Arithmetic Pipeline

Arithmetic Pipeline

- Arithmetic pipeline units are usually found in very high speed computers.
- They are used to implement floating point operations, multiplication of fixed point numbers and similar computations.
- Floating point operations are easily decomposed into sub operation.
- The i / p to the floating point adder pipeline are two normalized floating point binary numbers

$$
\begin{aligned}
& X=A X 2^{a} \\
& Y=B X 2^{b}
\end{aligned}
$$

Where A and B are the fraction that represents mantissa and $a \& b$ are the exponent

ARITHM ETIC PIPELINE

Floating-point adder
[1] Compare the exponents
[2] Align the mantissa
[3] Add/sub the mantissa
[4] Normalize the result

$$
\begin{aligned}
& X=A \times 10^{a}=0.9504 \times 10^{3} \\
& Y=B \times 10^{b}=0.8200 \times 10^{2}
\end{aligned}
$$

1) Compare exponents :

$$
3-2=1
$$

2) Align mantissas

$$
\begin{aligned}
& X=0.9504 \times 10^{3} \\
& Y=0.08200 \times 10^{3}
\end{aligned}
$$

3) Add mantissas

$$
Z=1.0324 \times 10^{3}
$$

4) Normalize result

$$
Z=0.10324 \times 10^{4}
$$

Arithmetic Pipeline

- The exponents are compared by subtracting them to their difference. The larger exponent is chosen as the exponent of the result.
- The exponent difference determines how many times the mantissa associated with smaller exponent must be shifted to the right.
- The result is normalized in segment 4 . when an overflow occurs, the mantissa is shifted right and exponent is incremented by 1 .
- If an underflow occurs the number of leading zero's in the mantissa determines number of left shift in the mantissa and the exponent is subtracted accordingly.

