SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

Course Educational Objectives:
CEO1: To understand the fundamental concepts of finite element analysis
CEO2: To analyze one dimensional element and truss element problems
CEO3: To evaluate the Constant Strain Triangle Element in two dimensional scalar problems
CEO4: To develop the modern of vector variable problems and isoparametric elements
CEO5: To demonstrate the numerical integration and applications in heat transfer

UNIT - 1: FUNDAMENTAL CONCEPT

Methods of engineering analysis - Historical background - General steps of finite element analysis Galerkin method - Potential energy approach: Rayleigh Ritz method - Boundary, initial and eigen value problems - Gaussian elimination problems - Application of FEA.

UNIT - 2: ONE DIMENSIONAL PROBLEM

One Dimensional Elements: Finite element modeling - Co-ordinates and shape function - Analysis of stiffness matrix, element stiffness equation, displacements, load vector, treatment of boundary condition, Element stress calculation and support reactions for one dimensional bar, spring and tapered elements - Analysis of temperature effects with one dimensional bar element. Truss Element: Analysis of length calculation, element stiffness matrix, assembly of element equation, load vector, treatment of boundary condition and element stresses calculation in one dimensional truss element.

UNIT - 3: TWO DIMENSIONAL SCALAR PROBLEMS

Constant Strain Triangle Element (CST): Plane stress and plane strain - Finite element modeling Shape function - Analysis of strain displacement matrix, stress-strain relationship, stiffness matrix, element stresses, element strains for CST element - Analysis of temperature effects with CST element.

UNIT - 4: VECTOR VARIABLE PROBLEMS AND ISOPARAMETRIC ELEMENTS

Axisymmetric Element: Finite element modeling - Shape function - Analysis of strain displacement matrix, stress-strain relationship, stiffness matrix, element stresses, element strains for CST element Analysis of temperature effects with axisymmetric element. Isoparametric Element: Co-ordinates Shape function for four noded rectangular elements - Shape function for four noded isoparametric quadrilateral element - Evaluation of Jacobian matrix, Strain-displacement matrix and element stresses.

UNIT - 5: NUMERICAL INTEGRATION AND APPLICATIONS IN HEAT TRANSFER

Numerical Integration: Gaussian quadrature and application to plane stress problems - Introduction to analysis software. Heat Transfer Applications: Temperature and shape function for one dimensional heat conduction element - Stiffness matrix finite element equations for one dimensional heat conduction element - One dimensional in heat transfer - Heat conduction in fin element.

Course Outcomes:

(Autonomous)
DEPARTMENT of MECHANICAL ENGINEERING
On successful completion of the course, students will be able to:

	Course Outcomes	POs related to COs
$\mathbf{C O 1}$	Understand the concepts behind variation methods and weighted residual methods in FEM	$\mathbf{P O 1 , P O 2 , P O 5 , P}$ $\mathbf{O 1 0 , P O 1 2}$
$\mathbf{C O 2}$	Formulate and solve problems in one dimensional structures including trusses, beams and frames.	$\mathbf{P O 1 , P O 2 , P O 3 , P}$ $\mathbf{O 4 , P O 5}$
$\mathbf{C O 3}$	Implement the formulation techniques to solve two-dimensional problems using triangle and quadrilateral elements.	$\mathbf{P O 1 , P O 2 , P O 3 , P}$ $\mathbf{O 4 , P O 5}$
$\mathbf{C O 4}$	Formulate FE characteristic equations for one dimensional elements and analyze plain stress, plain	$\mathbf{P O 1 , P O 2 , P O 5}$
$\mathbf{C O 5}$	Able to identify how the finite element method expands beyond the structural domain, for problems involving dynamics, heat transfer, and fluid flow	$\mathbf{P O 1 , P O 2 , P O 5}$

Text Books:

1. Introduction to Finite Elements in Engineering, R.Chandraputla and Ashok D.Belegundu, 4/e, 2011, Prentice Hall of India Pvt. Ltd., New Delhi.
2. Text Book of Finite Element Analysis, Seshu,P, 2007, Prentice-Hall of India Pvt. Ltd., New Delhi.

Reference Books:

1. Finite Element Method in Engineering, Singiresu S Rao, 5/e, 2012, Elsevier India Pvt.ltd Publishers. New Delhi.
2. An Introduction to Finite Element Method, JN Reddy, 3/e, 2013, Tata McGraw-Hill Education Pvt. Ltd., Noida.
3. A First Course in Finite Element Method, Daryl L Logan, 4/e, 2007, Cengage Learning, UK.
4. Fundamentals of Finite Element Analysis, David V Hutton, 1/e, 2012, Tata McGraw-Hill Education Pvt. Ltd., Noida.
5. Finite Element Analysis, Dhanaraj. R and Prabhakaran Nair. K, 2015, Oxford Publications.

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

Finite Element Analysis

Question No.	Questions	PO Attainment
UNIT 1 - FUNDAMENTAL CONCEPT		
PART-A (Two Marks Questions)		
1	What is the finite element method?	PO1
2	What are the main steps involved in FEA?	PO1
3	What are the methods of engineering analysis?	P01
4	List any four advantages of finite element method.	PO1
5	What are the applications of FEA?	PO1
6	What is the limitation of using a finite difference method?	PO1
7	Define finite difference method	PO1
8	What is the limitation of using a finite difference method?	PO1
9	What is discretization?	PO1
10	Mention the basic steps of Rayleigh-Ritzmethod	PO1
11	What is meant by node or joint?	PO1
12	What are the different types of boundary conditions?	PO1
13	Name the weighted residual methods	PO1
14	What is meant by post processing?	PO1
15	What is difference between static and dynamic analysis?	PO1
PART-B (Ten Marks Questions)		
1	Find the solution of initial value problem $\frac{\frac{\pi}{4 x}+\frac{x^{\prime}}{d x}-2 y-0}{d x^{2}}$ boundary condition $y(0)=2, y^{\prime}(0)=5$	PO1, PO2
2	Find the solution of a boundary value problem $y^{\prime \prime}+\mathrm{y}=0$ with $\mathrm{y}(0)=0$ and $\mathrm{y}(\underset{\text { (3) }}{=})=4$	PO1, PO2
3	Find the solution of a boundary value problem $y^{\prime \prime}+4 y=0$ with $y\left(\frac{\overline{\underline{\underline{x}}}}{\underline{6}}\right)=1$ and $y\left(\frac{\overline{\underline{I}}}{\underline{y}}\right)=0$	PO1, PO2
4	Find eigen value and eigen function of $y^{\prime \prime}-4 \lambda y^{\prime}+4 \lambda^{2} y=0$ Boundary condition $Y^{\prime}(1)=0$ and $y(2)+2 y^{\prime}(2)=0$	PO1, PO2
5	The differential equation is available for the physical phenomenon $\frac{\frac{\pi}{u \frac{y}{y}}+50=0}{d x^{2}}+50 \leq$ $x \leq 10$. Trial function is $y=a_{1} x\left(x-x^{4}\right)$, boundary condition $y(0)=0, y(10)=0$. Find the value of parameter a_{1} by using Galerkin method	PO1, PO2
6	$\begin{aligned} & 3 x+y-z=3 \\ & 2 x-8 y+z=-5 \\ & x-2 y+9=8 \end{aligned}$ solve the above equation by using Gaussian elimination method	PO1, PO2
7	$\begin{aligned} & x-2 y+6 x=0 \\ & 2 x+2 y+3 x=3 \\ & -x+3 y=2 \end{aligned}$ Solve above equation by using Gaussian elimination method	PO1, PO2
8	$2 x+4 y+2 z=15,2 x+y+z=-5,4 x+y-2 z=0$ Solve above equation by using Gaussian elimination method	PO1, PO2
9	The differential equation of a physical phenomenon is given by $\frac{y^{2}}{d x^{2}}+500 x^{2}=0 ; 0 \leq x \leq 1$ Trial function $y=a_{1}\left(x-x^{3}\right)+a_{2}\left(x-x^{5}\right)$ Calculate the value of parameter a_{1} and a_{2} by using galerkin method boundary condition $\mathrm{y}(0)=0, \mathrm{y}(1)=0$	PO1, PO2
10	Explain Discretization and its type with neat sketch.	PO1

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

Question No.	Questions	PO Attainment
UNIT 2 - ONE DIMENSIONAL PROBLEM		
PART-A (Two Marks Questions)		
1	What are the types of problems treated as one dimensional problem?	PO1
2	What are types of loading acting on the structure?	PO1
3	Write down the general finite element equation.	PO1
4	What is a shape function?	P01
5	Write down the finite element equation for one dimensional two noded bar element.	PO1
6	What are the characteristics of shape function?	PO1
7	State the assumption are made while finding the forces in truss?	PO1
8	State the properties of stiffness matrix.	PO1
9	Write down the stiffness matrix equation for one dimensional heat condition element.	PO1
10	Write down the expression of the shape function N and displacement u for one dimensional bar element.	PO1
11	What is truss?	PO1
12	How do you calculate the size of the Global stiffness matrix?	PO1
13	What are the classifications of coordinates?	PO1
14	What is Global co-ordinates?	PO1
15	What is natural co-ordinates?	PO1
PART-B (Ten Marks Questions)		
1	Derivation of stiffness matrix one - dimensional linear bar element	PO1
2	Derivation for finite element equation for one - dimensional bar element	PO1
3	Consider a bar as shown in fig. An axial load of 200 KN is applied at point 'p' . Take $\mathrm{A}_{1}=$ $2400 \mathrm{~mm}^{2}, \mathrm{E}_{1}=70 * 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{A}_{2}=600 \mathrm{~mm}^{2}, \mathrm{E}_{2}=200 \mathrm{X} 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ Calculate the following : 1)nodal displacement at point ' p '	P01,PO2
4	A thin plate of uniform thickness 25 mm is subjected to a point load of 420 KN at mid depth as shown in fig. the plate is also subjected to a self-weight if young's modulus $\mathrm{E}=2 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	P01,PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK
Finite Element Analysis

	and unit weight density $\rho==0.8 * 10^{-4} \mathrm{~N} / \mathrm{mm}^{2}$ calculate the following 1)Displacement at each nodal point 2)stress in each element	
5	The axial load of $4 * 10^{5}$ newton is applied at $30^{\circ} \mathrm{c}$ to the rod as shown in fig. The temperature is then raised to $60^{\circ} \mathrm{c}$ calculate the following 1) assemble the k \& f matrix 2)nodal displacement 3)stress in each element 4)reaction at each point For aluminum $\mathrm{A}_{1}=1000 \mathrm{~mm}^{2}, \mathrm{E}_{1}=0.7 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \alpha_{1}=23 * 10^{-6} \rho^{\circ} \mathrm{c}$ Steel $=\mathrm{A}_{2}=1500 \mathrm{~mm}^{2}, \mathrm{E}_{2}=2 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \alpha_{2}=12 * 10^{-6} /{ }^{\circ} \mathrm{c}$	PO1,PO2
6	A spring assemblage with a numbered nodes are shown in fig .The nodes ' 1 ' \&'2' are fixed and a force of 500 KN is applied at node' 4 ' in x-direction . calculate the following 1) Global stiffness matrix 2) Nodal displacement 3) Reaction at each nodal point, spring constant $\mathrm{k}_{1}=100 \mathrm{KN} / \mathrm{m}, \mathrm{k}_{2}=200 \mathrm{KN} / \mathrm{m} \mathrm{k}_{3}=300 \mathrm{KN} / \mathrm{m}$	PO1,PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Finite Element Analysis

Question No.	Questions	PO Attainment
UNIT 3 - TWO DIMENSIONAL SCALAR PROBLEMS		
PART-A (Two Marks Questions)		
1	How do you define two dimensional elements?	PO1
2	What is meant by plain stress analysis?	PO1
3	What is a CST element?	PO1
4	Write a displacement function equation for CST element?	PO1
5	Write a strain-displacement matrix for CST element.	PO1
6	Write down the stress-strain relationship matrix for plane stress condition.	PO1
7	Define a plane stress condition.	PO1
8	Define plane strain with suitable example.	PO1
9	Write down the stress-strain relationship matrix for plane strain condition.	PO1
10	Write down the stiffness matrix equation for two-dimensional CST element?	PO1
11	Write down the expression of shape function, N and temperature function, T for one dimensional heat conduction element.	PO1
12	Define heat transfer?	P01
PART-B (Ten Marks Questions)		
1	Derive the shape function for the constant strain triangular element.	P01
2	Determine the shape functions $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} at the interior point P for the triangular element shown in figure.	P01,PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK
Finite Element Analysis

3	Determine the x and y co-ordinates of point P for the triangular element shown in figure. The shape functions N_{1} and N_{2} are 0.2 and 0.3 respectively.	P01,PO2
4	For the constant triangular element shown in figure below, assemble strain-displacement matrix. Take $\mathrm{t}=20 \mathrm{~mm}$ and $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	P01,PO2
5	Calculate the stiffness matrix for the elements shown in figure below. The coordinates are given in units of millimeters. Assume plane stress conditions. Take $\mathrm{E}=2.1$ x $10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25, \mathrm{t}=10 \mathrm{~mm}$.	P01,PO2
6	For the plane stress elements shown in figure below, the nodal displacements are: $u_{1}=2.0 \mathrm{~mm}$, $\mathrm{u}_{2}=0.5 \mathrm{~mm}, \mathrm{u}_{3}=3.0 \mathrm{~mm}$ $\mathrm{v}_{1}=1.0 \mathrm{~mm}, \mathrm{v}_{2}=0.0 \mathrm{~mm}, \mathrm{v} 3=1.0 \mathrm{~mm}$ ordinates are in millimeters.	P01,PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK
Finite Element Analysis

7	Calculate the elemental stresses $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \tau_{\mathrm{xy}}$ for the element shown in figure below. The nodal displacements are: $\mathrm{u}_{1}=2.0 \mathrm{~mm}, \mathrm{u}_{2}=0.5 \mathrm{~mm}, \mathrm{u}_{3}=3.0 \mathrm{~mm}$ $\mathrm{v}_{1}=1.0 \mathrm{~mm}, \mathrm{v}_{2}=0.0 \mathrm{~mm}, \mathrm{v} 3=1.0 \mathrm{~mm}$ Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$. Assume plane stress condition.	PO1,PO2
8	For the triangular element shown in figure, obtain the strain-displacement relation matrix [B] and determine the strains $\mathrm{e}_{\mathrm{x}}, \mathrm{e}_{\mathrm{y}}$ and $x y$. The nodal displacements are: $\mathrm{u}_{1}=0.001 \mathrm{~mm}, \mathrm{u}_{2}=0.003 \mathrm{~mm}, \mathrm{u}_{3}=0.002 \mathrm{~mm}$ $\mathrm{v}_{1}=-0.004 \mathrm{~mm}, \mathrm{v}_{2}=0.002 \mathrm{~mm}, \mathrm{v} 3=0.005 \mathrm{~mm}$	P01,PO2
9	Calculate the strain-displacement relation matrix[B], stress-strain relationship matrix [D] and the temperature force vector for the plane stress element shown in figure. The element experiences a $20^{\circ} \mathrm{C}$ increase in temperature. Assume coefficient of thermal expansion is $6 \times 10^{-}$ ${ }^{6} /{ }^{\circ} \mathrm{C}$. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, poisson's ratio $\mathrm{v}=0.25$, thickness $\mathrm{t}=5 \mathrm{~mm}$	P01,PO2
10	The two-dimensional propped beam shown in figure below is divided into two CST elements. Determine the nodal displacements and element stresses using plane stress conditions for any one CST element. Body force is neglected in comparison with the external forces. Take thickness $\mathrm{t}=10 \mathrm{~mm}$, Young's Modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$	P01,PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

Question No.	Questions	PO Attainment
UNIT 4 - VECTOR VARIABLE PROBLEMS AND ISOPARAMETRIC ELEMENTS		
PART-A (Two Marks Questions)		
1	What is axisymmetric element?	PO1
2	What are the conditions for the problems to be in axisymmetric?	PO1
3	Write down stress-strain relationship matrix for axisymmetric triangular element	PO1
4	What are the ways in which three dimensional problems can be reduced into twodimensional approach?	PO1
5	Give the stiffness matrix equation for axisymmetric triangular element.	PO1
6	Write down the shape function for 4 noded rectangular element using natural coordinate system	PO1
7	Write down the jacobian matrix for four noded quadrilateral element.	PO1
8	Write down the element force vector equation for four noded quadrilateral element.	PO1
9	What is the purpose of isoparametric element?	PO1
10	Write down the gaussian quadrature expression for numerical integration.	PO1
PART-B (Ten Marks Questions)		
1	Determine the stiffness matrix for the axisymmetric element shown in fig.Take $\mathrm{E}=2.1 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and Poisson's ratio $\mathrm{v}=0.25$. All dimensions are inmm.	P01,PO2
2	The nodal coordinates of an axisymmetric triangular element is given below. Evaluate straindisplacement matrix $[\mathrm{B}]$ for the element. $\begin{aligned} & r_{1}=10 \mathrm{~mm}, r_{2}=30 \mathrm{~mm}, r_{3}=30 \mathrm{~mm} \\ & \mathrm{z}_{1}=10 \mathrm{~mm}, \mathrm{z}_{2}=10 \mathrm{~mm}, \mathrm{z}_{3}=40 \mathrm{~mm} \end{aligned}$	P01, PO2
3	The nodal coordinates of an axisymmetric triangular element is given below. $\begin{aligned} & \mathrm{r}_{1}=20 \mathrm{~mm}, \mathrm{r}_{2}=40 \mathrm{~mm}, \mathrm{r}_{3}=30 \mathrm{~mm} \\ & \mathrm{z}_{1}=40 \mathrm{~mm}, \mathrm{z}_{2}=40 \mathrm{~mm}, \mathrm{z}_{3}=60 \mathrm{~mm} \end{aligned}$ Evaluate strain-displacement matrix[B] for the element.	PO1, PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK
Finite Element Analysis

4	For the axisymmetric element shown in figure below, determine the element stresses. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $\mathrm{v}=0.25$. All dimensions are in mm . The nodal displacements are: $\begin{aligned} & \mathrm{u}_{1}=0.05 \mathrm{~mm}, \mathrm{u}_{2}=0.02 \mathrm{~mm}, \mathrm{u}_{3}=0 \mathrm{~mm} \\ & \mathrm{w}_{1}=0.03 \mathrm{~mm}, \mathrm{w}_{2}=0.02 \mathrm{~mm}, \mathrm{w}_{3}=0 \mathrm{~mm} \end{aligned}$	PO1, PO2
5	Calculate the element stiffness matrix and the thermal force vector for the axisymmetric triangular element shown in figure. The element experiences a $15^{\circ} \mathrm{C}$ increase in temperature. The coordinates are in mm . Take $\alpha=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$.	PO1, PO2
6	Evaluate the cartesian co-ordinate of the point P which has local coordinates $\quad=0.6, \eta=0.8$, as shown in fig below.	PO1, PO2
7	For the isoparametric quadrilateral element shown in figure below, determine the local coordinates of the point P which has cartesian co-ordinates $(7,4)$.	PO1, PO2
8	A four noded rectangular element is shown in figure below. Determine the following: 1) Jacobian matrix 2) Strain-displacement matrix 3) Element stresses	PO1, PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK
Finite Element Analysis

9	For the element shown in fig below, determine the Jacobian matrix	P01,PO2
10	Evaluate the Jacobian matrix for the isoparametric quadrilateral element shown in figure below.	PO1, PO2

Question No.	Questions	$\overline{\mathbf{P O}}$ Attainment
UNIT 5 NUMERICAL INTEGRATION AND APPLICATIONS IN HEAT TRANSFER		
PART-A (Two Marks Questions)		
1	Write down the stiffness matrix equation for one dimensional head conduction element	PO1
2	What is numerical integration ?	PO1
3	Define element capacitance matrix for unsteady state heat transferproblems.	PO1
4	Name a few boundary conditions involved in any heat transfer analysis.	PO1
5	Mention two natural boundary conditions as applied to thermalproblems.	PO1
6	Name any four finite element anaylsis software.	PO1
7	What is the structure of finite element analysis program.	PO1
8	What are the various input required to define a problem in FEA software.	PO1
9	What is meant by Isoparametric effect?	PO1
10	Is beam element is anisoparametric element?	PO1
PART-B (Ten Marks Questions)		
1	Evaluate $\overline{\int_{-1}^{2}\left(x^{4}+x^{2}\right) d x}$ by applying Gaussian quadrate	PO1, PO2
2	Evaluate $\int_{-1}^{2}\left(x^{4}-3 x+7\right) d x$ by using Gaussian quadrate	PO1, PO2
3	A) $\mathrm{I}=\overline{T_{-1}^{2} e^{-x} d x}$ by using 3 points method	PO1, PO2

SREENIVASA INSTITUTE OF TECHNOLOGY AND MANAGEMENT STUDIES
 (Autonomous)
 DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

| | $\mathrm{B}) \mathrm{I}=\overline{\int_{-1}^{2} \cos \left(\frac{x}{2}\right.} d x$ | Finite Element Analysis |
| :---: | :--- | :--- | :--- |
| $\mathbf{4}$ | Explain numerical integration and evaluate integral by using Gaussian quadrature $\overline{\int_{-1}^{2} x^{2} d x}$ | PO1, PO2 |
| $\mathbf{5}$ | Evaluate $\overline{\int_{-1}^{2}\left(2+x+x^{2}\right) d x}$ and compare with exact solution. | PO1, PO2, |
| $\mathbf{6}$ | Evaluate $\overline{\int_{-1}^{2} \frac{\operatorname{cosn}}{1-x^{2}} d x}$ by applying 3 point Gaussian quadrature. | PO1, PO2 |

Prepared by

Mr.P.Gnana Prakash, Asst Professor,
SITAMS.

