24	Consider the Grammar G whose productions are $\begin{aligned} & \mathrm{S} \rightarrow 0 \mathrm{~B} / 1 \mathrm{~A} \\ & \mathrm{~A} \rightarrow 0 / 0 \mathrm{~S} / 1 \mathrm{AA} \end{aligned}$ $\mathrm{B} \rightarrow 1 / 1 \mathrm{~S} / 0 \mathrm{BB}$ and the string 0110 a. Find the left most derivation and associated derivation tree. b. Find the right most derivation and associated derivation tree. c. Show that the G is ambiguous. d. Find L(G)	3	2	5
25	Consider the Grammar whose productions are $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{aAS} / \mathrm{a} \\ & \mathrm{~A} \rightarrow \mathrm{SbA} / \mathrm{SS} / \mathrm{ba} \end{aligned}$ a. Construct a LMD and RMD Tree for $\mathrm{S}=$ >* * aabbaa b. Find the above grammar is ambiguous or unambiguous.	3	2	5
26	Construct Right Linear Grammar from the given Finite Automata	3	2,3	6

	Construct Left Linear Grammar from the given Finite Automata 27			

Unit - IV

$\begin{aligned} & \hline \text { Sl. } \\ & \text { No } \end{aligned}$	Questions	CO	PO	BT
Part - A				
1	Define pushdown automaton.	4	1	1
2	What are the different ways of language acceptances by a PDA and define them.	4	2	4
3	Construct a PDA that accepts the language generated by the grammar $\mathrm{S} \rightarrow \mathrm{aSbb} / \mathrm{aab}$	4	2,3	6
4	Construct a PDA that accepts the language generated by the grammar $\mathrm{S} \rightarrow \mathrm{aABB}, \mathrm{~A} \rightarrow \mathrm{aB} / \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{bA} / \mathrm{b}$	4	2,3	6
5	How do you convert CFG to a PDA.	4	2	6
6	Define Deterministic PDA.	4	1	1
7	Is it true that NDPA is more powerful than that od DPDA? Justify your answer.	4	2	5
8	Is it true that the language accepted by a PDA by empty stack and final states are different languages.	4	2	5
9	What is the additional feature PDA has when compared with NFA? Is PDA superior over NFA in the sense L acceptance? Justify your answer.	4	2	4
Part - B				
10	Prove that if $\mathrm{L}=\mathrm{N}(\mathrm{PN})$ for some $\mathrm{PDA} \mathrm{PN}=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q} 0, \mathrm{Z} 0, \mathrm{~F})$, then there is a PDA PF such that $\mathrm{L}=\mathrm{L}(\mathrm{PF})$.	4	1,2	2
11	Prove that if $\mathrm{M} 1=(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q} 0, \mathrm{Z} 0, \mathrm{~F})$ accept by final state, we can find a PDA M2, accepting L by empty store i.e., $L=L(M 1)=N(M 2)$.	4	1,2	2
12	Construct a PDA that accepts the following languages a. $\mathrm{L}=\left\{\mathrm{wcwr} \mid \mathrm{W}\right.$ in $\left.(0+1)^{*}\right\}$ by empty stack or final state b. $L=\left\{w w R ; w \in(0+1)^{*}\right\}$ by empty stack or final state c. $\mathrm{L}=\{0 \mathrm{n} 1 \mathrm{n} ; \mathrm{n} \geq 0\}$ accepted by empty stack or final state d. $\mathrm{L}=\{$ anbmemdn; $\mathrm{n}, \mathrm{m} \geq 1\}$ accepted by empty store and check whether the string $\mathrm{w}=$ aaabcddd is accept or not.	4	2,3	6
13	Construct a PDA that will accept the language generated by the grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$ with the productions $\mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a}, \mathrm{A} \rightarrow \mathrm{SA} / \mathrm{b}$ and test whether "abbabb" is in N(M).	4	2,3	6
14	Consider the grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ and test whether " 0101001 " is in $\mathrm{N}(\mathrm{M})$. Where Productions are $\begin{aligned} & \mathrm{S} \rightarrow 0 \mathrm{~S} / 1 \mathrm{~A} / 1 / 0 \mathrm{~B} / 0 \\ & \mathrm{~A} \rightarrow 0 \mathrm{~A} / 1 \mathrm{~B} / 0 / 1 \\ & \mathrm{~B} \rightarrow 0 \mathrm{~B} / 1 \mathrm{~A} / 0 / 1 \end{aligned}$	4	2,3	4
15	Construct a PDA from the given $\mathrm{CFG} \mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})$ where the productions are $\mathrm{S} \rightarrow \mathrm{AS} / \varepsilon$ and $\mathrm{A} \rightarrow \mathrm{aAb} / \mathrm{Sb} / \mathrm{a}$	4	2,3	6
16	Construct a PDA from the following CFG. $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ with $\mathrm{V}=\{\mathrm{S}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSa}$, $\mathrm{S} \rightarrow \mathrm{bSb}, \mathrm{S} \rightarrow \mathrm{c}\}$	4	2,3	6
17	Convert the PDA $\mathrm{P}=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{X}, \mathrm{Z} 0\}, \delta, \mathrm{q}, \mathrm{Z} 0)$ to a CFG . Where δ is given below: $\begin{array}{ll} \delta(\mathrm{q} 0,0, \mathrm{~S})=\{(\mathrm{q} 0, \mathrm{AS})\} & \delta(\mathrm{q} 0,0, \mathrm{~A})=\{(\mathrm{q} 0, \mathrm{AA}),(\mathrm{q} 1, \mathrm{~S})\} \\ \delta(\mathrm{q} 0,1, \mathrm{~A})=\{(\mathrm{q} 1, \varepsilon)\} & \delta(\mathrm{q} 1,1, \mathrm{~A})=\{(\mathrm{q} 1, \varepsilon)\} \\ \delta(\mathrm{q} 1, \varepsilon, \mathrm{~A})=\{(\mathrm{q} 1, \varepsilon)\} & \delta(\mathrm{q} 1, \varepsilon, \mathrm{~S})=\{(\mathrm{q} 1, \varepsilon)\} \end{array}$	4	2,3	5

	Convert the PDA P $=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{X}, \mathrm{Z} 0\}, \delta, \mathrm{q}, \mathrm{Z} 0)$ given by $\delta(\mathrm{q}, 1, \mathrm{Z} 0)=\{(\mathrm{q}, \mathrm{XZ} 0)\}$ $\delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{q}, \mathrm{XX})\}$ $\delta(\mathrm{q}, 0, \mathrm{X})=\{(\mathrm{p}, \mathrm{X})\}$ $\delta(\mathrm{q}, \varepsilon, \mathrm{X})=\{(\mathrm{q}, \varepsilon)\}$ $\delta(\mathrm{p}, 1, \mathrm{X})=\{\{\mathrm{p}, \varepsilon)\}$ $\delta(\mathrm{p}, 0, \mathrm{Z} 0)=\{(\mathrm{q}, \mathrm{Z} 0)\}$			

Unit - V

$\begin{aligned} & \hline \text { Sl. } \\ & \text { No } \end{aligned}$	Questions	CO	PO	BT
Part - A				
1	What is a Turning Machine?	5	1	4
2	Define a Turing Machine.	5	1	1
3	Define Instantaneous description of TM.	5	1	1
4	What are the applications of TM?	5	1	4
5	What are the required fields of an instantaneous description or configuration of a TM.	5	1	4
6	Differentiate PDA and TM.	5	2	3
7	Define Universal TM	5	1	1
8	When is a function f said to be Turing computable?	5	2	4
9	Explain the Class of Grammars.	5	1	2
10	Discuss about PCP.	5	2	2
11	Differentiate PCP and MPCP.	5	2	4
Part - B				
12	Design a TM to recognize the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} ; \mathrm{n}>0\right\}$ and test whether the strings "aabb" is accepts or not.	5	2,3	6
13	Design a TM to recognize the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{r}} ; \mathrm{w} \in(\mathrm{a}+\mathrm{b})^{*}\right\}$ and test whether the strings "abba" is accepts or not.	5	2,3	6
14	Design a TM to recognize the language $\mathrm{L}=\left\{\mathrm{wcw}^{\mathrm{r}} ; \mathrm{w} \in(0+1)^{*}\right\}$.	5	2,3	6
15	Design a Turing machine to compute proper subtraction m-n.	5	2,3	6
16	Explain the class of Grammars with example.	5	1,2	2
17	Explain the PCP and MPCP with example	5	1,2	2

