## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES AUTONOMOUS

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK 18ECE321 - DIGITAL COMMUNICATIONS

| Question No. | Questions | PO <br> Attainment |
| :---: | :---: | :---: |
| UNIT - 1: BASE BAND DATA TRANSMISSION-I |  |  |
| PART A ( 2 Marks) |  |  |
| 1 | List the advantages of digital communication over analog communication? | PO1 |
| 2 | Draw the block diagram of Digital communication system? | PO1 |
| 3 | Define sampling and mention its types? | PO1 |
| 4 | Explain Non uniform quantization? | PO1 |
| 5 | Define the term companding? | PO1 |
| 6 | Discuss the advantages of DM over PCM. | PO1 |
| 7 | Define Quantization error and write it's range? | PO1 |
| 8 | Discuss about differential quantization? | PO1 |
| 9 | Define Prediction filter and where it is used? | PO1 |
| 10 | Draw the Manchester encoding signaling for information 11010011? | PO1 |
| 11 | Define regenerative repeater in PCM system? | PO1 |
| 12 | Discuss the bandwidth of PCM system? | PO1 |
| 13 | Write the disadvantages of DM system? | PO1 |
| 14 | Expand PCM, DPCM, DM \& ADM? | PO1 |
| 15 | If step size is 4 V in case of PCM and DM then what is the corresponding quantization noises? | PO1 |
| 16 | How will you avoid Slope overload distortion? | PO1 |
| 17 | Define Granular Noise? | PO1 |
| 18 | What are the advantages in ADM? | PO1 |
| 19 | Find the output SQNR of delta modulation is sampling rate is $8 \mathrm{KHz}, \mathrm{f}_{\mathrm{m}}=2 \mathrm{KHz}$ ? | PO1 |
| 20 | List the applications of PCM system? | PO1 |
| PART-B (10 Marks) |  |  |
| 1 | Explain the model of Digital Communication with neat diagram and write its advantages and disadvantages over analog communications? | PO1 |
| 2 | (A) Distinguish between the types of sampling with neat schematics, listing out their Merits and Demerits? <br> (B) In a single integration Delta modulation system the voice signal is sampled at a rate of 64 KHZ. The max signal amplitude is 1 V , the highest frequency component is 3 KHZ . <br> i) Determine the min value of the step size $\Delta$ to avoid Slop overload error. <br> ii) Determine the granular noise power if the voice signal bandwidth is 3.5 KHz . <br> iii) Assuming the voice signal is sinusoidal determine the output signal power and SQNR <br> iv) Determine the Minimum Transmission bandwidth? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |
| 3 | What is Quantization? Briefly explain about the different types of quantization? | PO1, PO2 |
| 4 | Briefly explain about the different types of Encoding techniques to information as 10101110? | PO1, PO2 |
| 5 | Explain the block diagram for PCM transmitter and receiver with transmission path? | PO1, PO2 |
| 6 | Derive an expression of overall SNR and formulate in dB to the PCM system? | PO2, PO3 |
| 7 | Explain the block diagram for DPCM transmitter and receiver with neat waveforms? | PO1, PO2 |
| 8 | (A) Discuss the each and every block in Delta Modulation with neat waveforms? <br> (B) A TV signal with a bandwidth of 4.2 MHz is transmitted using PCM Systems. The no of Quantization levels are 512. Calculate <br> i) Codeword length <br> ii) Final bit rate <br> iii) Transmission bandwidth <br> iv) SQNR | PO1, PO2 |
| 9 | Derive an expression of overall Signal to Noise ratio to the DM system? | PO2, PO3 |
| 10 | Discuss about ADM system and Compare PCM, DPCM, DM and ADM? | PO1 |

## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES AUTONOMOUS

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK 18ECE321 - DIGITAL COMMUNICATIONS

| Question No. | Questions | PO <br> Attainment |
| :---: | :---: | :---: |
| UNIT - 2: BASE BAND DATA TRANSMISSION-II |  |  |
| PART A ( 2 Marks) |  |  |
| 1 | What is the difference between base band transmission and band pass transmission? | PO1 |
| 2 | Explain a Base band Signal receiver? | PO1 |
| 3 | Explain optimum receiver? | PO1 |
| 4 | Define ISI and discuss? | PO1 |
| 5 | What are the applications of TDM? | PO1 |
| 6 | Define Ideal solution of ISI? | PO1 |
| 7 | Define raised cosine function? | PO1 |
| 8 | Define Equalization? | PO1 |
| 9 | Define Correlation receiver? | PO1 |
| 10 | What is S/N ratio at the output of matched filter? | PO1 |
| 11 | Define Schwarz inequality? | PO1 |
| 12 | Define Duo binary signaling. What are the disadvantages of it? | PO1 |
| 13 | Draw eye pattern and explain the significance of eye pattern? | PO1 |
| 14 | Draw the Block Diagram for correlation receiver? | PO1 |
| 15 | Define M-ary Encoding? | PO1 |
| 16 | List two applications for eye pattern? | PO1 |
| 17 | Compare Binary encoding and M-ary encoding? | PO1 |
| 18 | Write the equation of probability error for binary UNRZ encoding? | PO1 |
| 19 | Define split phase and differential encoding with examples? | PO1 |
| 20 | List the Properties of Matched Filter? | PO1 |
| PART-B (10 Marks) |  |  |
| 1 | Explain in detail about TDM with neat block diagram | PO1 |
| 2 | Derive the Power Spectral Density of NRZ using Unipolar format? | $\mathrm{PO} 2, \mathrm{PO} 3$ |
| 3 | Write the help of a block diagram explain Base Band Binary data Transmission system? | PO1 |
| 4 | (A) Discuss the inter symbol interference problem? <br> (B) Write a brief note on Eye Pattern with neat diagrams | PO1 |
| 5 | Evaluate the M-ary encoding and also calculate probability of error when data's are transmitted? | $\mathrm{PO} 1, \mathrm{PO} 2$ |
| 6 | With the help of a block diagram explain duo binary signaling scheme. | PO1 |
| 7 | Design receiver filter to maximize SNR and explain why it is called Matched filter? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |
| 8 | Explain how Nyquist pulse shaping criterion is helpful in eliminating the ISI? | PO1, PO2 |
| 9 | (A)Explain the design and analysis M-ary Encoding (or) Signalling scheme <br> (B) Comparison between Binary \& M-ary signaling scheme? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |
| 10 | Derive an expression for probability error of NRZ using Unipolar format? | $\begin{gathered} \hline \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |

## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

## AUTONOMOUS

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK 18ECE321 - DIGITAL COMMUNICATIONS

| Question No. | Questions | PO <br> Attainment |
| :---: | :---: | :---: |
| UNIT - 3: SOURCE ENCODING AND DECODING |  |  |
| PART A ( 2 Marks) |  |  |
| 1 | Define Information and write its units? | PO1 |
| 2 | Define Entropy and information rate? | PO1 |
| 3 | List the properties of entropy? | PO1 |
| 4 | Define joint and Conditional Entropy? | PO1 |
| 5 | What is mutual information and define self information? | PO1 |
| 6 | List the properties of mutual information? | PO1 |
| 7 | Prove I(XY) $=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{XY})$ | PO1 |
| 8 | Define symmetric channel and give one example? | PO1 |
| 9 | What is BEC and draw its graphical representation? | PO1 |
| 10 | Define Coding Efficiency? | PO1 |
| 11 | What are the variable length coding techniques? | PO1 |
| 12 | State Channel capacity theorem? | PO1 |
| 13 | Define Channel capacity and write its units? | PO1 |
| 14 | What is the channel capacity for BSC? | PO1 |
| 15 | What is the channel capacity for BEC? | PO1 |
| 16 | Write the relations between different types of entropies? | PO1 |
| 17 | Find the entropy to the 4 events with probabilities $1 / 2,1 / 4,1 / 8,1 / 8$. | PO1 |
| 18 | What are the minimum and maximum values of the Entropy? | PO1 |
| 19 | Define redundancy with coding efficiency? | PO1 |
| 20 | Draw the Venn diagram of Mutual Information? | PO1 |
| PART-B (10 Marks) |  |  |
| 1 | (A) Define Entropy and state and prove properties of Entropy? <br> (B) A continuous signal is band limited to 5 KHz , the signal is sampled and quantized into 8 levels of a PCM system, the probability of occurrence of each level are $0.25,0.2,0.2,0.1$, $0.1,0.05,0.05,0.05$. Calculate the entropy and Information rate? | PO1, PO2 |
| 2 | State and prove Shannon Hartley Theorem? | PO2, PO3 |
| 3 | (A) Discuss Mutual information and write its properties? <br> (B) A graph source having two symbols 'dot' and 'dash'. Dot duration is 0.2 sec and dash duration is 3 times the dot duration. The probability of dot occurring is twice that of dash occurrence and time difference between dot and dash is 0.2 sec . Find the entropy and information rate telegraph source? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |
| 4 | Illustrate the formulae for the joint and conditional entropies, mention their relation between them? | PO1, PO2 |
| 5 | Discuss about Binary Symmetric Channel and derive expression for channel capacity? | PO1, PO2 |
| 6 | Discuss about Binary Erasure Channel and derive expression for channel capacity? | PO1, PO2 |
| 7 | A source is transmitting messages A,B, C, D, E, F with corresponding probabilities $1 / 2,1 / 4$, $1 / 8,1 / 16,1 / 32,1 / 32$. Find the coding efficiency using Shannon Fano binary coding? | PO1, PO3 |
| 8 | A source is transmitting six messages with probabilities $0.3,0.25,0.15,0.12,0.10,0.08$ respectively. Find the coding efficiency and redundancy using Huffman binary coding? | PO1, PO2 |
| 9 | Discuss about algorithms to find transmission efficiency in shannon fano coding and Huffman coding? | PO1, PO2 |
| 10 | Investigate the transmission efficiency using Huffman coding \& Shannon Fano coding for the following data $\begin{array}{ccccclc} {[\mathrm{X}]} & =\left[\begin{array}{lll} \mathrm{S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} \\ \mathrm{~S}_{3} & \mathrm{~S}_{4} & \mathrm{~S}_{4} \\ {[\mathrm{P}(\mathrm{X})]} & =\left[\begin{array}{ll} 0.3 & 0.15 \end{array} 0.08\right. & 0.25 \\ 0.12 & 0.10 \end{array}\right] \end{array}$ | $\begin{aligned} & \mathrm{PO} 1, \mathrm{PO} 2, \\ & \mathrm{PO} 3 \end{aligned}$ |

## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

 AUTONOMOUS
## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK 18ECE321 - DIGITAL COMMUNICATIONS

| Question No. | Questions | PO <br> Attainment |
| :---: | :---: | :---: |
| UNIT - 4: CHANNEL ENCODING AND DECODING |  |  |
| PART A ( 2 Marks) |  |  |
| 1 | Define ARQ and FEC of error control coding? | PO1 |
| 2 | Define systematic and non systematic linear block codes? | PO1 |
| 3 | Find the generator matrix to the following parity check matrix? $\mathbf{H}=\left[\begin{array}{llllll} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right]$ | PO1 |
| 4 | List an error detecting and correcting capabilities of block codes? | PO1 |
| 5 | Draw the encoder diagram for ( 7,4 ) block code? | PO1 |
| 6 | List an error detecting and correcting capabilities of cyclic codes? | PO1 |
| 7 | Draw the syndrome decoding diagram for (6,3) block code? | PO1 |
| 8 | Discuss the systematic and non systematic cyclic codes? | PO1 |
| 9 | List the advantages and disadvantages of cyclic codes? | PO1 |
| 10 | Explain convolutional coding. | PO1 |
| 11 | What are convolutional codes how they are different from block codes. | PO1 |
| 12 | What is constraint length for convolutional encoders | PO1 |
| 13 | How many coding techniques are used for transmission the digital data? | PO1 |
| 14 | Define the term Surviving path in Viterbi Algorithm. | PO1 |
| 15 | Define the following terms a) code vector b)Hamming Distance | PO1 |
| 16 | What are the types of error control methods? | PO1 |
| 17 | What are the types of encoding methods of convolutuinal codes? | PO1 |
| 18 | List the advantages of convolutional codes over block codes? | PO1 |
| 19 | Compare between code tree and trellis diagram? | PO1 |
| 20 | Define Hamming distance and calculate its value for two code words 11100 and 11011 | PO1 |
| PART-B (10 Marks) |  |  |
| 1 | (A) What is FEC and explain in detail? <br> (B) Explain the matrix representation of linear block codes? | PO1, PO2 |
| 2 | The generator polynomial of a $(7,4)$ hamming code is defined by: $g(X)=1+\mathrm{P}+\mathrm{P}^{2}$. Develop an encoder and syndrome calculator for this code, using a systematic form of the code. | $\begin{aligned} & \mathrm{PO1,} \mathrm{PO2,} \\ & \text { PO3, PO4 } \end{aligned}$ |
| 3 | A generator matrix for a $(6,3)$ block code is given below $G=\left[\begin{array}{llllll} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}\right]$ <br> A) List all the code vectors, draw the encoder diagram <br> B) Find out minimum distance \& weight <br> C) How many errors can be detected \&corrected. | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 3 \end{gathered}$ |
| 4 | A ( $2,1,3$ ) convolutional code is described by $g_{1}=(111), g_{2}=(101)$ <br> (i) Draw the encoder diagram. <br> (ii) Illustrate the encoded output sequence for an input sequence is ' 10101 ' <br> (iii) Design code tree diagram and trellis diagrams. | $\begin{aligned} & \text { PO1, PO2, } \\ & \text { PO3, PO4 } \end{aligned}$ |
| 5 | Explain viterbi algorithm to decode a convolutional coded message? | PO1, PO2 |
| 6 | Discuss about Linear block codes and cyclic codes with mathematical expressions? | PO1, PO2 |

## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES

## AUTONOMOUS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK
18ECE321 - DIGITAL COMMUNICATIONS

| 7 | The generator polynomial of a $(7,4)$ hamming code is defined by: $g(X)=1+P+P^{3}$. Design an encoder for given cyclic code and Design syndrome calculator for this code with received vector $\mathrm{Y}=[100110$ 1]. | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 4 \end{gathered}$ |
| :---: | :---: | :---: |
| 8 | The parity check matrix of $(6,3)$ block code is given as $\mathbf{H}=\left[\begin{array}{llllll} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right]$ <br> (i) Determine the generator Matrix <br> (ii) Find all the code words \& minimum distance. <br> (iii) Design the encoder \& syndrome diagrams. <br> (iv) Calculate syndrome vector \& decode the code word if received code word is $\mathbf{1 1 0 1 1 0}$ | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2 \\ \mathrm{PO} 4 \end{gathered}$ |
| 9 | A ( $2,1,3$ ) convolutional code is described by $g_{1}=(111), g_{2}=(101)$ <br> (i) Draw the encoder diagram. <br> (ii) Illustrate the encoded output sequence for an input sequence is '11011' <br> (iii) Design state diagram and trellis diagrams. | $\begin{aligned} & \mathrm{PO} 1, \mathrm{PO} 2, \\ & \mathrm{PO} 3, \mathrm{PO} 3 \end{aligned}$ |
| 10 | A ( $2,1,3$ ) convolutional code is described by $g_{1}=(111), g_{2}=(101)$ <br> The output of the detector is '1101011001'. Find the transmitted data using Viterbi Algorithm? | $\begin{aligned} & \mathrm{PO} 1, \mathrm{PO} 2, \\ & \mathrm{PO} 3, \mathrm{PO} 4 \end{aligned}$ |
|  |  |  |
| Question No. | Questions | PO <br> Attainment |
| UNIT - 5: BAND PASS DATA TRANSMISSION |  |  |
| PART A ( 2 Marks) |  |  |
| 1 | Explain the types of digital modulation techniques? | PO1 |
| 2 | List the advantages of band pass data transmission? | PO1 |
| 3 | What is meant by DPSK? | PO1 |
| 4 | Bring out the difference between coherent \& non coherent binary modulation scheme | PO1 |
| 5 | Write the two differences between DPSK and BPSK? | PO1 |
| 6 | Give a brief note on BFSK? | PO1 |
| 7 | List the applications of BASK? | PO1 |
| 8 | Discuss about M-ary signaling schemes? | PO1 |
| 9 | What is meant by Probability of error \& Bit Error Rate | PO1 |
| 10 | Explain the role of QPSK? | PO1 |
| 11 | Draw the BASK waveform for 011011 | PO1 |
| 12 | Differentiate coherent FSK from Non-coherent FSK | PO1 |
| 13 | What are the drawbacks of binary PSK system? | PO1 |
| 14 | Draw its constellation diagram for BFSK system. | PO1 |
| 15 | Draw the signal representation of BPSK system | PO1 |
| 16 | Mention the bandwidths for ASK, FSK \& PSK systems | PO1 |
| 17 | Among ASK, FSK \& PSK systems which one is best and why? | PO1 |
| 18 | For the binary data [1 1010 1], draw the message, carrier and BPSK waveforms? | PO1 |
| 19 | Write the expression for probability error of BASK system | PO1 |
| 20 | Draw its constellation diagram for QPSK system. | PO1 |

## SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES AUTONOMOUS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK
18ECE321 - DIGITAL COMMUNICATIONS
PART-B (10 Marks)

| PART-B (10 Marks) |  |  |
| :---: | :---: | :---: |
| 1 | Explain about generation of BASK system with time \& frequency domain waveforms \& draw the signal space representation (constellation diagram)? | PO1, PO2 |
| 2 | Derive an expression of error probability for BPSK system and draw its constellation diagram? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 4 \end{gathered}$ |
| 3 | Explain about generation of FSK system with time \& frequency domain waveforms \& discuss coherent and non coherent detection of BFSK? | PO1, PO2 |
| 4 | (A) Derive an expression of error probability for BASK system? <br> (B) Discuss coherent and non coherent detection of BFSK? | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 4 \end{gathered}$ |
| 5 | Explain the process of DPSK modulation and demodulation with binary sequence "00100100". | PO1, PO2 |
| 6 | Compare digital modulation schemes ASK, FSK \& PSK which are used in communication? | PO1, PO2 |
| 7 | Draw the block diagram of QPSK transmitter \& receiver and explain each block in detail. | PO1, PO2 |
| 8 | (A) Derive the probability of error for BFSK. <br> (B) Discuss in brief about coherent detection of binary PSK | $\begin{gathered} \mathrm{PO} 1, \mathrm{PO} 2, \\ \mathrm{PO} 4 \end{gathered}$ |
| 9 | Draw the block diagram of DPSK transmitter \& receiver and explain each block in detail. | PO1, PO2 |
| 10 | Binary data has to be transmitted over a telephone link that has a usable bandwidth of 3000 Hzand maximum achievable signal to noise ratio is 6 dB at its output. <br> (a) Determine the maximum signal rate and probability error if a coherent ASK scheme is used for transmitting binary data through channel. <br> (b) If the data rate is maintained at $300 \mathrm{bits} / \mathrm{sec}$, Calculate error probability? | $\begin{gathered} \text { PO1, PO3, } \\ \text { PO4 } \end{gathered}$ |

