Computer Arithmetic Addition and Subtraction

Addition and Subtraction with Signed magnitude data

- There are 3 ways of representing negative fixed point binary numbers. They are

1. Signed M agnitude representation.
2. Signed one's Complement representation
3. Signed two's Complement representation

- Most computers use the Signed two's Complement representation when performing operation on integers.
- Consider the magnitude of any two numbers A and B and the eight different operation are listed below depending on the sign of the number.

Eight Conditions for SignedMagnitude Addition/Subtraction

	Operation	ADD Magnitudes	SUBTRACT Magnitudes		
			A > B	A < B	$\mathbf{A}=\mathbf{B}$
1	$(+\mathbf{A})+(+\mathrm{B})$	+ ($\mathrm{A}+\mathrm{B}$)			
2	$(+A)+(-B)$		+ ($\mathrm{A}-\mathrm{B}$)	- (B-A)	+ ($\mathrm{A}-\mathrm{B}$)
3	$(-A)+(+B)$		- ($\mathrm{A}-\mathrm{B}$)	+ (B-A)	+ ($\mathrm{A}-\mathrm{B}$)
4	$(-A)+(-B)$	- ($\mathbf{A}+\mathbf{B}$)			
5	$(+A)-(+B)$		+ ($\mathrm{A}-\mathrm{B}$)	- (B-A)	+ ($\mathrm{A}-\mathrm{B}$)
6	(+A) - (-B)	$+(\mathrm{A}+\mathrm{B})$			
7	$(-A)-(+B)$	$-(\mathbf{A}+\mathrm{B})$			
8	(-A) - (-B)		- (A-B)	+ (B-A)	+ ($\mathrm{A}-\mathrm{B}$)

Addition and Subtraction with Signed magnitude data

ALGORITHM:

- When the sign of A and B are identical, add the two magnitudes and attach the sign of A to the result.
- When the sign of A and B are different, compare the magnitudes, subtract smaller number from the larger.
- Choose the sign of the result to be same as A if $A>B$ or complement the sign of A if $A<B$.
- If the two magnitudes are equal, subtract B from A and M ake the sign of the result positive.

Hardware for signed-magnitude addition and subtraction

Hardware for signed-magnitude addition and subtraction

- Let A and B be the two registers that holds the magnitudes of the numbers and As and Bs be two flipflops that holds the corresponding sign
- The result of the operation may be transferred to the third register or the result is transferred to A and As.
- First parallel adder is needed to perform microoperation A+B.
- Second comparator circuit needed to establish if $A<B$, $A>B$ or $A=B$.
- Third subtractor circuit is needed to perform the microoperation $\mathrm{A}-\mathrm{B}$ and $\mathrm{B}-\mathrm{A}$.

Hardware for signed-magnitude addition and subtraction

- The block diagram consist of register A and B and the sign flipflops As and Bs. Subtraction is done by adding A to the 2's complement of B.
- The o/p carry is transferred to E . The add overflow flipflop(AVF) holds the overflow bit when A and B are added.
- The addition $\mathrm{A}+\mathrm{B}$ is done through the parallel adder and the sum is transferred to A register.
- When the Mode bit $M=0$ the $0 / p$ of B is transferred to the adder, the i / p carry is 0 and the o / p of the adder is equal to sum $A+B$
- When $M=1$, the 1 's complement of B is applied to adder, the i / p carry is 1 and the $0 / p$ is equal to $A+B^{\prime}+1$.

Figure 10-2 Flowchart for add and subtract operations.

Hardware Algorithm

- The two sign bits As and Bs are compared by XOR gate. If the o / p is 0 , the sign are identical and if the $0 / p$ is 1 , the sign are different.
- For an add operation the identical sign indicates that magnitudes are to be added.
- For the subtraction operation different sign indicate that magnitude are to added.
- The magnitudes are added with microoperation $E A=A+B$.

Hardware Algorithm

- The two magnitudes are subtracted if the sign are different for an add operation or identical for subtraction operation.
- If $E=1$, then the condition is $A>=B$ and the number in A is the correct result.
- If $E=0$ then the condition is $A<B$ and the number in A is taken 2's complement which is the correct result.
- If the sign of the result is same as the sign of A, So no change in As is required.
- When $A<B$ the sign of the result is the complement of the original sign of A.
- The Final result is found in register A and its sign in As.

- For Example of Addition
- $(+1)+(+2)$
$(+\mathrm{A})+(+\mathrm{B})$

- $(-1)+(+2)$
$(-\mathrm{A})+(+\mathrm{B})$
Take $A=-1, B=+2$ and perform the calculation

- For Example of Subtraction
- $(+1)-(-2)$
$(+\mathrm{A})-(-\mathrm{B})$

- $(+5)-(+2)$
$(+\mathrm{A})-(+\mathrm{B})$

