Decimal Arithmetic unit

Decimal Arithmetic unit

- To perform arithmetic operation with decimal data, it is necessary to convert the i/p decimal number to binary to perform all calculation and convert the result into decimal.
- A decimal arithmetic unit is a digital function that performs decimal microoperations.
- A single stage decimal arithmetic unit consist of nine binary i/p variables and five binary o/p variables, since a minimum of four bits is required to represent each coded decimal digit.

- In BCD, each i/p digit does not exceed 9, the o/p sum cannot be greater than 19 (9+9+1=19), the 1 in the sum being an i/p carry.
- The binary number are shown in the below table and are labeled by symbols K,Z8,Z6,Z4 and Z2, where K is the carry.
- The first column is the binary sum as they appear in the o/p of the 4 bit binary adder.
- In the second column, values are converted to the correct BCD digits.

	Binary Sum					BCD Sum				
ĸ	Za	Z4	Z2	Z_1	C	S ₈	<i>S</i> ₄	S ₂	S_1	Decimal
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19
1	0	0	1	1	1	1	0	0	1	19
1	0	0	1	0	1	1	0	0	0	18
1	0	0	0	I	1	0	1	T	T	17

TABLE 10-4 Derivation of BCD Adder

- In the table, when the binary sum is equal to or less than 1001, the corresponding BCD number is identical and there is no conversion is needed.
- When the binary number is greater than 1001, the BCD number is differed.
- The method for adding decimal number in BCD can be done by performing the arithmetic operation one digit at a time with 4 bit binary adder.
- If the result is ≥ 1010, it is corrected by adding 0110 to the binary sum.

- The two decimal digits together with i/p carry are added first in the top 4 bit binary adder to produce the binary sum.
- When the o/p carry is equal to 1, binary 0110 is added to the binary sum through bottom 4 bit binary adder to produce BCD result value.
- The second operation will automatically produce an o/p carry for next pair of significant digits.
- The procedure is repeated until all decimal digits are added.
- The condition for a correction and o/p carry can be expressed by a Boolean function as follows

C=K + Z8 Z4 + Z8 Z2

• The decimal parallel adder that adds n decimal digits needs n BCD adder stages with the o/p carry connected from one stage to the i/p carry of the next higher order stage.

- BCD is not a self complementing code, the 9's complement cannot be obtained by complementing each bit in the code.
- The 9's complement of a decimal digit represented in BCD may be obtained by complementing the bits provided a correction is included.
- There are two possible correction method
 - 1. Binary 1010(decimal 10) is added to each complemented digit and the carry is discarded after each addition.
 - 2. Binary 0110(decimal 6) is added before the digit is complemented.

• Example:

9's Complement of 0111(decimal 7) can be obtained as follows:

1.	0111	2. 0111
	After Complementing	+ 0110
	1000	
+	1010	1101
	0010	After Comp

After Complementing 0010

Finally 9's complement of 0111 is 0010

In decimal, 9's complement can be obtained by $(10^{n}-1)-N$ $(10^{1}-1)-7 = 2$

Figure 10-19 One stage of a decimal arithmetic unit.

- The 9's Complement of a BCD digit can also be obtained through the combinational circuit.
- When this circuit is attached to the BCD adder, the result is BCD adder/subtractor.
- Let the subtrahend/addend digit be denoted by the 4 binary variables B8,B4,B2 and B1. Let M be the mode bit that controls the add/subtract operation.
- Let the binary variables X8,X4,X2 and X1 be the o/p's of the 9's complementor circuit.

- The mode M controls the operation of the unit, with M=0 the S o/p's form the sum of A and B.
- With M=1 the S o/p's form the sum of A and 9'scomplement of B.
- The o/p carry C_{i+1} from one stage must be connected to the i/p carry C_i of the next higher order stage.
- The o/p will for the sum of A plus 10's Complement of B which is equivalent to subtraction when the Mode bit M=1