QUESTION BANK		Fin	ite E	leme	nt Ana	lysis
III B.Tech II Semester		L	Т	Р	С	
		3	1	0	3	
16MEC322	Finite Element Analysis					

Course Educational Objectives:

CEO1: To understand the fundamental concepts of finite element analysis

CEO2: To analyze one dimensional element and truss element problems

CEO3: To evaluate the Constant Strain Triangle Element in two dimensional scalar problems

CEO4: To develop the modern of vector variable problems and isoparametric elements

CEO5: To demonstrate the numerical integration and applications in heat transfer

UNIT – 1: FUNDAMENTAL CONCEPT

Methods of engineering analysis – Historical background – General steps of finite element analysis – Galerkin method – Potential energy approach: Rayleigh Ritz method – Boundary, initial and eigen value problems – Gaussian elimination problems – Application of FEA.

UNIT – 2: ONE DIMENSIONAL PROBLEM

One Dimensional Elements: Finite element modeling – Co-ordinates and shape function – Analysis of stiffness matrix, element stiffness equation, displacements, load vector, treatment of boundary condition, Element stress calculation and support reactions for one dimensional bar, spring and tapered elements – Analysis of temperature effects with one dimensional bar element. **Truss Element:** Analysis of length calculation, element stiffness matrix, assembly of element equation, load vector, treatment of boundary condition and element stresses calculation in one dimensional truss element.

UNIT - 3: TWO DIMENSIONAL SCALAR PROBLEMS

Constant Strain Triangle Element (CST): Plane stress and plane strain – Finite element modeling – Shape function – Analysis of strain displacement matrix, stress-strain relationship, stiffness matrix, element stresses, element strains for CST element – Analysis of temperature effects with CST element.

UNIT - 4: VECTOR VARIABLE PROBLEMS AND ISOPARAMETRIC ELEMENTS

Axisymmetric Element: Finite element modeling – Shape function – Analysis of strain displacement matrix, stress-strain relationship, stiffness matrix, element stresses, element strains for CST element – Analysis of temperature effects with axisymmetric element. **Isoparametric Element:** Co-ordinates – Shape function for four noded rectangular elements – Shape function for four noded isoparametric quadrilateral element – Evaluation of Jacobian matrix, Strain-displacement matrix and element stresses.

UNIT – 5: NUMERICAL INTEGRATION AND APPLICATIONS IN HEAT TRANSFER

Numerical Integration: Gaussian quadrature and application to plane stress problems – Introduction to analysis software. **Heat Transfer Applications:** Temperature and shape function for one dimensional heat conduction element – Stiffness matrix finite element equations for one dimensional heat conduction element – One dimensional in heat transfer – Heat conduction in fin element.

QUESTION BANK

On successful completion of the course, students will be able to:

Finite Element Analysis

Course Outcomes		POs related to COs
CO1	Understand the concepts behind variation methods and weighted residual methods in FEM	PO1,PO2,PO5,P 010,PO12
CO2	Formulate and solve problems in one dimensional structures including trusses, beams and frames.	PO1,PO2,PO3,P O4,PO5
CO3	Implement the formulation techniques to solve two-dimensional problems using triangle and quadrilateral elements.	PO1,PO2,PO3,P O4,PO5
CO4	Formulate FE characteristic equations for one dimensional elements and analyze plain stress, plain	PO1,PO2,PO5
CO5	Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, heat transfer, and fluid flow	PO1,PO2,PO5

Text Books:

- 1. Introduction to Finite Elements in Engineering, R.Chandraputla and Ashok D.Belegundu, 4/e, 2011, Prentice Hall of India Pvt. Ltd., New Delhi.
- 2. Text Book of Finite Element Analysis, Seshu, P, 2007, Prentice-Hall of India Pvt. Ltd., New Delhi.

Reference Books:

- 1. Finite Element Method in Engineering, Singiresu S Rao, 5/e, 2012, Elsevier India Pvt.ltd Publishers. New Delhi.
- 2. An Introduction to Finite Element Method, JN Reddy, 3/e, 2013, Tata McGraw-Hill Education Pvt. Ltd., Noida.
- 3. A First Course in Finite Element Method, Daryl L Logan, 4/e, 2007, Cengage Learning, UK.
- 4. Fundamentals of Finite Element Analysis, David V Hutton, 1/e, 2012, Tata McGraw-Hill Education Pvt. Ltd., Noida.
- 5. Finite Element Analysis, Dhanaraj. R and Prabhakaran Nair. K, 2015, Oxford Publications.

QUESTION BA	ANK Finite Element Analysis		
Question No.	Questions	PO Attainment	
	UNIT 1 – FUNDAMENTAL CONCEPT		
	PART-A (Two Marks Questions)		
1	What is the finite element method?	PO1	
2	What are the main steps involved in FEA?	PO1	
3	What are the methods of engineering analysis?	PO1	
4	List any four advantages of finite element method.	PO1	
5	What are the applications of FEA?	PO1	
6	What is the limitation of using a finite difference method?	PO1	
7	Define finite difference method	PO1	
8	What is the limitation of using a finite difference method?	PO1	
9	What is discretization?	PO1	
10	Mention the basic steps of Rayleigh-Ritzmethod	PO1	
11	What is meant by node or joint?	PO1	
12	What are the different types of boundary conditions?	PO1	
13	Name the weighted residual methods	PO1	
14	What is meant by post processing?	POI	
15	What is difference between static and dynamic analysis?	POI	
	PART-B (Ten Marks Questions)		
1	Find the solution of initial value problem $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$ boundary condition	PO1, PO2	
	y(0)=2, y'(0)=5		
2	Find the solution of a boundary value problem $y'' + y = 0$ with $y(0)=0$ and $y(\frac{2}{4})=4$	PO1, PO2	
3	Find the solution of a boundary value problem y" +4y =0 with $y(\frac{\pi}{2})=1$ and $y(\frac{\pi}{2})=0$	PO1, PO2	
4	Find eigen value and eigen function of $y'' - 4 y' + 4^2 y = 0$ Boundary condition $Y'(1)=0$ and $y(2)+2y'(2)=0$	PO1, PO2	
5	The differential equation is available for the physical phenomenon $\frac{1}{dx^2} + 50 = 0$ 0 x 10. Trial function is $y=a_1x(x-x^4)$, boundary condition $y(0)=0$, $y(10)=0$. Find the value of parameter a_1 by using Galerkin method	PO1, PO2	
6	3x+y-z = 3 2x-8y+z = -5 x-2y+9 = 8 solve the above equation by using Gaussian elimination method	PO1, PO2	
7	x-2y+6x = 0 2x+2y+3x=3 -x+3y = 2 Solve above equation by using Gaussian elimination method	PO1, PO2	
8	2x+4y+2z = 15, $2x+y+z = -5$, $4x+y-2z = 0Solve above equation by using Gaussian elimination method$	PO1, PO2	
9	The differential equation of a physical phenomenon is given by $\frac{1}{dx^2} + 500x^2 = 0$; 0 x 1 Trial function $y=a_1(x-x^3) + a_2(x-x^5)$ Calculate the value of parameter a_1 and a_2 by using galerkin method boundary condition $y(0)=0$, $y(1)=0$	PO1, PO2	
10	Explain Discretization and its type with neat sketch.	P01	

QUESTION BANK

Finite Element Analysis

Question	Questions	PO
N0.	UNIT 2 ONE DIMENSIONAL DROPLEM	Attainment
UNIT 2 – <u>ONE DIMENSIONAL PROBLEM</u>		
1	What are the types of problems treated as one dimensional problem?	PO1
2	What are types of loading acting on the structure?	PO1
3	Write down the general finite element equation.	PO1
4	What is a shape function?	PO1
5	Write down the finite element equation for one dimensional two noded bar element.	PO1
6	What are the characteristics of shape function?	PO1
7	State the assumption are made while finding the forces in truss?	PO1
8	State the properties of stiffness matrix.	PO1
9	Write down the stiffness matrix equation for one dimensional heat condition element.	PO1
10	Write down the expression of the shape function N and displacement u for one dimensional bar element.	PO1
11	What is truss?	PO1
12	How do you calculate the size of the Global stiffness matrix?	PO1
13	What are the classifications of coordinates?	POI POI
14	What is Global co-ordinates?	POI POI
15	what is natural co-ordinates?	101
	PART-B (Ten Marks Questions)	
1	Derivation of stiffness matrix one – dimensional linear bar element	PO1
2	Derivation for finite element equation for one – dimensional bar	PO1
3	Consider a bar as shown in fig. An axial load of 200KN is applied at point 'p' . Take $A_1 = 2400 \text{ mm}^2$, $E_1 = 70*10^9 \text{ N/m}^2$ and $A_2 = 600 \text{ mm}^2$, $E_2 = 200 \text{ X} 10^9 \text{ N/m}^2$ Calculate the following : 1)nodal displacement at point 'p' 2)stress in each material. 3)reaction force 200 KN 300 mm $400 mm$	PO1,PO2
4	A thin plate of uniform thickness 25mm is subjected to a point load of 420 KN at mid depth as shown in fig. the plate is also subjected to a self-weight if young's modulus $E=2*10^{5}$ N/mm ²	PO1,PO2

Question No.	Questions	PO Attainment
	UNIT 3 – <u>TWO DIMENSIONAL SCALAR PROBLEMS</u>	
	PART-A (Two Marks Questions)	
1	How do you define two dimensional elements?	PO1
2	What is meant by plain stress analysis?	PO1
3	What is a CST element?	PO1
4	Write a displacement function equation for CST element?	PO1
5	Write a strain-displacement matrix for CST element.	PO1
6	Write down the stress-strain relationship matrix for plane stress condition.	PO1
7	Define a plane stress condition.	PO1
8	Define plane strain with suitable example.	PO1
9	Write down the stress-strain relationship matrix for plane strain condition.	PO1
10	Write down the stiffness matrix equation for two-dimensional CST element?	PO1
11	Write down the expression of shape function, N and temperature function, T for one dimensional heat conduction element.	PO1
12	Define heat transfer?	PO1
PART-B (Ten Marks Questions)		
1	Derive the shape function for the constant strain triangular element.	PO1
2	Determine the shape functions N_1 , N_2 and N_3 at the interior point P for the triangular element shown in figure.	PO1,PO2

QUESTION BANK

Finite Element Analysis

Question		PO
No.	Questions	Attainment
	UNIT 4 – VECTOR VARIABLE PROBLEMS AND ISOPARAMETRIC ELEMENTS	
	PART-A (Two Marks Questions)	
1	What is axisymmetric element?	PO1
2	What are the conditions for the problems to be in axisymmetric?	PO1
3	Write down stress-strain relationship matrix for axisymmetric triangular element	PO1
4	What are the ways in which three dimensional problems can be reduced into two- dimensional approach?	PO1
5	Give the stiffness matrix equation for axisymmetric triangular element.	PO1
6	Write down the shape function for 4 noded rectangular element using natural coordinate system	PO1
7	Write down the jacobian matrix for four noded guadrilateral element.	PO1
8	Write down the element force vector equation for four noded quadrilateral element.	PO1
9	What is the purpose of isoparametric element?	PO1
10	Write down the gaussian quadrature expression for numerical integration.	PO1
	PART-B (Ten Marks Questions)	J
1	Determine the stiffness matrix for the axisymmetric element shown in fig.Take $E = 2.1 \times 10^{3}$ N/mm ² and Poisson's ratio v= 0.25. All dimensions are immm.	PO1,PO2
2	The nodal coordinates of an axisymmetric triangular element is given below. Evaluate strain- displacement matrix[B] for the element. $r_1=10mm, r_2=30mm, r_3=30mm$ $z_1=10mm, z_2=10mm, z_3=40mm$	PO1, PO2
3	The nodal coordinates of an axisymmetric triangular element is given below. $r_1 = 20$ mm, $r_2 = 40$ mm, $r_3 = 30$ mm $z_1 = 40$ mm, $z_2 = 40$ mm, $z_3 = 60$ mm Evaluate strain-displacement matrix[B] for the element.	PO1, PO2

QUESTION BANK	Finite Element Analy	sis
	(5, 2) (0, 2) (20, 92) (20, 92) (20, 92) (20, 92) (20, 92) (20, 92) (1, 4) (1, 4) (1, 4) (1, 2, 2) (1, 2, 2) (1, 2, 3) (1,	
F E di	For the axisymmetric element shown in figure below, determine the element stresses. Take $k = 2.1 \times 10^5 \text{ N/mm}^2$ and Poisson's ratio v= 0.25. All dimensions are in mm. The nodal isplacements are: $u_1 = 0.05 \text{ mm}, u_2 = 0.02 \text{ mm}, u_3 = 0 \text{ mm}$ $w_1 = 0.03 \text{ mm}, w_2 = 0.02 \text{ mm}, w_3 = 0 \text{ mm}$ $u_1 = 0.03 \text{ mm}, w_2 = 0.02 \text{ mm}, w_3 = 0 \text{ mm}$	PO1, PO2
C tr T T 5	Calculate the element stiffness matrix and the thermal force vector for the axisymmetric riangular element shown in figure. The element experiences a 15°C increase in temperature. The coordinates are in mm. Take = 10 x 10 ⁻⁶ /°C, E = 2.1 x 10 ⁵ N/mm ² , v= 0.25.	PO1, PO2
6 E	Evaluate the cartesian co-ordinate of the point P which has local coordinates $= 0.6, \Pi = 0.8,$ s shown in fig below.	PO1, PO2
7 7	For the isoparametric quadrilateral element shown in figure below, determine the local co- rdinates of the point P which has cartesian co-ordinates (7,4). (3, 1)	PO1, PO2
8 A	A four noded rectangular element is shown in figure below. Determine the following:) Jacobian matrix 2) Strain-displacement matrix 3) Element stresses	PO1, PO2

	DEPARTIVIENT OF MECHANICAL ENGINEERING SANK Finite Flement Analy	eic
9	For the element shown in fig below, determine the Jacobian matrix	P01,P02
10	Evaluate the Jacobian matrix for the isoparametric quadrilateral element shown in figure below.	PO1, PO2

Question No.	Questions	PO Attainment
	UNIT 5 NUMERICAL INTEGRATION AND APPLICATIONS IN HEAT TRANSFE	<u>R</u>
	PART-A (Two Marks Questions)	
1	Write down the stiffness matrix equation for one dimensional head conduction element	PO1
2	What is numerical integration ?	PO1
3	Define element capacitance matrix for unsteady state heat transferproblems.	PO1
4	Name a few boundary conditions involved in any heat transfer analysis.	PO1
5	Mention two natural boundary conditions as applied to thermalproblems.	PO1
6	Name any four finite element anaylsis software.	PO1
7	What is the structure of finite element analysis program.	PO1
8	What are the various input required to define a problem in FEA software.	PO1
9	What is meant by Isoparametric effect?	PO1
10	Is beam element is anisoparametric element?	PO1
PART-B (Ten Marks Questions)		
1	Evaluate $\int_{-1}^{1} (x^4 + x^2) dx$ by applying Gaussian quadrate	PO1, PO2
2	Evaluate $\int_{-1}^{+} (x^4 - 3x + 7) dx$ by using Gaussian quadrate	PO1, PO2
3	A) I = $\int_{-1}^{+} e^{-x} dx$ by using 3 points method	PO1, PO2

QUESTION BANK Finite Element Analy		sis
	B) I = $\int_{-1}^{\infty} \cos(\frac{x}{2}) dx$ by using 3 point method	
4	Explain numerical integration and evaluate integral by using Gaussian quadrature $\int_{-1}^{+} x^2 dx$	PO1, PO2
5	Evaluate $\int_{-1}^{1} (2 + x + x^2) dx$ and compare with exact solution.	PO1, PO2,
6	Evaluate $\int_{-1}^{1} \frac{\cos x}{1-x^2} dx$ by applying 3 point Gaussian quadrature.	PO1, PO2

Prepared by Mr.P.Gnana Prakash, Asst Professor, SITAMS.

ALL THE BEST