
AI Unit-5.3: ROBOT: 

Robots are physical agents that perform tasks by manipulating the physical 

world. 

Effectors have a single purpose that to assert physical forces on the 

environment. Robots are also equipped with sensors, which allow them to 

perceive their environment. 

 

Most of today’s robots fall into one of three primary categories. 

1.MANIPULATORS: 

Manipulator motion usually involves a chain of controllable joints, enabling 

such robots to place their effectors in any position within the workplace. Few 

car manufacturers could survive without robotic manipulators, and some 

manipulators have even been used to generate original artwork. 

 

2.MOBBILE ROBOT: 

The second category is the mobile robot. Mobile robots move about their 

environment using wheels, legs, or similar mechanisms. They have been put to 

use delivering food in hospitals, moving containers at loading docks, and 

similar tasks. Other types of mobile robots  include unmanned air vehicles, 

Autonomous underwater vehicles etc.., 

 

3.MOBILE MANIPULATOR: 

The third type of robot combines mobility with manipulation, and is often called 

a  mobile manipulator. Humanoid robots mimic the human torso. 

 

               The field of robotics also includes prosthetic devices , intelligent 

environments  and multibody systems, wherein robotic action is achieved 

through swarms of small cooperating robots. Robotics brings together many of 

the concepts we have seen earlier in the book, including probabilistic state 

estimation, perception, planning, unsupervised learning, and reinforcement 

learning. 

 

ROBOT HARDWARE: 

 The robot hardware mainly depends on 1.sensors and 2.effectors 

1.sensors: 

 Sensors are the perceptual interface between robot and environment.  

PASSIVE SENSOR: Passive sensors, such as cameras, are true observers of the 

environment: they capture signals that are generated by other sources in the 

environment. 

ACTIVE SENSOR: Active sensors, such as sonar, send energy into the 

environment. They rely on the fact that this energy is reflected back to the 

sensor. 

           

Range finders are sensors that measure the distance to nearby objects. In 

the early   days of robotics, robots were commonly equipped with sonar 

sensors. Sonar sensors emit directional sound waves, which are reflected by 

objects, with some of the sound making it back into the sensor. 



 

          Stereo vision  relies  on multiple cameras to image the environment from 

slightly different viewpoints, analyzing the resulting parallax in these images to 

compute the range of surrounding objects. 

 

      Other common range sensors include radar, which is often the sensor of 

choice for UAVs. Radar sensors can measure distances of multiple kilometers. 

On the other extreme  end of range sensing are tactile sensors such as whiskers, 

bump panels, and touch-sensitive skin. 

 

     A second important class of sensors is location sensors. Most location 

sensors use range sensing as a primary component to determine location. 

Outdoors, the Global Positioning System (GPS) is the most common solution 

to the localization problem. GPS measures  the distance to satellites that emit 

pulsed signals. 

 The third important class is proprioceptive sensors, which inform the 

robot of its own motion. To measure the exact configuration of a robotic joint, 

motors are often equipped  with shaft decoders that count the revolution of 

motors in small increments. 

       

      Other important aspects of robot state are measured by force sensors and 

torque sensors. These are indispensable when robots handle fragile objects or 

objects whose exact shape and location is unknown. 

 

EFFECTORS: 

Effectors are the means by which robots move and change the shape of their 

bodies. To understand the design of effectors we use the concept of degree of 

freedom. 

 

We count one degree of freedom for each independent direction in which a 

robot, or one of its effectors, can move. For example, a rigid mobile robot such 

as an AUV has six degrees of freedom, three for its (x, y, z) location in space 

and three for its angular orientation, known as yaw, roll, and pitch. These six 

degrees define the kinematic state2 or pose of the robot. The dynamic state of 

a robot includes these six plus an additional six dimensions for the rate of 

change of each kinematic dimension, that is, their velocities. 

 

               For nonrigid bodies, there are additional degrees of freedom within the 

robot itself. For example, the elbow of a human arm possesses two degree of 

freedom. It can flex the upper arm towards or away, and can rotate right or left. 

The wrist has three degrees of freedom. It can move up and down, side to side, 

and can also rotate. Robot joints also have one, two, or three degrees of freedom 

each. Six degrees of freedom are required to place an object, such as a hand, at a 

particular point in a particular orientation. 

 

 



 
 

 In the fig 4(a) has exactly six degrees of freedom, created REVOLUTE JOINT by 

five revolute joints that generate rotational motion and one prismatic joint that 

generates sliding motion 

 

          For mobile robots, the DOFs are not necessarily the same as the number 

of actuated elements. 

Consider, for example, your average car: it can move forward or backward, and 

it can turn, giving it two DOFs. In contrast, a car’s kinematic configuration is 

three-dimensional: on an open flat surface, one can easily maneuver a car to any 

(x, y) point, in any orientation. (See Figure 25.4(b).) Thus, the car has three 

effective degrees of freedom but two control  label degrees of freedom. We 

say a robot is nonholonomic if it has more effective DOFs  than controllable 

DOFs and holonomic if the two numbers are the same. 

 

Sensors and effectors alone do not make a robot. A complete robot also needs a 

source  of power to drive its effectors. The electric motor is the most popular 

mechanism for both  manipulator actuation and locomotion, but pneumatic 

actuation using compressed gas and  Hydraulic actuation using pressurized 

fluids also have their application niches. 

 

ROBOTIC PERCEPTION: 

          Perception is the process by which robots map sensor measurements into 

internal representations of the environment. Perception is difficult because 

sensors are noisy, and the environment is partially observable, unpredictable, 

and often dynamic.  

 

      As a rule of thumb, good internal representations for robots have three 

properties: they contain enough information for the robot to make good 

decisions, they are structured so that they can be updated efficiently, and they 

are natural in the sense that internal variables correspond to natural state 

variables in the physical world. 

 

          For robotics problems, we include the robot’s own past actions as 

observed variables in the model. Figure 25.7 shows the notation used in this 



chapter: Xt is the state of the environment (including the robot) at time t, Zt is 

the observation received at time t, and At is the action taken after the 

observation is received. 

 

 
 

We would like to compute the new belief state, P(Xt+1 | z1:t+1, a1:t), from 

the current belief state P(Xt | z1:t, a1:t−1) and the new observation zt+1. 

Thus, we modify the recursive filtering equation (15.5 on page 572) to use 

integration rather than summation: 

P(Xt+1 | z1:t+1, a1:t) 

= αP(zt+1 | Xt+1)_ P(Xt+1 | xt, at) P(xt | z1:t, a1:t−1) dxt . (25.1) 

This equation states that the posterior over the state variables X at time t + 1 is 

calculated recursively from the corresponding estimate one time step earlier. 

This calculation involves the previous action at and the current sensor 

measurement zt+1. The probability P(Xt+1 | xt, at) is called the transition 

model or motion model, and P(zt+1 | X t+1) is the sensor model. 

 

1.Localization and mapping 

 Localization  is the problem of finding out where things are—including the 

robot itself. 

 

Knowledge about where things are is at the core of any successful physical 

interaction with the environment. 

To keep things simple, let us consider a mobile robot that moves slowly in a flat 

2D world. Let us also assume the robot is given an exact map of the 

environment. The pose of such a mobile robot is defined by its two Cartesian 

coordinates with values x and y and its heading with value θ, as illustrated in 

Figure 25.8(a). If we arrange those three values in a vector, then any particular 

state is given by Xt =       θ   . 



 
 

 

In the kinematic approximation, each action consists of the ―instantaneous‖ 

specification of two velocities—a translational velocity vt and a rotational 

velocity ωt. For small time intervals Δt, a crude deterministic model of the 

motion of such robots is given by 

 

 

The notation ˆX refers to a deterministic state prediction. Of course, physical 

robots are somewhat unpredictable. This is commonly modeled by a Gaussian 

distribution with mean f(Xt, vt, ωt) and covariance Σx. (See Appendix A for a 

mathematical definition.) 

 

P(Xt+1 | Xt, vt, ωt) = N(ˆXt+1,Σx) . 

  Next, we need a sensor model. We will consider two kinds of 

sensor model. The first assumes that the sensors detect stable, recognizable 

features of the environment called landmarks. The exact prediction of the 

observed range and bearing would be 

  
Again, noise distorts our measurements. To keep things simple, one might 

assume Gaussian noise with covariance Σz, giving us the sensor model      



P(zt | xt) = N(ˆzt,Σz) . 

 
This problem is important for many robot applications, and it has been studied 

extensively under the name simultaneous localization and mapping, 

abbreviated as SLAM. 

       SLAM problems are solved using many different probabilistic 

techniques, including the extended Kalman filter  

 

 
 

Expectation–maximization is also used for SLAM. 

 

 

2.Other types of perception 

Not all of robot perception is about localization or mapping. Robots also 

perceive the temperature, odors, acoustic signals, and so on. Many of these 

quantities can be estimated using variants of dynamic Bayes networks. 



It is also possible to program a robot as a reactive agent, without explicitly 

reasoning about probability distributions over states. 

 

3.Machine learning in robot perception 

Machine learning plays an important role in robot perception. This is 

particularly the case when the best internal representation is not known. One 

common approach is to map high dimensional sensor streams into lower-

dimensional spaces using unsupervised machine learning method. Such an  
approach is called low-dimensional embedding. 

 

Methods that make robots collect their own training data are called Self 

Supervised. 

 

In this instance, the robot uses machine learning to leverage a short-range 

sensor that works well for terrain classification into a sensor that can see much 

farther. That allows the robot to drive faster, slowing down only when the 

sensor model says there is a change in the terrain that needs to be examined 

more carefully by the short-range sensors. 

 

PLANNING TO MOVE: 

 

All of a robot’s deliberations ultimately come down to deciding how to move 

effectors. The  point-to-point motion problem is to deliver the robot or its end 

effector to a designated target  location. A greater challenge is the compliant 

motion problem, in which a robot moves while being in physical contact with 

an obstacle. 

 

There are two main approaches: cell decomposition and skeletonization. Each 

reduces the continuous path-planning problem to a discrete graph-search 

problem. 

 

1 Configuration space 

We will start with a simple representation for a simple robot motion problem. It 

has two joints that move independently. the robot’s configuration can be 

described by a four dimensional coordinate: (xe, ye) for the location of the 

elbow relative to the environment and (xg, yg) for the location of the gripper. 

They constitute what is known as workspace representation. 

 

                   The problem with the workspace representation is that not all 

workspace coordinates are actually attainable, even in the absence of obstacles. 

This is because of the linkage constraints on the space of attainable workspace 

coordinates. 



 

Transforming  configuration space coordinates into workspace coordinates is 

simple: it involves a series of straightforward coordinate transformations. These 

transformations are linear for prismatic joints and trigonometric for revolute 

joints. This chain of coordinate transformation  is known as kinematics. 

 

The inverse problem of calculating the configuration of a robot whose effector 

location  is specified in workspace coordinates is known as inverse kinematics. 

 

2 Cell decomposition methods 

The first approach to path planning uses cell decomposition—that is, it 

decomposes the free space into a finite number of contiguous regions, called 

cells. 

 

   A decomposition has the advantage that it is extremely simple to implement, 

but it also suffers from three limitations. First, it is workable only for low-

dimensional configuration spaces, Second, there is the problem of what to do 

with cells that are ―mixed‖, And third, any path through a discretized state space 

will not be smooth. 

 

  Cell decomposition methods can be improved in a number of ways, 

to alleviate some of these problems. The first approach allows further 

subdivision of the mixed cells—perhaps using cells of half the original size. A 

second way to obtain a complete algorithm is to insist on an exact cell 

decomposition of the free space. 

 

3 Modified cost functions: 

 This problem can be solved by introducing a potential field. A potential 

field is a function defined over state space, whose value grows with the distance 

to the closest obstacle. The potential field can be used as an additional cost term 

in the shortest-path calculation. This induces an interesting trade off. On the one 

hand, the robot seeks to minimize path length to the goal. On the other hand, it 



tries to stay away from obstacles by virtue of minimizing the potential function. 

Clearly, the resulting path is longer, but it is also safer. 

    There exist many other ways to modify the cost function. However, it is 

often easy to smooth the resulting trajectory after planning, using conjugate 

gradient methods. Such post-planning smoothing is essential in many real world 

applications. 

 

4 Skeletonization methods 

The second major family of path-planning algorithms is based on the idea of 

skeletonization. 

These algorithms reduce the robot’s free space to a one-dimensional 

representation, for which the planning problem is easier. This lower-

dimensional representation is called a skeleton of the configuration space. 

 

 Voronoi graph of the free space—the set of all points that are 

equidistant to two or more obstacles. To do path planning with a Voronoi graph, 

the robot first changes its present configuration to a point on the Voronoi graph. 

It is easy to show that this can always be achieved by a straight-line motion in 

configuration space. Second, the robot follows the Voronoi graph until it 

reaches the point nearest to the target configuration. Finally, the robot leaves the 

Voronoi graph and moves to the target. Again, this final step involves straight-

line motion in configuration space. 

 

 An alternative to the Voronoi  graphs is the probabilistic roadmap, a 

skeletonization approach that offers more possible routes, and thus deals better 

with wide-open spaces. With these improvements, probabilistic roadmap 

planning tends to scale better to high-dimensional configuration spaces than 

most alternative path-planning techniques. 

 

ROBOTIC SOFTWARE ARCHITECTURE: 

A methodology for structuring algorithms is  called a software architecture. 

An architecture includes languages and tools for writing programs, as well as an 

overall philosophy for how programs can be brought together. Architectures 

that combine reactive and deliberate techniques are  called hybrid 

architectures. 

 

1 Subsumption architecture 

 The subsumption architecture  is a framework for assembling reactive 

controllers out of finite state machines. Nodes in these machines may contain 

tests for certain sensor variables, in which case the execution trace of a finite 

state machine is conditioned on the outcome of such a test. The resulting 

machines are refereed to as augmented finite state machines, or AFSMs, 

where the augmentation refers to the use of clocks. 

 

An example of a simple AFSM is the four-state machine shown in BELOW 

Figure,  which generates cyclic leg motion for a hexapod walker. 



 

 In our example, we might begin with AFSMs for individual legs, 

followed by an AFSM for coordinating multiple legs. On top of this, we might 

implement higher-level behaviors such as collision avoidance, which might 

involve backing up and turning. 

 

Unfortunately, the subsumption architecture has its own problems. First, 

the AFSMs are driven by raw sensor input, an arrangement that works if the 

sensor data is reliable and contains all necessary information for decision 

making, but fails if sensor data has to be integrated in nontrivial ways over time. 

A subsumption style robot usually does just one task, and it has no notion of 

how to modify its controls to accommodate different goals. Finally, 

subsumption style controllers tend to be difficult to understand. 

 

However, it has had an influence on other architectures, and on individual 

components of some architectures. 

 

2 Three-layer architecture 

Hybrid architectures combine reaction with deliberation. The most popular 

hybrid architecture is the three-layer architecture, which consists of a reactive 

layer, an executive layer, and a deliberative layer. 

 

 The reactive layer provides low-level control to the robot. It is characterized 

by a tight sensor–action loop. Its decision cycle is often on the order of 

milliseconds. 

 The executive layer (or sequencing layer) serves as the glue between the 

reactive layer and the deliberative layer. It accepts directives by the deliberative 

layer, and sequences them for the reactive layer.  

 

The deliberative layer generates global solutions to complex tasks using 

planning. 

Because of the computational complexity involved in generating such solutions, 

its decision cycle is often in the order of minutes. The deliberative layer (or 

planning layer) uses models for decision making. 



 

3 Pipeline architecture 

Another architecture for robots is known as the pipeline architecture. Just like 

the  subsumption architecture, the pipeline architecture executes multiple 

process in parallel. 

 

           Data enters this pipeline at the sensor interface layer. The perception 

layer then updates the robot’s internal models of the environment based on this 

data. Next, these models are handed to the planning and control layer. Those 

are then communicated back to the  vehicle through the vehicle interface layer. 

 

 
  

        The key to the pipeline architecture is that this all happens in parallel. 

While the perception layer processes the most recent sensor data, the control 

layer bases its choices on slightly older data. In this way, the pipeline 

architecture is similar to the human brain. We don’t switch off our motion 

controllers when we digest new sensor data. Instead, we perceive, plan, and act 

all at the same time. Processes in the pipeline architecture run asynchronously, 

and all computation is data-driven. The resulting system is robust, and it is fast. 

 

APPLICTION DOMAINS: 

 

Industry and Agriculture. Traditionally, robots have been fielded in areas that 

require difficult human labour, yet are structured enough to be amenable to 

robotic automation. The best example is the assembly line, where manipulators 

routinely perform tasks such as assembly, part placement, material handling, 

welding, and painting. In many of these tasks, robots have become more cost-

effective than human workers. 

 



 

Transportation. Robotic transportation has many facets: from autonomous 

helicopters that deliver payloads to hard-to-reach locations, to automatic 

wheelchairs that transport people who are unable to control wheelchairs by 

themselves, to autonomous straddle carriers that outperform skilled human 

drivers when transporting containers from ships to trucks on loading docks.  

 

Robotic cars. Most of use cars every day. Many of us make cell phone calls 

while 

driving. Some of us even text. The sad result: more than a million people die 

every year in traffic accidents. Robotic cars like BOSS and STANLEY offer 

hope: Not only will they make driving much safer, but they will also free us 

from the need to pay attention to the road during our daily commute. 

 

Health care. Robots are increasingly used to assist surgeons with instrument 

placement when operating on organs as intricate as brains, eyes, and hearts. 

Robots have become indispensable tools in a range of surgical procedures, such 

as hip replacements, thanks to their high precision. In pilot studies, robotic 

devices have been found to reduce the danger of lesions when performing 

colonoscopy. 

 

Hazardous environments. Robots have assisted people in cleaning up nuclear 

waste, most notably in Chernobyl and Three Mile Island. Robots were present 

after the collapse of the World Trade Center, where they entered structures 

deemed too dangerous for human search and rescue crews. 

 

Exploration. Robots have gone where no one has gone before, including the 

surface of Mars.  Robotic arms assist astronauts in deploying and retrieving 

satellites and in building the International Space Station. Robots also help 

explore under the sea. They are routinely used to acquire maps of sunken ships. 

 

Personal Services. Service is an up-and-coming application domain of robotics. 

Service robots assist individuals in performing daily tasks. Commercially 

available domestic service robots include autonomous vacuum cleaners, lawn 

mowers, and golf caddies. example for robot vaccum cleaner is ROOMBA. 

 

Entertainment. Robots have begun to conquer the entertainment and toy 

industry. we see robotic soccer, a competitive game very much like human 

soccer, but played with autonomous mobile robots. Robot soccer provides great 

opportunities for research in AI, since it raises a range of problems relevant to 

many other, more serious robot applications. 

 

Human augmentation. A final application domain of robotic technology is that 

of human augmentation. Researchers have developed legged walking machines 

that can carry people around, very much like a wheelchair. Several research 

efforts presently focus on the development of devices that make it easier for 

people to walk or move their arms by providing additional forces through extra 

skeletal attachments. 


