

SREENIVASA INSTITUTE of TECHNOLOGY and MANAGEMENT STUDIES (AUTONOMOUS)

(AUTOMATION AND ROBOTICS)

16MEC325A

QUESTION BANK

III - B.TECH / II - SEMESTER

REGULATION: R16

FACULTY INCHARGE DESIGNATION DEPARTMENT

PREPARED BY : MR.P. KARUNYA MOORTHY : ASSISTANT PROFESSOR : MECHANICAL

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK III B.Tech II Semester AUTOMATION AND ROBOTICS (16MEC325A)

L T P C 3 1 0 3

16MEC325A AUTOMATION AND ROBOTICS

Course Educational Objectives:

- To study the various fundamental concepts of automation.
- To understand the basic concepts associated with the design and functioning and applications of robots.
- To study about the drives and sensors used in robots.
- To learn about analysing robot kinematics, dynamics and robot programming.

UNIT - 1: BASICS OF AUTOMATION

Basic elements of an automated system – Need – Types – Advanced automation function – Levels of automation – Hardware components for automation and process control – Automated storage and retrieval system – Material transport system and equipments – Over view of automated identification technique – Bar code technology.

UNIT - 2: AUTOMATED FLOW LINES AND LINE BALANCING

Automated flow lines: Part transfer methods and mechanisms – Types of flow lines – Flow line with/without buffer storage – Qualitative analysis. **Assembly line balancing:** Assembly process and systems assembly line – Line balancing methods – Ways of improving line balance and flexible assembly lines.

UNIT – 3: INDUSTRIAL ROBOTICS AND DRIVE SYSTEM

Definition – Robot anatomy – Co-ordinate systems, Work envelope, types and classification – Specifications – Pitch, yaw, roll, joint notations, speed of motion, pay load – Robot parts and functions – Need for robots – Different applications. **Robot Drive System:** Pneumatic drives – Hydraulic drives – Mechanical drives – Electrical drives – Servo motors and stepper motor – Grippers – Mechanical grippers, pneumatic and hydraulic grippers, magnetic grippers, vacuum Grippers; two fingered and three fingered grippers; internal grippers and external grippers.

UNIT - 4: KINEMATICS AND DYNAMICS OF ROBOTS

Robot Kinematics: Homogeneous transformations as applicable to rotation and translation – D-H notation – Forward and inverse kinematics. **Robot Dynamics:** Differential transformation – Jacobians, Lagrange-Euler and Newton-Euler formations. **Trajectory Planning:** Trajectory planning and avoidance of obstacles – Path planning – Skew motion – Joint integrated motion – Straight line motion.

UNIT - 5: ROBOT PROGRAMMING AND APPLICATION

Robot Sensors: Range sensor – Proximity sensor – Touch sensor – Force and torque sensor. Robot

Programming: Teach pendant programming, lead through programming, robot programming

languages – VAL programming – Motion commands, sensor commands, end effecter commands and simple programs. **Robot Applications:** Robot application in manufacturing industry – Applications in assembly and inspection.

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

AUTOMATION AND ROBOTICS (16MEC325A)

Course Outcomes:

Upon completion of this course, the students will be able to:

- Understand the concept of automation in manufacturing industries.
- ✓ Have knowledge on the fundamentals of Robotics, Robot Kinematics and Programming which help them to build and work with Robots.

Text Books:

- 1. Robotics Control, Sensing, Vision and Intelligence, Fu.K.S. Gonzalz.R.C., and Lee C.S.G., 1987, McGraw-Hill Book Co.,
- 2. Automation, Production Systems and CIM, M.P.Groover, 3/e, 2008, Prentice- Hall of India, Pvt. Ltd., New Delhi.

Reference Books:

- 1. Fundamentals of Robotics Analysis and Control, C Robert J Schilling, 2009, Pearson Education.
- 2. Introduction to Robotics Mechanics and Education, Craig J.J., 2008.
- 3. Robotics Technology and Flexible Automation, Deb S.R. and Deb S., 2010, McGraw Hill Education.
- 4. Industrial Robotics-Technology, Programming and Applications, M.P.Groover, 2001, McGraw-Hill.
- 5. Foundation of Robotics: Analysis and Control, Yoshikawa, 2004, Prentice Hall of India.

On successful completion of the course, students will be able to:

	Course Outcomes	POs related to Cos
CO1	Summarize the various fundamental and advanced concepts of	PO1
	automation in industry	
CO2	Understand the line balancing and flow line of robotics in automated	PO1, PO2
CO3	Demonstrate the basic concepts associated with industrial robots and driving system used in robots	PO1
CO4	Compare the kinematics and Dynamics of robots	PO1, PO2
CO5	Explain about sensors used in robots, Robot programming and	PO1
	applications	

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Question No	Questions			
	UNIT-I BASICS OF			
	AUTOMATION	a	Ð	5
	PART-A(TWO MARK	C	в	P
1	QUESTIONS)	C01	L 1	U PO1
1.				
2.	List various levels in automation.	COI	1	POI
3.	Define automation?	CO1	1	PO1
4.	What are the hardware components required for automation?	CO1	1	PO1
5.	List the basic elements of an automated system.	CO1	1	PO1
6.	Give examples of automation system.	CO1	1	PO1
7.	What are the various controllers used in automation?	CO1	1	PO1
8.	Define open loop system?	CO1	1,2	PO1
9.	What conditions favors to flexible automation.	CO1	1	PO1
10.	What are the circumstances under which fixed automation is suitable?	CO1	1,2	PO1
	PART-B (TEN MARKS QUESTIONS)			
1.	What are the various types of automation explain in detail	CO1	1	PO1
2.	Describe briefly advanced automation functions	CO1	1,2	PO1
	Contoni			
3.	a) Explain different Levels of automation	CO1		PO1
	b) Discuss briefly need of automation		1.2,3	
4.	Explain briefly Analog-to-Digital Conversion and Digital Conversion -to-Analog	C01	1,2	PO1
5.	Explain AS (Automated Storage) and RS (Retrieval System) components and terminology	CO1	1,2	PO1
6.	Explain analysis AS (Automated Storage) and RS (Retrieval System)	CO1	1	PO1
7.	Discuss various types of material handling equipment	CO1	2,3	PO1
8.	Define material handling system and explain Principles of Material Handling	CO1	1,2	PO1
9.	Describe briefly Automated Guided Vehicles (AGVs)	CO1	1,2	PO1
10	Explain Bar code Technology.	CO1	1,2	PO1

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Question No						Ques	stions					
	UNIT-2	: AU	TOMA	TED FI LI	LOW LII NE BAI	NES AN LANCIN	D G					
			PAR	T-A(T	WO MA	ARK				С	В	Р
1	XX ZL and the L CC and a		0	QUES	TIONS)					0	L	0
1.	What is buffer si	torage	8?							CO2	I	POI
2.	What is line bala	ancing	g?							CO2	1	PO1
3.	What are the obj	jectivo	es of aut	omated	flow line'	?				CO2	1	PO1
4.	What are the rea	sons	to includ	le buffer	storage i	n product	tion line?			CO2	1	PO1,PO2
5.	5. What are the different types of flowlines?								CO2	1	PO1	
6.	6. List out the rotary indexing mechanisms.								CO2	1	PO1	
7	7 List out various methods of transporting workpieces on flow lines							CO2	1,2	PO1		
8.	What do you mean by synchronous and asynchronous work transport system?							CO2	1,2	PO1,PO2		
9.	9. Define automated flow line and List out automated flow lines									CO2	1	PO1
10. Write down advantages and dis-advantages of buffer storage									CO2	1	PO1	
PA	ART-B (TEN	MAF	RKS Q	UESTI	ONS)							
1.	Explain briefly v	work	part tran	sfer met	hods					CO2	1,3	PO1
2.	Explain linear tr	ansfe	r mechai	nisms w	ith neat sl	cetch				CO2	1,3	PO1
3.	What are the var	rious t	ypes of	rotary ti	ansfer me	echanism	s and desci	ribe any		CO2	2,3	PO1
	two mechanisms	s in br	rief?									
4.	Explain reasons	for us	sing stor	age buff	ers in aut	omated f	low lines?			CO2	1,3	PO1
5.	Describe briefly	autor	nated sto	orage an	d retrieva	l system				CO2	1,3	PO1
6.	Discuss flow lin	e witł	n and wi	thout bu	ffer stora	ge				CO2	1,3	PO1
7.	Given the follow	ving ta	asks, tin	ne and se	equence d	evelop a	balanced li	ine capab	le of	CO2	1,2,3	3PO1,PO2
	operating with a	10 m	inutes c	vcle tim	e. using R	Rank Posi	tional Wei	ght (RPW	/) method			
	and colculate the	i)off	ioionou	of that 1	no (ii) he	longo dol	au (iii) cm	oothnood	index			
		- 1)en						ooumess		_		
	Task element	A	В	С	D	E	F	G	Н			
	Time (min)	3	5	7	5	3	3	5	6			
	Element Predecessor	-	A	В	-	С	B,D	D	G			
		1	1									

8.	Toy assemblies s	should be	done a	s per th	e inform	ation g	iven iı	n the tab	le belo	W		CO2		PO1,PO2
	and cycle time is	1minute	balanc	e the lir	e using	kill brid	lge an	d wester	r's met	hod.			1,2,3	
	Determine (i)effi	ciency of	f line (i	i) balan	ce delay	(iii) sn	noothn	ess inde	x					
	Task Element	; 1	2	3	4	5	6	7	8	9	10			
	Time (min)	0.5	0.3	0.8	0.2	0.1	0.6	0.4	0.5	0.3	0.6			
	predecessors	-	1	1	2	2	3	4,5	3,5	7,8	6,9			
			1		1						1			
9.	Given the follow using largest can	ing data didate ru	describ le meth	e line balance	alancing wing a c	proble ycle tin	m, dev ne of 3 oothne	velop a s minute	olutior s.	l		CO2	1,2,3	PO1,PO2
	Task Element	A	B	C 1			F	G	H I					
	Time (min)	1	1	2	1 3		1	1	2 1					
	predecessors	-	A	B 1	3 G, I)	Α	F	G F	, H				
		•												
10	Explain largest c	andidate	rule lin	e balan	cing met	hod wi	th an e	example	•			CO2	1 7 7	PO1,PO2
													1,2,3	

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Question No	Questions			
UNIT-3: IN	DUSTRIAL ROBOTICS AND DRIVE SYSTEM			
	PART-A(TWO MARK	С	В	Р
1	QUESTIONS)	0	L	0
1.	Mention any 4 components of a robot.	CO3	1,2	
2.	Define degrees of freedom of a robot.	CO3		PO1
3.	Differentiate between joint and link.	CO3	1	PO1
4.	List out any two common Robot configurations	CO3	1,2	P01
5.	What is meant by work envelope?	CO3	1	P01
6.	Define a drive system in robot.	CO3	1	POI
7.	What are the various types of drives used in robot?	CO3	1	PO1
8.	State any two advantages and disadvantages of pneumatic drive?	CO3	1	PO1
9.	What are the various types of grippers used in robot?	CO3	1	PO1
10	What are the advantages of magnetic gripper?	CO3	1	PO1
11.	What are the various types of gripper mechanisms used in robot?	CO3	1	PO1
12.	Mention any two uses of vacuum grippers.	CO3	1,2	PO1
PA.RT-B (TEN MARKS QUESTIONS)			
1.	Explain anatomy of robot with a neat sketch.	CO3	1,2	PO1
2.	Elaborate co-ordinate systems in robots.	CO3	2,3	PO1
3.	Write short notes on the following: (i) Types of robot controls (ii) Spatial resolution (iii) Repeatability.	CO3	1	PO1
4.	Explain briefly working of pneumatic drive and state advantages and	CO3	1	PO1
1 in the	disadvantages of pneumatic drive.			
5.	Elaborate the working of hydraulic drives. State their merit and demerits.	CO3	1	PO1
6.	Classify Mechanical Drives used in Robots and explain them briefly.	CO3	2	PO1
7.	Explain the different types of electrical servo motors used in robot actuation.	CO3	1	PO1
8.	Discuss three types of mechanical gripper mechanism.	CO3	2	PO1
9.	Discuss about magnetic and vacuum grippers.	CO3	1	PO1
10.	With suitable illustration explain working on external and internal grippers.	CO3	1	PO1
11.	Discuss in detail the selection and design considerations of grippers in robots.	CO3	1,3	PO1

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Question No	Questions			
	UNIT-4: KINEMATICS AND DYNAMICS OF ROBOTS			
	PART-A(TWO MARK QUESTIONS)	С	В	Р
		0	L	0
1.	What is robot arm kinematics?	CO4	1	PO1
2.	What is trajectory planning?	CO4	1	PO1
3.	Define transformation matrix?	CO4	1	PO1
4.	Define D-H notation	CO4	2	PO1,PO2
5.	Write any two differences between forward and inverse kinematics?	CO4	1,2	PO1
6.	What is robot arm Dynamics?	CO4	1	PO1
7.	Write about forward and inverse dynamics?	CO4	1	PO1
8.	What is meant by Skew motion of a robot manipulator	CO4	1	PO1
9.	Write short note on forward and backward iteration?	CO4	1,2	PO1,PO2
10.	Differentiate between Newton-Euler Formulation and Euler-Lagrangian Formulation	CO4	1,2	PO1,PO2
11.	What are the steps involved to obtain a dynamic equation?	CO4	1.3	PO1
PA	ART-B (TEN MARKS OUESTIONS)		,	
2.	of rotation of angle α about X-axis, ii) Rotation of angle β about Y-axis and iii) Rotation of angle γ about Z-axis Obtain the homogeneous transformatin matrix that represents a rotation	C04	1,2,3	PO1,PO2
2	of α degrees about the current X-axis followed by a translation of b units along the current X-axis, followed by a translation d unit along the current Z-axis followed by a rotation of θ degrees about the current Z-axis	COA	1,2,3	PO1 PO1
5.	Assuming that the origin of the global coordinate system defined at joint J1 determine the following a) The coordinate of the end effector point if the variable link lengths are 3m and 5m b) Variable link lengths if end effector is located at (3,5) ? $\left(\begin{array}{c} x \\ y \\$		1,2,3	1 01,1 02

4.	Explain Forward kinematics of manipulators with two degrees of freedom	~ ~ ~	1 2	PO1,PO2
	in LL Robot, RR Robot and TL Robot?	CO4	1,2	
5.	Explain briefly reverse kinematics of manipulators with two degrees of freedom in LL Robot, RR Robot and TL Robot?	CO4	1,2	PO1,PO2
6.	For the point $P_{XYZ} = (0,5,2)^{T}$ perform following operations i) rotate 30° about Y-axis followed by translation of 4 units along Z-axis ii) Translate 6 units along Z-axis followed by rotation of 60° along Y-axis	CO4	1,2,3	PO1,PO2
7.	Explain newton Euler formulation for a robot arm with advantages and dis advantages	CO4	2,3	PO1,PO2
8.	Derive the expression for the joint torques of a two-link planar revolute jointed robotic manipulator using Lagrange Euler formation	CO4	1,2	PO1,PO2
9.	Explain 4-3-4 trajectory	CO4	1,2,3	PO1,PO2
10	Explain trajectory planning system with reference to robots	CO4	1,2	PO1,PO2
11.	Discuss the cartesian space techniques	CO4	2,3	PO1,PO2
12.	What are the different types of motion that a robot manipulator can make in travelling from point to point? Explain.	CO4	1,2	PO1,PO2

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

AUTOMATION AND ROBOTICS (16MEC325A)

Question No	Questions			
	UNIT-5: ROBOT PROGRAMMING AND APPLICATION			
	PART-A(TWO MARK QUESTIONS)	С	В	Р
		0	L	0
1.	What is a sensor?	CO5	1	PO1
2.	Define transducer.	CO5	1	PO1
3.	Define actuator.	CO5	1	PO1
4.	What are the advantages of using robots in spray painting?	CO5	1	PO1
5.	What are the sensors used in industrial robots?	CO5	1	PO1
6.	List out online robot programming methods.	CO5	1	PO1
7.	What are the various types of techniques in range sensor?	CO5	1	PO1
8.	What are the advantages and dis-advantages of Force and Torque sensor	CO5	1	PO1
9.	Write any four commands in VAL programming	CO5	1,2	PO1
10	List out various applications of robot in manufacturing industry	CO5	1	PO1
PA	ART-B (TEN MARKS QUESTIONS)			
1.	Explain the working of range sensor in detail.	CO5	1	PO1
2.	Explain the working of proximity sensor in detail	CO5	1	PO1
3.0000	Explain the working of Touch sensor in detail with advantages and dis-advantages	CO5	1	PO1
4.	Explain the working of Force and Torque sensor in detail with advantages and dis-advantages	CO5	1	PO1
5.	Explain different types of sensors used in industrial robots.	CO5	1	PO1
6.	Discuss briefly different applications of Industrial robot.	CO5	1	PO1
7.	Explain teach pendant method of robot programming	CO5	1,2	PO1
8.	Explain the applications of industrial robots in manufacturing area.	CO5	1	PO1
9.	Explain lead through programming method.	CO5	1	PO1
10.	Explain VAL programming commands.	CO5	1,2	PO1
11.	What are the role of robots in loading and unloading?	CO5	1	PO1
12.	With schematic diagram, explain the robotic applications in welding industry.	CO5	1	PO1

ALL THE BEST