THEORY OF MACHINES-II

Class: III year I Semester

Gyroscopic Couple and precessional motion
Introduction
When a body moves along a curved path with a uniform x velocity, a force in the direction of centripetal acceleration (known as centripetal force) has to be applied externally over the body, so that it moves along the required path. This external force applied is known as active force.
Ex:- when a stone tied at one end of a string which whirled in a circle, the pull in the string provides the centripetal force.
\rightarrow The moon, artificial satellites which move around the earth work on the prenceple only.

The magnitude of the centripetal force, f_{c}, required to cause an obj of mas m and speed v to travel in a circular path, of radius r is given by the relation

$$
f_{c}=\frac{m v^{2}}{r}
$$

2. When a body, telly, is moving with uniform linear velocity along a circular path, it is subjected to the centrifugal force radially outwards. This centrifugal force is called reactive force. The action of the reactive or centrifugal force is to tilt or move the body along radially outward direction.
Note:- whenever the effect of amp force or couple over a moving or rotating body is to be considered, it should be w.r.to the reactive force or couple and not wirito acture force or couple.

Precessional Angular motion
The slow movement of the axis of a spinning it around another axis.

The angular accelaration is the rate of change of angular velocity w.r. to time. It is a vector quantity and may be represented by drowsing a vector diagram with the help of right hand screw rule.

Angular accelaration $\alpha=\frac{d \omega}{d t}=\frac{d}{d t}\left(\frac{d \theta}{d t}\right)=\frac{d^{2} \theta}{d t^{2}}$ vector quantity is known as it has magnitude and direction.

Consider a dis as shown in fig. revolving or spinning about the axis $0 \times$ (known as axis of spin) in andiclockwhe direction When seen from the front, with an angular velocity w in a plane at reght angles to the paper.

After a short interval of time δt, let the dix be spinning about the new axis of spin $0 x^{\prime}$ ' (at an angle $\delta \theta$) with an angular velocity $(\omega+\delta \omega)$. Ustug the right hand screw rule, initial angular velocity of the disc (ω) is represented by vector ox, and the final angular velocity of the $d i c(\omega+\delta \omega)$ is represented by vector $0 x^{\prime}$ an shown in fug. The vector $x x^{\prime}$ represents the change of angular velocidy in time δt le the angular acceleration of the $d x c$. This may be resolved into two components, one parallel to $o x$ and the other perpendicular to $0 x$.

Component of angular acceleration in the direction of $o x$,

$$
\begin{aligned}
\alpha_{t} & =\frac{x r}{\delta t}=\frac{\partial r-o x}{\delta t}=\frac{\partial x^{\prime} \cos \delta \theta-o x}{\delta t} \\
& =\frac{(\omega+\delta \omega) \cos \delta \theta-\omega}{\delta t} \\
& =\frac{\omega \cos \delta \theta+\delta \omega \cos \delta \theta-\omega}{\delta t}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \delta \theta \text { is very small, } \therefore \cos \delta \theta=1 \text {, we have } \\
& \alpha_{t}=\frac{\phi \delta+\delta \omega-\infty}{\delta t}
\end{aligned}
$$

$$
=\frac{\delta \omega}{\delta t}
$$

In the lent, when $\delta t \rightarrow 0$,

$$
\alpha_{t}=L_{\delta t \rightarrow 0}\left(\frac{\delta \omega}{\delta t}\right)=\frac{d \omega}{d t}
$$

(2) Component of angular acceleration in the direction perpendicular to ox,

$$
\begin{aligned}
\alpha_{c}=\frac{r x^{\prime}}{\delta t} & =\frac{o x^{\prime} \operatorname{sen} \delta \theta}{\delta t} \\
& =\frac{(\omega+\delta \omega) \operatorname{sen} \delta \theta}{\delta t} \\
& =\frac{\omega \operatorname{sen} \delta \theta+\delta \omega \sin \delta \theta}{\delta t}
\end{aligned}
$$

Since $\delta \theta$ is verey small, therefore substituting $\sin \delta \theta=\delta \theta$, we have

$$
\begin{aligned}
& \omega_{c}=\frac{\omega \cdot \delta \theta+\delta \omega \cdot \delta \theta}{\delta t} \\
& \alpha_{c}=\frac{\omega \cdot \delta \theta}{\delta t} \quad \text { [Neglecting } \delta \omega \cdot \delta \theta \text { belg } \\
& \delta t \rightarrow 0, \quad \text { very small.] }
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{c}=L_{\delta t \rightarrow 0} \frac{\omega \cdot \delta \theta}{\delta t} & =\omega \times \frac{d \theta}{d t} \\
& =\omega \cdot \omega_{p} \quad\left[\frac{d \theta}{d t}=\omega_{p}\right]
\end{aligned}
$$

(2)

Scanned by CamScanner
\therefore Total angular acceleration of the daric

$$
=\text { vector } x x^{\prime}=\text { vector sum of } \alpha_{t} \text { and } \alpha_{c}
$$

$$
=\frac{d \omega}{d t}+\omega \times \frac{d \theta}{d t}
$$

$$
=\frac{d \omega}{d t}+\omega \cdot \omega_{p} .
$$

Where $\frac{d \theta}{d t}$ is the angular velocity of the axes of spin about a certain axis, which is perpendicular to the plane in which the axis of spin is gown g to rotate. This angular velocity of the axis of spin (ie $d \theta / d t$) is known as "angular velocity of precession". and is denoted by ω_{p}.
The axis, about which the axis of spin is to turn, is known as "axis of precession".
The angular motion of the axis of spin about the axis of precession is known as precestonal angular motion".

Note:-

1. The axis of precession is th to the plane in which the axis is gong to rotate.
2. If the angular velocity of the dice remains const at all porettons of the axis of spin, then $d \theta / d t$ is zero, ard this α_{c} is zero.
3. If the angular velocity of the due clanger the direction, but remains cost in magnitude, then angular accelaration of the dice is given by

$$
\alpha_{c}=\omega \cdot \frac{d \theta}{d t}=\omega \cdot \omega_{p}
$$

The angular acceleration α_{c} is known as "gyroscopic acceleration."
σ
ε
6 couple
n^{8}
A device, used to provide stability or mantacn a fixed direction, consisting of a wheel or disc spinning rapidly about an axis which is itself free to alter in direction.

Conceder a disc spinning with an angular velocity wadis about the axis do spin $O X$, in andicloclewhe derecteon when seen from the front as shown in leg.

Since the plane in which the duce is rotate is parallel to the plane 40Z, therefore it is called "plane of spinning". The plane $x 0 z$ is a horizontal plane and the axis of spin rotates in a plane parallel to the horizontal plane about an axis $o y$.

In other words, the axis of spin is said to be rotating or processing about an axis or.

In otherwords, the axis of Spin is sard to be rotating or processing about an axis of whech is $1^{\text {le }}$ to both the axes oxand $0 z$ at an angular velocity $\omega_{p} \mathrm{rad} / \mathrm{s}$. This horizontal plane x oz is called place of precession and or is the "axis of precession".

Scanned by CamScanner
let $I=$ mass moment of inertia of the duce a $\frac{2}{2}$ $\omega=$ Angular velocity of the disc.
\therefore Angular momentum if the diE $=$ I.CO
Since the angular momentum is a vector quantity, therefore it may be represented by the vector $\overrightarrow{O X}$, as shown in leg. The axis of spin $0 x$ is also rotating anteclock whe when seen from the top about the axis oy. bet the axis ox is turned in the plane $X O Z$ through a small angle $\delta \theta$ radians to the position $O X^{\prime}$, in time δt seconds. Assurnugg the angular velocity w to be cont, the angular momentum well now be represented by vector ox'.
\therefore change in angular momentum

$$
\begin{aligned}
& =\overrightarrow{o x^{\prime}}-\overrightarrow{o x}=\overrightarrow{x x^{\prime}}=\overrightarrow{o x} \cdot \delta \theta \\
& =I \cdot \omega \cdot \delta \theta
\end{aligned}
$$

and rate of change of angular momentum

$$
=I \times \omega \times \frac{\delta \theta}{d t}
$$

since the rate of change of angular momentum well result by the application of a couple to the disc, therefore the couple applied to the duse causing precession,

$$
\begin{aligned}
C & =\operatorname{Lt}_{\delta t \rightarrow 0} I \cdot \omega \times \frac{\delta \theta}{\delta t} \\
& =I \cdot \omega \times \frac{d \theta}{d t} \\
& =I \cdot \omega \times \omega_{p}
\end{aligned}
$$

Where $\omega_{p}=$ Angular velocity of precession of the axis of spin or the speed of rotation of the axis of spin about the axis of precession OY.
In S.I units, the unis of C is $N-m$ when I is in $k \mathrm{~g}-\mathrm{m}^{2}$.

Couple I.W. ...p, in the direction of the vector $x x^{\prime}$ is the gyroscopic couple, which has to be applied over the
F. disc when the axis of spin is made to rotate with angular. velocity ω_{p} about the axis of precession. The vector $x x^{\prime}$ lies in the place $X O Z$ or the horizontal plane.

In case of a very small drpplacement $\delta \theta$, the vector $x x^{\prime}$ well be 1^{l} to the vertical plane $x 0 y$. Therefore the couple causing this change in the angular momentum well te in the plane roy.

The vector $x x^{\prime}$ represents an anticlockwise couple in the plane xoy. Therefore, the plane $x o y$ is called the plane of active gyroscopic couple and the axis oz $1^{l e}$ to the plane xoy, about which the couple acts, is called the axis of acteve gyroscopic couple.
(2) when the axis of spin itself moves with angular velocity wp, the duce is subjected to reactive couple whore magnitude is Same (te I.w. . Wp) but opposite in direction to that of actere couple. This reactive couple to which the dice is subjected when the axis of spin rotates about the axis of precession is known an reactere gyroscoptc couple. The axis of the reacture gyroscopic couple is represented by $O z^{\prime}$.
3. The gyroscopic couple is usually applied through the bearings which support the shabt. The bearages well resht equal and opposite couple.
4. The gyroscopic principle is used in an instrument or toy known as gyroscope. The gyroscopes are installed in ships in order to minimize the rolling and pitching effects of waves. They are also used in aeroplanes, monorail cars, gyrocompasses etc.

Prob:-
(1) A uniform dric of dit 300 mm and of wars 5 kg is mounted on one end of an arm of length 600 mm . The other end of the arm is free to rotate in a universal bearing. If the dire rotates about the arm with a speed of $300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. clockwhe, looking from the front, with what speed will it precess about the vertical axis?
Sol:- Given data

$$
\begin{aligned}
d & =300 \mathrm{~mm} \\
r & =150 \mathrm{~mm} \\
& =0.15 \mathrm{~m} \\
m & =5 \mathrm{~kg} \\
l & =600 \mathrm{~mm}=0.6 \mathrm{~m} \\
N & =300 \mathrm{r} \cdot \mathrm{pm} \\
\omega & =\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \pi \times 300}{60}=31.42 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

The mass moment of inertia of the dice, about an axis through its centre of gravity and perpendicular to the plane of dice

$$
I=m r^{2} / 2=5 \times(0.15)^{2} / 2=0.056 \mathrm{~kg}-m^{2}
$$

and couple due to mass of disc,

$$
C=m \cdot g \cdot l=5 \times 9.81 \times 0.6=29.43 \mathrm{~N}-m
$$

$$
\omega_{p}=\text { speed of precession }
$$

(2) A uniform disc of 150 mm dea has a mass of 5 kg . It is mounted centrally in beartugs which maintain its axle in a horizontal plane. The disc spins about its axle with a const speed of 1000 r.P.m while the axle precesses uniformly about the vertical at $60 \mathrm{r} P \mathrm{Pm}$. The directions of rotation are as shown in deg. If the distance blu the bearings is 100 mm . fact the resultant reaction at each bearing due to mass aud gyroscopic effects.:

$$
\begin{aligned}
& \therefore \text { couple } c=\text { Ipa. } \omega_{p} \text {. } \\
& 29.43=0.056 \times 31.42 \times \omega_{p} \\
& \omega_{p}=\frac{29.43}{1.76}=16.7 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Sol: $d=150 \mathrm{~mm}$ or $r=75 \mathrm{~mm}=0.075 \mathrm{~m}$

$$
\begin{aligned}
& \dot{m}=5 \mathrm{~kg} \\
& N=1000 \mathrm{r}-\mathrm{pm} \\
& \omega=\frac{2 \pi T}{60}=\frac{2 \pi \times 1000}{60}=104.7 \mathrm{rad} / \mathrm{s} \text { (ansfeloclewhe) } \\
& N p=60 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{~m} \\
& \omega p=\frac{2 \pi N p}{60}=\frac{2 \pi \times 60 \%}{60}=6.284 \mathrm{rad} / \mathrm{s} \text { (andtclockwhe) } \\
& x=100 \mathrm{~mm}=0.1 \mathrm{~m} .
\end{aligned}
$$

Mas moment of inertia of the disc,

$$
\begin{aligned}
& \text { Of inertia of the disc, } \\
& 22 \mathrm{mr}^{2} / 2=5 \times(0.075)^{2} / 2=0.014 \mathrm{~kg} \mathrm{~m}^{2} \\
& \text { acting on the dice, } \\
& 104.7 \times 6.284
\end{aligned}
$$

\therefore Gyroscopic couple acting on the dire,

$$
\begin{aligned}
C & =\text { I.CO. Op } \\
& =0.014 \times 104.7 \times 6.284 \\
& =9.2 \mathrm{~N}-m .
\end{aligned}
$$

The direction of the reactive gyro scoplc

The force f will act in OPP elevections at the bearcugg as shown in fig a. Now let R_{A} and R_{B} be the reaction at the bearing A and B resp, due to the weight of the dec. since the disc is mounted centrally an bearcugs, therefore,

$$
R_{A}=R_{B}=5 / 2=2.5 \mathrm{Hg}=2.5 \times 9.81=24.5 \mathrm{~N}
$$

'Resultant reaction at each bearing
let $R_{B 1}$ and $R_{B I}=$ Resultant reaction at the bearings A\& B resp.

Since the reacture gyroscopic couple acts in cloclewhe direction when seen from the front, therefore its effect is to increase the reaction on the lett hond side bearing (k (A) and to decrease the reaction on the sight hand side bearing (ce B).

$$
\begin{aligned}
\therefore R_{D 1} & =f+R_{A}=92+24.5
\end{aligned}=116.5 \mathrm{~N} \text { (upwards) }
$$

Effect of the Gyroscopic Couple on an Aeroplane
The top and front vie of an aeroplane are shown en feg. let engine or propeller rotates in the clockwise direction when Seen from the rear or tall and and the aeroplane takes a turn to the left.

Top view

front view
(a)

(b)
let $\omega=$ Angular velocity of the engme in $\mathrm{rad} / \mathrm{s}$.
$m=$ Mass of the engine and the propeller in kg .
$K=$ its radius of gyration in metres,
I = Mass moment of inertia of the engtue and the propeller in $\mathrm{kg}-\mathrm{m}^{2}$.

$$
=m \cdot k^{2},
$$

$V=$ Lewear velocity of the aeroplane in m / s,
$R=$ Radius of curvature in metres, and
$\omega_{p}=$ Angular velocity of precession $=\frac{V}{R} \mathrm{rad} / \mathrm{s}$
\therefore Gyroscopic couple acting on the aeroplane,

$$
c=I \cdot \omega \cdot \omega_{p}
$$

Before taking the left turn, the angular momentum vector is represented by $o x$. When it takes left turn, the actere
gyroscopic couple well change the direction of the angular. momentum vector from ox to $0 x^{\prime}$ as shown in fra. The vector x x^{\prime}, in the lancet, represents the change of angular momentum or the active gyroscopic couple and is perpendicular to ox. Thus the plane of active gyroscopic couple xoy well be perpendewlar to $x x^{\prime}$., ie vertical in this case as shown in fig. b

(a) Aeroplane taking lest twin

(b) Aeroplane taking right turn.

By applying reglet hand screw role to vector $x x^{\prime}$, we feud that the direction of active gyroscopic couple is clockewrese as shown in the front view of leg a.

In otherwords, for left hond turning, the active gyroscopic couple on the aeroplane in the axis oz well be clockwise as shown in feb. The reactive gyroscopic couple (equal in magnitude of active gyroscopic couple) will att in the opposite direction (ie, in the anticlock wire direction) and the effect of this couple is therefore to rask the nose and dep the tall of the aeroplane.
Note:- (1) when the aeroplane takes a reglet turn under stmelar conditions as discussed above, the effect of the reactive gyroscopic couple well be to dip the nose and raise the tail of the aeroplane.
(2) When the engwe or propeller rotates in andiclocle wire dereaton when viewed from the rear or tall end and the aeroplane takes a lott twin, then the effect of reactive gyroscopic couple well be to dep the nose and rate the tall of the aeroplane. (3) itions as mentioned in right turn under similar cordgyroscopic couple will note 2 above, the effect of reactive the aeroplane.
(4) When the engwe or propeller rotates in cloclewhe devecteon when viewed from the front and the aroplave taler a left torn,then the effect of reactive gyroscopic couple well be to rake the tail and dip the nose of the aeroplane.
(5) when the aeroplane takes a right turin under similar conditions as mentioned in note 4 above, the effect of reactive gyroscoptc couple well be to rasse the nose and dip the tall of the aeroplane.
probe: An aeroplane makes a complete half circle of 50 mts radars, towards left, when Syne at 200 km per hr. The rotary englue and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m . The engue rotates at $2400 \mathrm{r} . \mathrm{pm}$. couple on the atrorabt and state, its effect on it. amen $R=50 \mathrm{~m}$

$$
\begin{aligned}
& V=200 \mathrm{~km} / \mathrm{hr}=\frac{200 \times 10^{3}}{60} \mathrm{~m} / \mathrm{s}=55.6 \mathrm{~m} / \mathrm{s} . \\
& m=400 \mathrm{~kg} \\
& k=0.3 \mathrm{~m} \\
& N=2400 \mathrm{r} \cdot \mathrm{P} \cdot \mathrm{~m} \text { or } \omega=\frac{2 \pi \times 2400}{60}=251 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

mass moment of enertia of the engage aid the propeller,

$$
\begin{aligned}
I & =m \cdot k^{2} \\
& =400(0.3)^{2}=36 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Angular velocity of precerton.

$$
\omega_{p}=V / R=55.6 / \mathrm{so}=1.11 \mathrm{rad} / \mathrm{s}
$$

Guprossopic couple acting on the aercrablt,

$$
\begin{aligned}
c & =I \cdot \omega . \omega_{p} \\
& =36 \times 251.4 \times 1.11 \\
& =10046 \mathrm{~N}-\mathrm{m} \\
& =10.046 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

when the aeroplane turns towards left, she effect of the gyroscopic couple is to left the nose upwards and tad downwards.

Terms used in a Naval ship
The top and front views of a naval ship are shown in feg. The fore end of the ship is called bow and the rear end is known as stern or aft. The blot hand and right hand sides of the ship, when viewed from the stern are called port and star-board resp. we shall now discuss the effect of gyroscopic couple on the naval ship in the following three cares.
(1) steering
(2) pitching
(3) Rolling.

front view
Effect of Gyroscopic Couple on a Naval ship during steering
Steering is the turning of a complete ship in a curve towards left or right, while it moves forward. Consider the ship taking a left turn, and rotor rotates in the cloclewese direction when stewed from the stern, as shown en leg. The effect of gyroscopic couple on a naval ship during steering taking left or right turn may be obtained in the similar way as for an aeroplane.

Naval ship takeng a left torn
When the rotor of the ship rotates in the clockwre devectern When rewed from the stern, it will have its angular momentom vector in the direction ore as shown in $\mathrm{flg} a$. As the ship steers to the left, the actere gyroscopic couple well change the angular momentum vector from ox to $o x^{\prime}$. The vector $x x^{\prime}$ now represents the acture gyroscopic couple and is 1 to to $o x$. Thus the plane of active gyroscopte couple is $1^{\text {le }}$ to $x x^{1}$ and tets direction in the axis oz for left hand twin is cloclewhe as shown in fig. The reactive gyroscopic couple of the same magnitude well act in the opposite direction (te in andeclockwhe direction). The effect of this reactive gyroscopic couple is to rate the bow and lower the stern.

steering to the left

steering to the right.

Notes (1) When the ship steers to the reglet under sunclar conditions as discussed above, the effect of the reactive gyroscopic couple ar shown in Ag b. will be to raise the stern and lower the bow.
(2) When the rotor rotates in the anticlock wee derectern, when viewed from the stern and the ship is steering to the lebt, then the effect of reactive gyroscopic couple well be to lower the bow and raise the stern.
(3) When the ship is steering to the right under similar conditions as discussed in note 2 , then the effect of reactive gyroscopic Couple well be to rate the bow and lower the stern.
(4) When the rotor rotates in the cloclewrie direction when veewed from the bow or fore end and the ship is steering to the left, then the effect of reactive gyroscopic couple well be to rake the stern and lower the bow.
(5) When the ship is steering to the right under semelar conditions as drreured in note 4 , then the effect of reactere gyroscoptc couple well be to rake the bow and lower the stern.
(6) The effect of the reacture gyroscopic couple on a boat propelled by a turbine taking left or right turn is similar ar discussed above.

Effect of Gyroscopic Couple on a Naval shep during pitching
pitching is the movement of a complete ship up and down in a vertical plane about transverse axis as shown in feg . (a). In this case, the transverse axis is the axis of precession. The pitching of the ship is assumed to

(a) pitching of a naval ship
take place with simple Harmonic motion ie. the motion of the - axis of spin about transverse axis is simple harmonic.

(b) pitching upward

(c) pitching downward.
\therefore Angular duplacement of the axis of spin from mean position after time t seconds.

$$
\theta=\phi \sin \omega_{1} \cdot t
$$

where $\phi=$ Amplitude of swing le. max angle turned from the mean position in radians, and
$\omega_{1}=$ Angular velocity of S-H-M

$$
=\frac{2 \pi}{\text { Tomepertod of } S+W \cdot M \operatorname{tn} \mathrm{sec}}=\frac{2 \pi}{t_{p}} \mathrm{rad} / \mathrm{s}
$$

Angular velocity of precession,

$$
\begin{aligned}
\omega_{p}=\frac{d \theta}{d t} & =\frac{d}{d t}\left(\phi \operatorname{sen} \omega_{1} \cdot t\right) \\
& =\phi \omega_{1} \cos \omega_{1} t
\end{aligned}
$$

The angular velocity do precession well be max, if $\cos \omega_{1}, t=1$
\therefore max angular velocity of precession,

$$
\omega_{p_{\text {max }}}=\phi \cdot \omega_{1}=\phi \cdot 2 \pi / t_{p}
$$

let $I=$ moment of inertia of the rotor in $\mathrm{kg}-\mathrm{m}^{2}$, and $\omega=$ Angular velocity of the rotor in rad/s.
\therefore max gyroscopic couple,

$$
C_{\text {max }}=\text { I.co. } \omega_{P_{\text {max }}}
$$

When the pitching is upward, the effect of the reactive gyroscopic couple, as shown in fy b. well try to move the ship toward star board. On the other hand, if the pitching is downward, the effect of the reactere gyroscopic couple, as shown in fig c. is to turn the ship towards port side.

Note: (1) The effect of the gyroscopic couple is always given on specific portion of the axis of spin ie. whether it is pitching downwards or upwards.
(2) The pitching of a ship produces forces on the bearings whech act horizontally and perpendicular to the motion of the ship.
(3) The angular acceleration during pitching,

$$
\begin{aligned}
\alpha=\frac{d^{2} \theta}{d t^{2}} & =\frac{d}{d t}\left(\frac{d \theta}{d t}\right) \\
& =\frac{d}{d t}\left(\phi \omega_{1} \cos \omega \cdot t\right) \\
& =-\phi \cdot \omega_{1}{ }^{2} \cdot \operatorname{sen} \omega_{1} \cdot t
\end{aligned}
$$

The angular acceleration is \max, if $\operatorname{sen} \omega-t=1$
\therefore Max angular acceleration during pitching,

$$
\alpha_{\text {max }}=\left(\omega_{1}\right)^{2}
$$

Effect of Gyroscopic Couple on a Naval ship during Rolling
The effect of gyroscopic couple to occur, the axis of precession should always be perpendicular to the ax's of spin. Ib, however, the axis of precession becomes parallel to the axis of spin, there well be no effect of the gyroscopic couple acth on the body of the ship.

In care of rolling of a ship, the axis of precession is always parallel to the axis of spen for all positions. Hence, there is no effect of the gyroscopic couple acting on the body of a shop.
prob:"
The, turbine rotor of a ship has a mass of 8 tonnes and a radius of gyration 0.6 m . It rotates at $1800 \mathrm{r} . \mathrm{P} . \mathrm{m}$. clockwhe, when lookarg from the stern. Determine the gyroscopic couple, if the ship travels at $100 \mathrm{~km} / \mathrm{h}$ and steer to the left in a curve of 75 m radius.

$$
\text { Sol:- Given } \begin{aligned}
m & =8 t=8000 \mathrm{~kg} ; \quad k=0.6 \mathrm{~m}, \quad N=1800 \mathrm{Y} \cdot \mathrm{Rm} \text { or } \omega=\frac{2 \pi \mathrm{~N}}{60} \\
\mathrm{~V} & =100 \mathrm{lmm} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
V=100 \mathrm{~km} / \mathrm{h}=27.8 \mathrm{~m} / \mathrm{s} & =\frac{2 \pi}{60} \\
R=75 \mathrm{~m} . & =188.5 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

We know that mas moment of inertia of the rotor,

$$
I=m \cdot k^{2}=8000(0.6)^{2}=2880 \mathrm{~kg}-\mathrm{m}^{2}
$$

and angular velocity of precession,

$$
\omega_{P}=\nu / R=27.8 / 75=0.37 \mathrm{rad} / \mathrm{s} .
$$

Gyroscopic couple,

$$
c=I \cdot w \cdot w_{p}=2880 \times 188.5 \times 0.37=200866 \mathrm{~N}-\mathrm{m}
$$

$$
=200.866 \mathrm{kN}-\mathrm{m} .
$$

When the rotor rotates in clockwre directed when looking from the stern and the ship steers to the left, the effect of the reactive gyroscopic couple is to rave the bow and lower the stern.
prob:- The heavy twibtne rotor of a sea vessel rotates at 1500 r.p.m. clockwhe looking from the stern, its mass being 750 kg . The vessel pitches with an angular velocity of $1 \mathrm{rad} / \mathrm{s}$. Determine the gyroscopic couple transmitted to the hull when bow is reeking, if the radius of gyration for the rotor is 250 mm . Also show in what direction the couple acts on the hull?

Sol:- Gen $N=1500 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$ or $\omega=\frac{2 \pi \times 1500}{60}=157.1 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& m=750 \mathrm{~kg} . \\
& \omega_{p}=1 \mathrm{rad} / \mathrm{s} . \\
& k=250 \mathrm{~mm}=0.25 \mathrm{~m}
\end{aligned}
$$

Mass moment of inertia of the rotor,

$$
I=m \cdot k^{2}=750(0.25)^{2}=46.875 \mathrm{~kg}-\mathrm{m}^{2}
$$

\therefore Gyroscopic couple transmitted to the hull (re body of the seamen)

$$
\begin{aligned}
c=I \cdot \omega \cdot \omega_{p} & =46.875 \times 1.57 .1 \times 1 \\
& =7364 \mathrm{~N}-\mathrm{m} \\
& =7.364 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

When the bow is rkeng be when the pitching is upward, the reactive gyroscopte couple acts in the clocleurhe direction which moves the sea versel towards star-board.
prob:- The turbine rotor of a ship has a mass of 3500 kg . It has a radius of gyration of 0.45 m and a speed of $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. clockurse when looking from stern. Determine the gyroscopic couple and its effect upon the ship:
(1) When the ship is steering to the left on a curve of 100 m vader at a speed of $36 \mathrm{~km} / \mathrm{h}$.
(2) When the ship is pitching in a simple harmantc motion, the bow falling with its max velocity. The period of pitching is 40 sec and the total angular derplacement blu the two extreme portions of pitching is 12 degrees.

Sol:- Given: $m=3500 \mathrm{~kg}, k=0.45 \mathrm{~m}, \mathrm{~N}=3000 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$ or $\mathrm{cu}=\frac{2 \pi \times 3000}{60}$

$$
=314.2 \mathrm{rad} / \mathrm{s}
$$

(i). When the ship is steerage to the left
mass moment of inertia of the rotor,

$$
I=m \cdot k^{2}=3500(0.45)^{2}=708.75 \mathrm{~kg}-\mathrm{m}^{2}
$$

and angular velocity of precession

$$
\omega_{p}=V / R=10 / 100=0.1 \mathrm{rad} / \mathrm{s} .
$$

\therefore Gyroscopic couple,

$$
\begin{aligned}
C=I \cdot \omega \cdot \omega_{p}=708.75 \times 314.2 \times 0.1 & =22270 \mathrm{~N}-\mathrm{m} \\
& =22.27 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

When the rotor rotates cloclewne when looking from the stern and the shep takes a left turn, the effect of the reactere gyroscopic couple is to rake the bow and lower the stern.
(2) when the ship is pitching with the bow falling

Given $t_{p}=40 \mathrm{~s}$.
Since the total angrar diplacement b/w the two extreme positions of pitching is 12° ic $2 \phi=12^{\circ}$.
\therefore Amplitude of Burning, $\phi=12 / 2=6^{\circ}=\frac{6 \times \pi}{180}=0.105 \mathrm{rad}$ Angular velocity of the $S \cdot H \cdot M$

$$
\omega_{1}=2 \pi / t_{p}=2 \pi / 40=0.157 \mathrm{rad} / \mathrm{s} .
$$

max angular velocity do precestion,

$$
\omega_{p}=\phi \cdot \omega_{1}=0.105 \times 0.157=0.0165 \mathrm{rad} / \mathrm{s} .
$$

\therefore Gyroscopic couple,

$$
\begin{aligned}
& c=I \cdot \omega . \omega_{p} \\
&= 708.75 \times 314.2 \times 0.0165
\end{aligned}=3675 \mathrm{~N}-\mathrm{m}, ~=3.675 \mathrm{kN}-\mathrm{m}
$$

when the bow is falling (ie. when the pitching is downward) the effect of the reactive gyroscopic couple, is to move the ship p towards port side.
poos: The mas of the turbine rotor of a ship is 20 tonnes and, has a radius of gyration of 0.60 m . ats speed is $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The ship Pitches 6° above and 6° below the horizontal position. A complete oscillation takes 30 seconds and the motion is simple harmonic. Determine the following:
(1) max gyroscopic couple turn when rising, if the rotation of the rotor is cloclewrie when looking from the left. $\phi=6^{\circ}=\frac{6 \times \pi}{100}=0.105 \mathrm{rad}, t_{p}=30 \mathrm{~s} \quad \quad=209.5 \mathrm{rad} / \mathrm{s}$

1. Max grroscopte couple
mass moment of twertla of the rotor,

$$
I=m k^{2}=20000(0.6)^{2}=7200 \mathrm{~kg} \mathrm{~m}^{2}
$$

Angular velocity of the simple varuente motion

$$
\omega_{1}=2 \pi / t_{p}=2 \pi / 30=0.21 \mathrm{rad} / \mathrm{s}
$$

\therefore max angular velocity of precession,

$$
\omega_{p_{\text {max }}}=\phi \cdot \omega_{1}=0.105 \times 0.21=0.022 \mathrm{rad} / \mathrm{s}
$$

max gyroscopic couple,

$$
\begin{aligned}
c_{\text {max }}=\mathbb{Q}-\omega_{1} \cdot \omega_{P_{\text {max }}} & =7200 \times 209.5 \times 0.022 \\
& =33185 \mathrm{~N}-\mathrm{m} \\
& =33.185 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(2) Max angular acceleration during pitching

$$
=\phi\left(\omega_{1}\right)^{2}=0.105(0.21)^{2}=0.0046 \mathrm{rad} / \mathrm{s}^{2}
$$

(3) when the rotation of the rotor is clockewree when looking from the left (ie rearcud or Stern) and when the bow is sisting (ce pitching is upward) then the reactive gyroscopic couple acts in the clockewre directer which tends to turn the bow towards right (ie towards star-board).

Stability of a four wheel Drive Moving in a curved path
Consider the four wheel A, B, C and D of an automobile locomotive taking a turn towards left as shown in fee. The wheel A and C are inner wheels, whereas B and D are outer wheels. The centre of gravity (C.G) of the vehicle lies vertically above the road Surface.

Let $m=$ Mass of the vehicle in lg .
$W=$ weight of the vehicle en newtons $=m \cdot g$.
$r_{w}=$ Radius of the wheels in m ts.
$R=$ Radar of curvature in mos ($R>r_{w}$)
$h=$ Drtance of centre of gravely, vertically above the rood surface in meets.
$x=$ width of track in mots.

$I_{W}=$ Mass moment of inertia of one of the wheels in $\mathrm{kg}-\mathrm{m}^{2}$,
$\omega_{w}=$ Angular velocity of the wheels or velocity of spin en rad/s
$I_{E}=$ mass moment of inertia of
the rotating ports of the englue en $\mathrm{kg}-\mathrm{m}^{2}$,
$\omega_{E}=$ Angular velocity of the rotate parts of the eugene en $\mathrm{rad} / \mathrm{s}$.

$$
G=\text { Gear ratio }=\omega_{E} / \omega_{\omega}
$$

$v=$ Lcuear velocity of the vehicle en $\mathrm{m} / \mathrm{s}=\gamma_{\omega s} \cdot \omega_{w}$
A little consideration well show, that the weight of the vehicle (w) well be equally distributed over the four wheels which will act downwards. The reaction blu each wheel and the road surface of the same magnitude well act upwards. Therefore,

Road reaction over each wheel $=\frac{w}{4}=\frac{m \cdot 9}{4}$ newtons.
Let us now consider the effect of the gyroscopic couple and. centrifugal couple on the vehicle.

1. Effect of the gyroscopic couple
since the vehicle takes a turn towards lett due to the precession and other rotating parts, therefore a gyroscopic couple well act.
we know that velocity of precession,

$$
\omega_{p}=v /_{R}
$$

\therefore Gyroscopic couple due to 4 wheel,

$$
c_{W}=4 \cdot I_{w} \cdot \omega_{w} \cdot \omega_{p}
$$

and gyroscopic couple due to the rotating parts of the engine

$$
\begin{aligned}
C_{E} & =I_{E} \cdot \omega_{E} \cdot \omega_{P} \\
& =I_{E} \cdot G \omega_{W} \cdot \omega_{P} \quad\left(\because G=\omega_{E} / \omega_{W}\right)
\end{aligned}
$$

\therefore Net gyroscopic couple,

$$
\begin{aligned}
C & =C_{W} \pm C_{E} \\
& =4 I_{W} \cdot \omega_{W} \cdot \omega_{p} \pm I_{E} \cdot G \omega_{W} \cdot \omega_{p} \\
& =\omega_{W} \cdot \omega_{p}\left(4 I W \pm G I_{E}\right)
\end{aligned}
$$

The positive sign is used when the wheels and rotating parts of the engine rotate in the same direction. If the rotating parts of the engine revolves in opp direction, then negative sign is med.

Due to the gyroscopic couple, vertical reaction on the road surface will be produced. The reaction well be vertically upwards on the outer wheel and vertically downwards on the inner wheel. Let the magnitude of this reaction at the two outer or inner wheel be P newtons. Then

$$
P \times x=c \text { or } p=c / x
$$

vertical reaction at each of the outer or inner wheels,

$$
P / 2=c / 2 x
$$

Note:-
When rotate parts of the engine rotate in opposite directors, then -re sign is used, te net gyroscopic couple,

$$
c=c_{w}-c_{E}
$$

When $C_{E}>C_{w}$, then c well be re. Tue the reaction well be vertically downwards on the outer wheck and vertically upwards on the inner wheel.
(2) Effect of the centrifugal couple

Since the vehicle moves along a curved path, therefore centrifugal force well act outwardly at the centre of gravely of the vehicle. The effect of this centrifugal force k also to overturn the vehicle.
we know that centrifugal force,

$$
f_{c}=\frac{m \times v^{2}}{R}
$$

\therefore The couple tending to overturn the vehicle or overturning couple,

$$
C_{0}=f_{c} \times h=\frac{m \cdot v^{2}}{R} \times h
$$

This overturning couple is balanced by vertical reactions, which are vertically upwards on the outer wheel and vertically downwards on the inner wheel. let the magnitude of this reaction at the two outer or inner wheels be Q. Then

$$
Q \times x=C_{0} \text { or } Q=\frac{C_{0}}{x}=\frac{m \cdot v^{2} h}{R \cdot x}
$$

\therefore vertical reaction at each of the outer or inner wheres,

$$
\frac{Q}{2}=\frac{m \cdot v^{2} \cdot h}{2 R \cdot x}
$$

\therefore Total vertical reaction at each of the outer wheel,

$$
P_{0}=\frac{W}{4}+\frac{P}{2}+\frac{Q}{2}
$$

Total vertical reaction at each of the inner wheel,

$$
P_{1}=\frac{w}{4}-\frac{P}{2}-\frac{Q}{2}
$$

A little comederation well show that when the vehicle is running at high speeds. P_{1} may be zero or even negative. This will cause the inner wheel to leave the ground thus, tending to overturn the automobile. In order to have the Contact b/w the inner wheels and the ground, the sum of $P / 2$ and $Q / 2$ must be less than $w / 4$.
probing. A rear engine automobile is travelling along a track of 100 mits mean radius. Each of the four road, wheels has a moment of inertia of $2.5 \mathrm{lg}-\mathrm{m}^{2}$ and an effective dea of 0.6 m . The rotating parts of the ellgene have a moment of inertia of $1.2 \mathrm{~kg}-\mathrm{m}^{2}$. The engtue axis is parallel to the rear axle and the crankshaft rotates in the same sense as the road wheel. The ratio of engtue speed to back axle speed is $3: 1$. The automobile has a mass of 1600 lg and has its centre of gravely 0.5 m above road level. The width of the track of the vehicle is 1.5 m .

Determine the limitug sped of the vehicle around the curve for all four wheels to maintain contact with the road surface. Assume that the road surface is not cambered and centre of graucty of the automobile lees centrally w.r.t the four wheels.

Sol:- Given: $R=100 \mathrm{~m}, I_{w}=2.5 \mathrm{~kg}-\mathrm{m}^{2}, d_{w}=0.0 \mathrm{~m}$ or $r_{w}=0.3 \mathrm{~m}$, $\tau_{E}=1.2 \mathrm{~kg}-\mathrm{m}^{2}, \quad G=\omega_{E} / \omega_{w}=3, \quad \bar{m}=1600 \mathrm{~kg}, \mathrm{~h}=0.5 \mathrm{~m}, x=1.5 \mathrm{~m}$ The wit of the vehicle (mig) well be equally duitrebuted over the four wheels, whech well act downwards: The reactor b/w the wheal and the road surface of the same magnitude well aet upwards.
\therefore Road reaction over each wheel

$$
=w / 4=m \cdot g / 4=\frac{1000 \times 9.81}{4}=3924 \mathrm{~N}
$$

let $v=$ Linnteng speed of the vehicle in m / s.
sugular velocity of the wheels,

$$
\omega_{w}=\frac{v}{\gamma_{w}}=\frac{v}{0.3}=3.33 v \mathrm{rad} / \mathrm{s} .
$$

Angular velocity of precession,

$$
\omega_{P}=\frac{V}{R}=\frac{V}{100}=0.01 \mathrm{~V} \mathrm{rad} / \mathrm{s} .
$$

\therefore Guproscoptc couple due to 4 wheels,

$$
\begin{aligned}
C_{w} & =4 I W \cdot \omega_{w} \cdot \omega_{p} \\
& =4 \times 2.5 \times \frac{v}{0.3} \times \frac{v}{100} \\
& =0.33 \mathrm{~N}^{2} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

and gyroscopic couple due to rotate parts of the evigue,

$$
\begin{aligned}
C_{E} & =I_{E} \cdot \omega_{E} \cdot \omega_{P} \\
& =Q_{E} \cdot G_{W} \omega_{W} \cdot \omega_{P} \\
& =1.2 \times 3 \times 3.33 \mathrm{~V} \times 0.01 \mathrm{~V} \\
& =0.12 \mathrm{~V}^{2} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

\therefore Total gyroscopte couple,

$$
\begin{aligned}
C=C_{W}+C_{E} & =0.33 \mathrm{v}^{2}+0.12 \mathrm{v}^{2} \\
& =0.45 \mathrm{v}^{2} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Due to this gyroscopic couple, the vertical reaction on the road surface well be produced. The reaction well be vertically upwards on the outer wheels and vertically downwards on the inner wheels. let the magnitude of this reaction at each of the outer or inner wheel be $P / 2$ newtons.

$$
P / 2=\frac{c}{2 x}=\frac{0.45 v^{2}}{2 \times 1.5}=0.15 v^{2} \mathrm{~N}
$$

we know that centrifugal force,

$$
f_{c}=\frac{m \cdot v^{2}}{R}=\frac{1600 \times \mathrm{N}^{2}}{100}=16 \mathrm{~V}^{2} \mathrm{~N}
$$

\therefore overturning couple adteng in the outward dereatlon

$$
c_{0}=f_{c} \times h=16 v^{2} \times 0.5=8 v^{2} \mathrm{~N}-\mathrm{m}
$$

:This overturning couple is balomead by vertical reactions which are vertically upwards on the outer wheels and vertically downwards on the inner wheals, lat the magintiode of this reaction at each of the outer or invar wheels be $9 / 2$ newtons.

$$
Q / 2=c_{0} / 2 x=\frac{8 v^{2}}{2 \times 1.5}=2.67 v^{2} \mathrm{~N}
$$

we lenow that total vertical reaction at each of the outer wheels,

$$
P_{0}=\frac{w}{4}+\frac{P}{2}+\frac{Q}{2} \quad \longrightarrow \quad(1)
$$

and total vertical reaction at each of the inner wheels,

$$
\begin{aligned}
P_{4} & =\frac{w}{4}-\frac{P}{2}-\frac{Q}{2} \\
& =\frac{w}{4}-\left(\frac{P}{2}+\frac{Q}{2}\right)
\end{aligned}
$$

from eam (1), we see that there well-always be contact blu the outer wheels and the road sinface, because $\frac{\mathrm{N}}{4}, \frac{p}{2}$ Ie Q/2 are ventecally upwards. Inorder to have contact b/w the timer wheals and road surface, the reactions should be also be vertically upwards, which ts only positble if

$$
\begin{aligned}
& \frac{P}{2}+\frac{Q}{2} \leqslant \frac{w}{4} \\
& 0.15 v^{2}+2.67 v^{2} \leqslant 3924 \\
& 2.82 v^{2} \leqslant 3924 \\
& v^{2} \leqslant 3924 / 2.82=1391.5 \\
& v \leqslant 37.3 \mathrm{~m} / \mathrm{s} \\
&=\frac{37.3 \times .3600}{1000}=134.28 \mathrm{~lm} / \mathrm{h}
\end{aligned}
$$

probe A four wheeled motor car of mass 2000 kg has a wheel base 2.5 m , track with 1.5 m and height of $C . G 500 \mathrm{~mm}$ above the Ground level and les at 1 mt from the front axle. Each wheel has an effective dea of 0.8 m and a moment of inertia of $0.8 \mathrm{~kg}-\mathrm{m}^{2}$ The dree shaft, engine flywheel and transmission are rotating at 4 times the speed of road wheel, in a clockwhe derectern when veered from the front, and is equivalent to a mas of 75 kg having a radius of gyration of 100 mm . If the car is taking a right turn of 60 m radius at $60 \mathrm{~km} / \mathrm{h}$. fund the load on each wheel.

Sol. Given data, $m=2000 \mathrm{~kg}, b=2.5 \mathrm{~m}, x=1.5 \mathrm{~m}, h=500 \mathrm{~mm}=0.5 \mathrm{~m}$, $L=1 \mathrm{~m}, d_{w}=0.8 \mathrm{~m}$ or $r_{w}=0.4 \mathrm{~m}, \quad I_{w}=0.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}, G=\frac{\omega_{E}}{\omega_{w}}=4$, $m_{E}=75 \mathrm{~kg}, \quad x_{E}=100 \mathrm{~mm}=0.1 \mathrm{~m}, \quad R=60 \mathrm{~m}, V=60 \mathrm{~km} / \mathrm{h}=16.67 \mathrm{~m} / \mathrm{s}$

$$
=\frac{60 \times 5}{18}=
$$

Suse the E.G of the car lies at in from the front axle and the w.t of the $\operatorname{car}(w=w . g)$ les at the centre of gravely, therefore wit on the front wheel and rear wheels well be different.
let $\quad w_{1}=w_{1}$ on the front wheels,

$$
w_{2}=w . t \text { on the rear wheels. }
$$

Talleng moment about the front wheels,

$$
\begin{gathered}
w_{2} \times 2.5=w \times 1=m \times g \times 1=2000 \times 9.81 \times 1=19620 \\
w_{2}=19620 / 2=5=7848 \mathrm{~N}
\end{gathered}
$$

$w . t$ do the car or on the four wheels,

$$
\begin{aligned}
& w=w_{1}+w_{2} \\
& w_{1}=w-w_{2}=19620-7848=11772 \mathrm{~N} \\
& \text { on each of the front wheels } \\
& =w_{1} / 2=11772 / 2=5886 \mathrm{~N}
\end{aligned}
$$

$$
\therefore \text { wit on each of the front wheels }
$$

Wit on each of the rear wheels

$$
=w_{2} / 2=7848 / 2=3924 \mathrm{~N}
$$

Since the wit of the car over the four Wheel well act downwards, therefore the reaction b/w each wheel and the road surface of the same magnitude well act upwards as shown in fig.

Let us now consider the effect of gyroscopic couple due to four wheels and rotating parts of the englue.
we know angular velocity of wheel,

$$
\omega_{w}=\frac{v}{\gamma_{w}}=\frac{16.67}{0.4}=41.675 \mathrm{rad} / \mathrm{s}
$$

Angular velocity of precession,

$$
\omega_{p}=v / R=\frac{16.67}{60}=0.278 \mathrm{rad} / \mathrm{s}
$$

\therefore Gyroscopic couple due to four wheels,

$$
\begin{aligned}
C_{W} & =4 I_{W} \cdot \omega_{W} \cdot \omega_{p} \\
& =4 \times 0.8 \times 41.675 \times 0.278=37.1 \mathrm{~N}-m
\end{aligned}
$$

This gyroscopic couple tends to lift the inner wheels and to press the outer wheels, In other words, the reaction well be vertically downward on the miner wheels (1.e wheel 1 se 3) and vertecally upward on the outer wheels (ie wheels $2 \xi 4$) as shown En 汭. let $P / 2$ newtons be the magnitude of this reaction at each of the inner or outer wheel.

$$
P / 2=\frac{C_{w}}{2 x}=\frac{37.1}{2 \times 1.5}=12.37 \mathrm{~N}
$$

mass moment of inertia of rotating posts of the engine;

$$
I_{E}=m_{E}\left(k_{E}\right)^{2}=75(0.1)^{2}=0.75 \mathrm{~kg}-\mathrm{m}^{2}
$$

\therefore Cuproscopic couple due to rotating parts of the engrue,

$$
\begin{aligned}
C_{E} & =I_{E} \cdot \omega_{E} \cdot \omega_{P} \\
& =I_{E} \times G \cdot \omega_{W} \cdot \omega_{P} \\
& =0.75 \times 4 \times 41.675 \times 0.278 \\
& =34.7 \mathrm{~N}-m
\end{aligned}
$$

This gyroscopic couple tends to left the front wheels and to press the rear wheels. In other words, the reaction will be vertically downwards on the front wheels and vertically upwards on the rear wheels as shown in sig. Let $f / 2$ newtons be the magnitude of this reaction on each of the front and rear wheels.

$$
\therefore \quad F / 2=C_{E} / 2 b=34.7 / 2 \times 2.5=6.94 \mathrm{~N}
$$

Now let us consider the effect of centrifugal couple acting on the car. We know that centrifugal force,

$$
f_{c}=\frac{m \cdot V^{2}}{R}=\frac{2000(16.67)^{2}}{60}=9263 \mathrm{~N}
$$

\therefore Centrifugal couple tending to overturn the car or overturning couple.

$$
c_{0}=f_{c} \times h=9263 \times 0.5=4631.5 \mathrm{~N}-\mathrm{m}
$$

This overturning couple tends to reduce the pressure on the inner wheels and to increase on the outer wheels. In other words, the reactions are vertically downward on the inner wheels. and vertically upwards on the outer wheels. Let $Q / 2$ be. the magnitude of this reaction on each of the amer \& outer wheels.

$$
\therefore Q_{12}=e_{0} / 2 x=\frac{4631.5}{2 \times 1.5}=1543.85 \mathrm{~N}
$$

- load on the front wheel (1) $=\frac{W_{1}}{2}-\frac{P}{2}-\frac{f}{2}-\frac{Q}{2}=5886-12.37-6.94-1543.63$ $=4322.86-\mathrm{N}$
Load on the front wheel (2)

$$
=\frac{w_{1}}{2}+\frac{P}{2}-\frac{f}{2}+\frac{Q}{2}=5886+12.37-6.94+1543.83
$$

$$
=7435.26 \mathrm{~N}
$$

load on the rear wheel (3)
$=\frac{W_{2}}{2}-\frac{P}{2}+\frac{f}{2}-\frac{Q}{2}=3924-12.37+6.94-1543.83$
load on the rear whee (4) $=2374.74 \mathrm{~N}$

$$
\begin{aligned}
=\frac{W_{2}}{2}+\frac{P}{2}+\frac{f}{2}+\frac{Q}{2} & =3924+12.37+6.94+1543.83 \\
& =5487.14 \mathrm{~N}
\end{aligned}
$$

Stability of a two wheel vehicle takeng a turn.
Consider a two wheel vehicle (scooter or motor cycle) taking a. right turn as shown in fig.

AxIs of precession

Reactive gyro couple. cent. couple

Let us now consider the effect of the gyroscopic couple and centrifugal couple on the vehicle,

1. Effect of gyroscopic couple

We know that linear velocity $v=\gamma_{\omega} \times \omega_{\omega}$

$$
\text { or } \omega_{\omega}=v / r_{\omega}
$$

and

$$
\omega_{E}=G \omega_{w}=G \times \frac{v}{\gamma_{w}}
$$

\therefore Total (Inc) $=2 I_{\omega} \times \omega_{\omega} \pm I_{E} \times \omega_{E}$

$$
\begin{aligned}
L & =2 I_{w} \times \frac{v}{r_{w}} \pm I_{E} \times G_{\times} \frac{v}{r_{w}} \\
& =\frac{v}{r_{w}}\left(2 I_{w} \pm G_{E}\right)
\end{aligned}
$$

and velocity of precession, $\omega_{P}=V / R$
A little consideration well show that when the wheels move over the curved path, the vehicle is always induced at an angle θ with the vertical plane as shown in Sig b. This angle is known as angle of heel.

In other words, the axis of Spin is inclined to the horizontal at an angle θ, as shown in fy.(c) Thus the angular momentum vector IW due to Spin is represented by $O A$ inclined to $o x$ at an angle θ. But the precession axis is vertical. Therefore the spin vector is resolved along ox.
\therefore Gyroscopic couple,

$$
\begin{aligned}
C_{1} & =I-\omega \cos \theta \times \omega_{p} \\
& =\frac{v}{\gamma_{w}}\left(2 I_{\omega} \pm G I_{\epsilon}\right) \cos \theta \times \frac{v}{R} \\
& =\frac{v^{2}}{R \cdot r_{w}}\left(2 I_{w} \pm G \cdot I_{E}\right) \cos \theta
\end{aligned}
$$

rote- (1) when the engine is rotating on the same dereation as that of Wheels, then the $+v e \operatorname{stg} n$ is used in the above expression and if the engine rotates in OPP direction, then nagatere sign is used.
(2) The gyroscopic couple well act over the vehicle outwards tie in the antrclock whe direction when seen from the front of the vehicle. The tendency of this couple is to overturn the vehicle in outward direction.
(2) Effect of centrifugal couple
we levow that centrifugal force.

$$
f_{c}=\frac{m v^{2}}{R}
$$

This force acts horizontally through the C.G along the outward direction.
\therefore Centrifugal couple

$$
c_{2}=f_{c} \times h \cos \theta=\frac{m N^{2}}{R} h \cos \theta
$$

since the centrifugal couple has a tendency to overturn the vehicle, therefore

Total overturning couple,

$$
\begin{aligned}
C_{0} & =\text { Gyroscopic couple }+ \text { centrifugal couple } \\
& =\frac{v^{2}}{R \cdot r_{w}}\left(2 I_{w}+G \cdot I_{\epsilon}\right) \cos \theta+\frac{m \cdot v^{2}}{R} \times h \cos \theta \\
& =\frac{v^{2}}{R}\left[\frac{22 w+G I_{\epsilon}}{r_{w}}+m \cdot h\right] \cos \theta
\end{aligned}
$$

We know that balancing couple $=m \cdot g \cdot h \sin \theta$
The balanelug couple acts in cloclewse direction when seen from the Front of the vehicle, Therefore for stability, the overturntig couple must be equal to the balancing couple, te

$$
\frac{v^{2}}{R}\left[\frac{2 I_{w}+G \cdot I_{\epsilon}}{\gamma_{w}}+m \cdot h\right] \cos \theta=m \cdot g \cdot h \operatorname{sen} \theta
$$

From this expression, the value of the angle of heel (θ) map be determined, So that the vehicle doer not sled.

Fund the angle of inclination w.r.t. the vertical of a two wheeler negotiating a turn. Given: Combined mass of the vehicle with its reder 250 kg ; moment of inertia of the engine flywheel $0.3 \mathrm{lg} \mathrm{gm}^{2}$. moment of thertla of each road wheel I $\mathrm{kg}-\mathrm{m}^{2}$; speed of engine flywheel 5 times that of road wheels and in the same direction; height of $C . B$ of rider with vehicle 0.6 m , two wheeler speed $90 \mathrm{~lm} / \mathrm{h}$, wheel radius 300 mm , radius of turn 50 m .

Sol:-
Given: $m=250 \mathrm{~kg}, \tau_{E}=0.3 \mathrm{~kg}-\mathrm{m}^{2}, T_{w}=1 \mathrm{~kg}-\mathrm{m}^{2}, \omega_{E}=5 \omega_{W}$ or

$$
h=0.6 \mathrm{~m}, v=90 \mathrm{~km} / \mathrm{h}=\frac{90 \times 5}{18}=25 \mathrm{~m} / \mathrm{s}, \quad r_{W}=300 \mathrm{~mm}=0.3 \mathrm{~m}, \quad R=5
$$

let $\theta=$ Angle of incluation w.r.t the vertical of a two wheeler. we know that gyroscopic couple,

$$
\begin{aligned}
C_{1} & =\frac{v^{2}}{R+r_{w}}(2 I w+G \cdot 2) \cos \theta \\
& =\frac{(25)^{2}}{50 \times 0.3}(2 \times 1+5 \times 0.3) \cdot \cos \theta \\
& =146 \cos \theta \mathrm{~N}-\mathrm{m} .
\end{aligned}
$$

and centrifugal couple, $C_{2}=\frac{m \cdot v^{2}}{R} \times h \cos \theta=\frac{250(25)^{2}}{50} \times 0.6 \operatorname{con} \theta$

$$
=1875 \cos \theta \text { NOm. }
$$

\therefore Total over turncug couple,

$$
c=c_{1}+c_{2}=146 \cos \theta+1875 \cos \theta=2021 \cos \theta \mathrm{~N}-\mathrm{m}
$$

we know that balancing couple

$$
=m \cdot g \cdot h \operatorname{sen} \theta=250 \times 9.81 \times 0.6 \operatorname{sen} \theta=1471.5 \operatorname{sen} \theta \mathrm{~N}-\mathrm{m}
$$

Since the overturning couple must be equal to the balancing. couple for equelibrum condition,

$$
\begin{aligned}
\therefore \quad 2021 \operatorname{con} \theta & =1471.5 \sin \theta \\
\tan \theta & =\frac{\operatorname{sen} \theta}{\cos \theta}=\frac{2021}{1471.5}=1.3734 \text { or } \theta=53.94^{\circ}
\end{aligned}
$$

pod A four wheeled trolley can of mas 2500 kg suns on racks, which are 1.5 m apart and travels around a curve of 30 m radius at $24 \mathrm{~km} / \mathrm{hr}$. The rats are at the same level. Each wheel of the trolley is 0.75 m in demeter and each of the two axles is deem by a motor wunnug in a dereeton OPP to that of the wheels- The at a speed of 5 tames the speed of rotation of the whects. The moment of inersta of each axle with gear and wheels is $18 \mathrm{~kg}-\mathrm{m}^{2}$. Each motor wish slabs and gear pinion has a moment to inocula of $12 \mathrm{~kg}-\mathrm{m}^{2}$. The $\mathrm{c} . \mathrm{a}$ of the car is 0.9 m above the rall level. Determine the vertical force exerted by each wheel on the racks takcug into consideration the centrifugal and gyroscopic effects. state the centrifugal and gyroscopic effects on the trolley.

Sd. Given $m=2500 \mathrm{~kg}, x=1.5 \mathrm{~m}, \quad R=30 \mathrm{~m}, v=24 \mathrm{~km} / \mathrm{hr}=24 \times \frac{5}{18}=\frac{6.67 \mathrm{~m} / \mathrm{s}}{}$ $d_{w}=0.75 \mathrm{~m}$ or $r_{W}=0.375 \mathrm{~m}, \quad G=\frac{\omega_{E}}{\omega_{W}}=5$; $I_{W}=18 \mathrm{~kg}-\mathrm{m}^{2}, I_{G}=12 \mathrm{~kg}_{\mathrm{m}} \mathrm{m}^{2} \quad h=0.9 \mathrm{~m}$.

The wit of the trolley ($\omega=m=9$) well be equally dritrebited over the four wheels, which well act downwards. The reaction b/w the wheels and the road surface of the same magnitude well act upwards.
\therefore Road reaction oven each wheel $=\frac{w}{4}=\frac{m \cdot 9}{4}$

$$
=\frac{2500 \times 9.81}{4}
$$

Angular velocity of the wheels,

$$
\omega_{w}=v / r_{w}=\frac{6.67}{0.375}=17.8 \mathrm{rad} / \mathrm{s}
$$

and Angular velocity' of precession,

$$
\omega_{p}=V / R=\frac{6.07}{30}=0.22 \mathrm{rad} / \mathrm{s}
$$

\therefore Eiproscople couple due to one pair of wheel and axle, $C W=2 I_{\omega} * \omega_{\omega} \times \omega_{p}=2 \times 18 \times 17.8 \times 0.22$

$$
=141 \mathrm{~N}-\mathrm{m} .
$$

and
gyroscoptc couple due to the rodadeng parts of the motor a "gears,

$$
\begin{aligned}
C_{E} & =2 I_{E} \times w_{E} \cdot w_{P} \\
& =2 I_{E} \cdot w_{W} G \cdot w_{P} \\
& =2 \times 12 \times 17.8 \times 5 \times 0.22=420 \mathrm{~N}-m
\end{aligned}
$$

\therefore Ned gyroscopte couple, $C=C_{W}-C_{E}=141-470=-329 \mathrm{~N}-\mathrm{m}$.

$$
\begin{aligned}
& P / 2=\frac{c}{2 x}=\frac{329}{2 \times 1.5}=109.7 \mathrm{~N} \\
& f_{c}=\frac{m v^{2}}{R}=\frac{2700(6.67)^{2}}{30}=3707 \mathrm{~N} \\
& C_{0}=f_{c} \times h=3707 \times 0.9=3336.3 \mathrm{~N}-m
\end{aligned}
$$

$$
\frac{Q}{2}=\frac{C_{0}}{2 x}=\frac{3336.3}{2 \times 1.5}=1112.1 \mathrm{~N}
$$

$$
P_{0}=\frac{\omega}{4}-\frac{P}{2}+\frac{Q}{2}=6131.25-109.7+1112.1=7142.65 \mathrm{~N}
$$

$$
P_{I}=\frac{\omega}{4}+\frac{P}{2}-\frac{Q}{2}=6131.25+109.7-1112.1=5128.85 \mathrm{~N}
$$

$$
=\left.s\right|^{2}
$$

Materials	Coefficient of friction μ
Steel on steel	0.54
Cast iron on steel	0.14
Wood on wood	0.27
Cast iron on cast iron	0.41
Leather on wood	0.40
Glass on glass	0.40
Metal on wood	0.2 to 0.60
Bronze on cast iron	0.23

3.4 LIMITING ANGLE OF FRICTION

In Fig. 3.2, a body Bof weight W is resting on a horizontal plane S. A horizontal force F is applied to the body, no relative motion takes place until the applied force F is equal to the force of friction F^{\prime}. As soon as $F>F^{\prime}$, the body starts sliding on the plane S. The magnitude of the frictional force is equal to μR_{N}. Frictional force F^{\prime} acts in the opposite direction of motion of the body. Till the motion just begins, the body is in equilibrium under the action of the following forces :

1. Applied force F
2. Weight of the body W and
3. Force of friction F^{\prime}

Fig. 3.2 Limiting Angle of Friction.
Actually, reaction R is equal and opposite to the resultant of F and W. It will be inclined at an angle ϕ with the normal reaction R_{N}. From the geometry of figure

$$
\tan \phi=\frac{F}{W}=\frac{\mu R_{N}}{R_{N}}=\mu \quad \text { or } \quad \tan \phi=\mu
$$

The angle ϕ is known as limiting angle of friction as it represents the maximum possible 4. Reaction R between body B and surface S.

3.5 ANGLE OF REPOSE

A body B of weight W is resting on an inclined plane S as shown in Fig. 3.3. If the angle $a_{\text {of the }}$ inclined plane is such that the body B starts moving downwards on its own, then α is called the angle of repose or natural angle.

The weight of the body W can be resolved into two components :
(i) $\mathrm{W} \sin \alpha$ parallel to the plane, and
(ii) $\mathrm{W} \cos \alpha$ perpendicular to the plane

Fig. 3.3

The body begins to move downwards on the plane when

$$
F=W \sin \alpha
$$

where F is the friction force.
From the geometry of figure,

$$
W \sin \alpha=F=\mu R_{N}=\mu W \cos \alpha
$$

$\tan \alpha=\mu=\tan \phi$
Thus

$$
\alpha=\phi
$$

Hence, the angle of repose α is equal to the limiting angle of friction α

3.6 MINIMUM FORCE REQUIRED TO DRAG A BODY ON ROUGH HORIZONTAL SURFACE

Suppose a body B of weight W is placed on rough horizontal plane S as shown in Fig. 3.4. An effort P is applied on the body subtending an angle θ with the horizontal. Thown in Fig. 3.4. An effort

Fig. 3.4 required to be found so th. The minimum value of P is the horizontal surface that it just moves the body B on acting on the body are: S Till equilibrium the forces

1. Weight w
2. Effort p
3. Normal reaction R_{N}, and
4. Frictional force F

Now resolving the effort P into two components, one vertical and the other horizontal.
Vertical component $\quad=P \sin \theta$
ant $\quad=P$ and
Considering the vertical forces

$$
\begin{aligned}
& R_{N}+P \sin \theta=W \\
& K_{N}=W-P \sin \theta
\end{aligned}
$$

Considering horizontal forces

$$
\begin{equation*}
P \cos \theta=F=\mu R_{N} \tag{i}
\end{equation*}
$$

Substituting the value of R_{N} in equation (ii) from equation (i)

$$
P \cos \theta=\mu(W-P \sin \theta)
$$

But we know that

$$
\mu=\tan \phi
$$

So

$$
P \cos \theta=\tan \phi(W-P \sin \theta)=\frac{\sin \phi}{\cos \phi}(W-P \sin \theta)
$$

$$
P \cos \theta \cdot \cos \phi=W \sin \phi-P \sin \theta \cdot \sin \phi
$$

$$
P(\cos \theta \cdot \cos \phi+\sin \theta \cdot \sin \phi)=W \sin \phi
$$

$$
\begin{aligned}
P \cos (\theta-\phi) & =W \sin \phi \\
P & =\frac{W \sin \phi}{\cos (\theta-\phi)}
\end{aligned}
$$

The value of P is minimum when $\cos (\theta-\phi)$ is maximum.
So

$$
\begin{aligned}
\cos (\theta-\phi) & =1=\cos 0 \text { or } \theta-\phi=0 \\
\theta & =\phi \\
P_{\min } & =W \sin \phi=W \sin \theta
\end{aligned}
$$

Thus
Hence, the effort P will be minimum if its angle of inclination θ with the horizontal is equal to the angle of friction ϕ

3.7 BODY TENDING TO MOVE UPWARDS ON AN INCLINED PLANE

Suppose a body of weight W is lying on an inclined plane making an angle α with the horizontal as shown in Fig. 3.5. The effort P_{0} is applied to move the body upwards and assuming no friction. P_{0} makes an angle θ with the line of action of weight W.

Fig. 3.5
To keep the body in equilibrium, the following forces act on it :

1. The weight W,

3. Normal reaction R_{N}
4. Effort P_{0} and P without and with friction respectively
5. R is the resultant of R_{N} and frictional force

From law of forces [Fig. 3.5 (b)],

$$
\begin{align*}
\frac{W}{\sin \left\{180^{\circ}-(\theta-\alpha)\right\}} & =\frac{P_{0}}{\sin \left(180^{\circ}-\alpha\right)} \\
\frac{W}{\sin (\theta-\alpha)} & =\frac{P_{0}}{\sin \alpha} \\
\frac{P_{0}}{W} & =\frac{\sin \alpha}{\sin (\theta-\alpha)}
\end{align*}
$$

Let us now assume that there is friction between the body and the plane. It is assumed that the reaction force R is inclined at an angle ϕ to normal reaction R_{N} where ϕ is the friction angle, as shown in Fig. 3.5 (c). Triangle of forces is shown in Fig. 3.5(d).

Applying Lami's theorem
or

$$
\begin{align*}
\frac{P}{\sin \left(180^{\circ}-\phi-\alpha\right)} & =\frac{W}{\sin \left\{180^{\circ}-(\theta-\alpha-\phi)\right\}} \\
\frac{P}{\sin (\phi+\alpha)} & =\frac{W}{\sin (\theta-\alpha-\phi)} \\
\frac{P}{W} & =\frac{\sin (\alpha+\phi)}{\sin (\theta-\alpha-\phi)} \tag{ii}
\end{align*}
$$ is 1 .

Effort P will be minimum if $\sin (\theta-\alpha-\phi)$ is maximum. The maximum value of $\sin (\theta-\alpha-\phi)$
So

$$
\begin{gathered}
\sin (\theta-\alpha-\phi)=1=\sin 90^{\circ} \\
\theta-\alpha-\phi=90^{\circ}
\end{gathered}
$$

$$
\theta-\left(90^{\circ}+\alpha\right)=\phi
$$

It means that the angle between the effort P and the inclined plane should be equal to the
of

Efficiency

 without and with the consideration of friction.Substituting the values of P_{0} and P from equation (i) and (ii) in the above relation, we get

$$
\eta=\frac{\frac{W \sin \alpha}{\sin (\theta-\alpha)}}{\frac{W \sin (\alpha+\phi)}{\sin (\theta-\alpha-\phi)}}=\frac{\sin \alpha \cdot \sin (\theta-\alpha-\phi)}{\sin (\alpha+\phi) \cdot \sin (\theta-\alpha)}
$$

$$
\begin{aligned}
& =\frac{\sin \alpha}{\sin (\alpha+\phi)} \cdot \frac{\sin \theta \cdot \cos (\alpha+\phi)-\cos \theta \cdot \sin (\alpha+\phi)}{\sin \theta \cdot \cos \alpha-\cos \theta \cdot \sin \alpha} \\
& =\frac{\sin \alpha}{\sin (\alpha+\phi)} \cdot \frac{\sin \theta \cdot \sin (\alpha+\phi)\left[\frac{\cos (\alpha+\phi)}{\sin (\alpha+\phi)}-\frac{\cos \theta}{\sin \theta}\right]}{\sin \theta \cdot \sin \alpha\left[\frac{\cos \alpha}{\sin \alpha}-\frac{\cos \theta}{\sin \theta}\right]} \\
& =\frac{\sin \alpha}{\sin (\alpha+\phi)} \cdot \frac{\sin (\alpha+\phi)}{\sin \alpha}\left[\frac{\cot (\alpha+\phi)-\cot \theta}{\cot \alpha-\cot \theta}\right] \\
& \eta=\frac{\cot (\alpha+\phi)-\cot \theta}{\cot \alpha-\cot \theta}
\end{aligned}
$$

NOTE If $\theta=90^{\circ}$, applied effort is in horizontal direction, then the efficiency η is given by

$$
\eta=\frac{\cot (\alpha+\phi)-\cot 90^{\circ}}{\cot \alpha-\cot 90^{\circ}}=\frac{\cot (\alpha+\phi)}{\cot \alpha}=\frac{\tan \alpha}{\tan (\alpha+\phi)}
$$

3.8 BODY MOVING DOWN THE PLANE

When friction is neglected, equation (i) of article 3.7
i.e.,

$$
\begin{equation*}
\frac{P_{0}}{W}=\frac{\sin \dot{\alpha}}{\sin (\theta-\alpha)} \tag{i}
\end{equation*}
$$

holds true for body moving down the plane also. Now let us take friction into consideration. The resultant reaction R is inclined by an angle ϕ to the normal reaction R_{N} towards right as shown in Fig. 3.6(a).

Fig. 3.6
The angle between the line of action of forces P and R is $\theta-(\alpha-\phi)$ and between W and R is $(\alpha-\phi)$.

Applying Lami's theorem to Figs. 3.6(b and c), we have

$$
\begin{align*}
\frac{W}{\sin \{\theta-(\alpha-\phi)\}} & =\frac{P}{\sin (\alpha-\phi)} \\
P & =W \frac{\sin (\alpha-\phi)}{\sin \{\theta-(\alpha-\phi)\}} \tag{i}
\end{align*}
$$

NOTE (i) When $\theta=90^{\circ}, P$ is applied horizontally, then equation (ii) can be written as

$$
P=\frac{W \sin (\alpha-\phi)}{\cos (\alpha-\phi)}=W \tan (\alpha-\phi)
$$

(ii) When $\theta=90^{\circ}+\alpha, P$ is parallel to the plane, then equation (ii) can be written as

$$
\begin{aligned}
P & =\frac{W \sin (\alpha-\phi)}{\sin \left\{\left(90^{\circ}+\alpha\right)-(\alpha-\phi)\right\}} \\
& =\frac{W \sin (\alpha-\phi)}{\sin \left(90^{\circ}+\phi\right)}=\frac{W \sin (\alpha-\phi)}{\cos \phi} \\
& =W\left[\frac{\sin \alpha \cos \phi}{\cos \phi}-\frac{\sin \phi \cos \alpha}{\cos \phi}\right]=W(\sin \alpha-\tan \phi \cos \alpha) \\
P & =W(\sin \alpha-\mu \cos \alpha)
\end{aligned}
$$

Efficiency of the inclined plane (Motion down the plane)

Since P is less than P_{0}, so

$$
\eta=\frac{P}{P_{0}}=\frac{W \sin (\alpha-\phi)}{\sin \{\theta-(\alpha-\phi)\}} \times \frac{\sin (\theta-\alpha)}{W \sin \alpha}
$$

(Solving in a manner similar to article 3.7)

$$
\eta=\frac{\cot \alpha-\cot \theta}{\cot (\alpha-\phi)-\cot \theta}
$$

When there is no friction, $\phi=0$, it means with no friction, the efficiency will be 100%.
Theoretically, efficiency for the downward motion may be defined as the ratio of the forces on the body with and without friction.

3.9 SCREW AND NUT

A screw when developed is an inclined plane. Threads are cut on a cylindrical body of diameter d as shown in Fig. 3.7(a). The circumference of the cylinder is πd. The inclination of the plane ' α ' is equal to the helix angle of the thread. The helix angle is given by

$$
\tan \alpha=\frac{p}{\pi d}, \quad \text { where } p \text { is the pitch of the thread. }
$$

pitch is the linear distance between two consecutive threads. The motion of the nut on a screw $^{\mathrm{W}}$ is analogous to the motion on an inclined plane as shown in Fig. 3.7(b). In this case effort P, required to move the body, acts horizontally. We have already discussed that it acts horizontally when $\theta=90^{\circ}$. When the nut comes down on screw, it is similar to the motion of body downward

(a)

(b) Motion of nut on screw

$$
\frac{W}{\sin \left(90^{\circ}-(\alpha+\phi)\right)}=\frac{P}{\sin (\alpha+\phi)}
$$

(c) Force analysis of nut and screw

Fig. 3.7
Mechanical Advantage (M.A.)

$$
=\frac{W}{P}=\frac{\cos (\alpha+\phi)}{\sin (\alpha+\phi)}=\cot (\alpha+\phi)
$$

Velocity ratio (V.R.) $=\frac{\text { Distance covered by } P}{\text { Distance covered by } W}=\frac{\pi d}{p}=\cot \alpha$
Mechanical efficiency $\eta_{\text {Mech }}=\frac{M \cdot A}{V \cdot R .}=\frac{\cot (\alpha+\phi)}{\cot \alpha}=\frac{\tan \alpha}{\tan (\alpha+\phi)}$
When the body or nut is lowered

$$
P_{0}=W \tan \alpha \text { and } P=W \tan (\alpha-\phi)
$$

3.10 SCREW JACK WITH SQUARE THREADS

We have already discussed that motion of nut on the screw is analogous to sliding along an inclined plane.

Refer to Fig. 3.8
Let, $P=$ Tangential force,
$\begin{aligned} W & =\text { axial load }, \\ \phi & =\text { friction angle }\end{aligned}$

Fig. 3.8 Screw-Jack.
If the nut is rotated so that the screw moves against the axial load W, it is treated as motin upwards the inclined plane. In that case P and W are related as
since $\theta=90^{\circ}$, so

$$
P=W \frac{\sin (\alpha+\phi)}{\sin \{\theta-(\alpha+\phi)\}}
$$

$$
P=W \frac{\sin (\alpha+\phi)}{\cos (\alpha+\phi)}=W \tan (\alpha+\phi)
$$

The turning moment on the nut can be written as

$$
T=P . r .=W \tan (\alpha+\phi) \times r
$$

If F is the effort applied to the spanner at a distance l from the axis of the screw, then

$$
T=F . l
$$

or

$$
\begin{equation*}
F . l=W . r \tan (\alpha+\phi) \tag{ir}
\end{equation*}
$$

In case the nut rotates in the opposite direction i.e., load is to be lowered, the equation ${ }^{(i r)}$ can be written as

$$
\begin{equation*}
T=-W \cdot r \tan (\alpha-\phi)=W \cdot r \tan (\phi-\alpha) \tag{v}
\end{equation*}
$$

Efficiency of Screw-Jack

In article 3.9, the efficiency of nut and screw arrangement is given by

$$
\eta=\frac{\tan \alpha}{\tan (\alpha+\phi)} \text {. It is the efficiency for the upward motion. }
$$

Condition for Maximum Efficiency

We know that for η to be maximum

$$
\frac{d \eta}{d \alpha}=0
$$

Thus

$$
\frac{d \eta}{d \alpha}=0=\frac{\sec ^{2} \alpha \tan (\alpha+\phi)-\sec ^{2}(\alpha+\phi) \cdot \tan \alpha}{\tan ^{2}(\alpha+\phi)}
$$

$$
\sec ^{2} \alpha \cdot \tan (\alpha+\phi)-\sec ^{2}(\alpha+\phi) \cdot \tan \alpha=0
$$

$$
\frac{1}{\cos ^{2} \alpha} \cdot \frac{\sin (\alpha+\phi)}{\cos (\alpha+\phi)}-\frac{1}{\cos ^{2}(\alpha+\phi)} \cdot \frac{\sin \alpha}{\cos \alpha}=0
$$

$$
\frac{\sin (\alpha+\phi)}{\cos \alpha}-\frac{\sin \alpha}{\cos (\alpha+\phi)}=0
$$

$$
\sin (\alpha+\phi) \cdot \cos (\alpha+\phi)-\sin \alpha \cdot \cos \alpha=0
$$

$$
2 \sin (\alpha+\phi) \cos (\alpha+\phi)-2 \sin \alpha \cos \alpha=0
$$

$$
\begin{aligned}
\sin 2(\alpha+\phi) & =\sin 2 \alpha \\
2(\alpha+\phi) & =\pi-2 \alpha \\
\alpha & =\frac{\pi}{4}-\frac{\phi}{2}
\end{aligned}
$$

Again writing the expression for efficiency and substituting the value of $\alpha=\frac{\pi}{4}-\frac{\phi}{2}$

$$
\begin{aligned}
\eta_{\max } & =\frac{\tan \alpha}{\tan (\alpha+\phi)}=\frac{\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)}{\tan \left(\frac{\pi}{4}-\frac{\phi}{2}+\phi\right)}=\frac{\tan \left(45^{\circ}-\frac{\phi}{2}\right)}{\tan \left(45^{\circ}+\frac{\phi}{2}\right)} \\
& =\frac{\tan 45^{\circ}-\tan \frac{\phi}{2}}{1+\tan 45^{\circ} \tan \frac{\phi}{2}} \cdot \frac{1-\tan 45^{\circ} \cdot \tan \phi / 2}{\tan 45^{\circ}+\tan \phi / 2}=\frac{\left(1-\tan \frac{\phi}{2}\right)^{2}}{\left(1+\tan \frac{\phi}{2}\right)^{2}} \\
& =\frac{\left(1-\frac{\sin \frac{\phi}{2}}{\cos \frac{\phi}{2}}\right)^{2}}{\left(1+\frac{\sin \frac{\phi}{2}}{\cos \frac{\phi}{2}}\right)^{2}}=\frac{\left(\cos \frac{\phi}{2}-\sin \frac{\phi}{2}\right)^{2}}{\left(\cos \frac{\phi}{2}+\sin \frac{\phi}{2}\right)^{2}}=\frac{\cos ^{2} \frac{\phi}{2}+\sin ^{2} \frac{\phi}{2}-2 \sin \frac{\phi}{2} \cdot \cos \frac{\phi}{2} \frac{\phi}{2}+\sin ^{2} \frac{\phi}{2}+2 \sin \frac{\phi}{2} \cos \frac{\phi}{2}}{1-\sin \phi} \\
\eta_{\max } & =\frac{1+\sin \phi}{\left.1+\cos ^{2} \frac{\phi}{2}+\sin ^{2} \frac{\phi}{2}=1 \text { and } 2 \sin \frac{\phi}{2} \cdot \cos \frac{\phi}{2}=\sin \phi\right)}
\end{aligned}
$$

$$
d=d_{0}-\frac{p}{2}=d_{i}+\frac{p}{2}
$$

where
$d=$ mean diameter of the screw
$d_{0}=$ outside diameter of the screw
$d_{i}=$ inside diameter of the screw
NOTE Generally, the axial load W is taken up by the thrust collar of mean radius R, then total torque required to overcome friction is given by

$$
T=P . r+\mu_{1} W . R
$$

where μ_{1} is the coefficient of friction for the collar.

3.11 SCREW JACK WITH V-THREADS

In V-threads the axial load W does not act perpendicular to the surface of the threads. The axial component of the normal reaction R_{N} is kept equal to W, as shown in Fig. 3.9.

Fig. 3.9 V-thread.

$$
\begin{aligned}
2 \beta & =\text { Angle of the V-thread } \\
\beta & =\text { semi-angle of V-thread } \\
R_{N} \cos \beta & =W \\
R_{N} & =\frac{W}{\cos \beta}
\end{aligned}
$$

Frictional force tangential to the thread surface is given by

$$
=\mu R_{N}=\mu W / \cos \beta=\mu_{1} \cdot W
$$

where $\mu_{1}=\frac{\mu}{\cos \beta}$ and may be termed as virtual coefficient of friction. A given load may be lifted by applying lesser force by square threads as compared to V-threads. But V-threads are capable of taking more loads as compared to square threads.

3.12 OVER-HAULING AND SELF-LOCKING SCREWS

Refer this equation to lower the load, $P=W \tan (\phi-\alpha)$
If $\alpha>\phi$, the nut and the load placed on it will start
apply force to stop the downward placed on it will start moving downwards. It will be required to undesirable effect is removed by metion. Such a state is termed as over-hauling of screws. This

On the other hand, if $\phi>\alpha$ toeping the value of α always less than ϕ
load. This type of screw is termed as self-lill be positive, so an effort will be required to lower the angle ϕ must be greater than helix angle α.

Case II : Now consider the equilibrium of wedge B under the application of forces: (Refer to
Fig. $3 .{ }^{314)}$
(i) Reaction force M from side wall,
(ii) Load R^{\prime} applied on slider (wedge) downwards, and
(iii) The resultant reaction R_{1} from wedge

Applying Lami's theorem,

$$
\begin{aligned}
\frac{R_{1}}{\sin 90^{\circ}} & =\frac{M}{\sin [180-(\theta+\phi)]} \\
& =\frac{R^{\prime}}{\sin \{90+\theta+\phi\}} \\
R_{1} & =\frac{M}{\sin (\theta+\phi)}=\frac{R^{\prime}}{\cos (\theta+\phi)} \\
R^{\prime} & =R_{1} \cos (\theta+\phi)=\frac{F}{\sin (\theta+\phi)} \cos (\theta+\phi)
\end{aligned}
$$

Fig. 3.14
(substituting from equation (i) for R_{1})

Efficiency of the system

$$
\begin{aligned}
& \eta=\frac{R^{\prime}}{R}=\frac{F \cot (\theta+\phi)}{F \cot \theta} \\
& \eta=\frac{\cot (\theta+\phi)}{\cot \theta} ; \quad \text { where } \phi=\tan ^{-1} \mu
\end{aligned}
$$

3.14 FRICTION IN TURNING PAIRS-FRICTION CIRCLE

When a shaft rotates in a bearing some power is lost due to friction between the shaft and bearing surface. When the shaft is at rest in the bearing as shown in Fig. $3.15(a)$, the weight W of the rotating reaction R_{N} upwards. The radius of the journal is kept less than P is known as the seat of the fit tolerances which vary
pressure of the bearing.

When shaft (journal) rotates, say clockwise, the point of contact A will be shifted to the right ${ }^{\text {to }}$ point B as shown in Fig. $3.15(b)$. There will be two forces acting on the shaft at point B, the normal reaction R_{N} and the frictional force μR_{N} which act opposite to R which is inclined at an tangential at B. Th
angle ϕ with R_{N}.

(a) Stationary journal

(b) Rotating journal

Fig. 3.15

Let $\quad \phi=$ Angle between R and R_{N}
$T=$ Frictional torque
$r=$ Radius of journal $=O B$
$\mu=$ Coefficient of friction between the journal \& bearing.
Since there is no other force, so

$$
W=R
$$

Frictional torque can be written as

$$
\begin{aligned}
T & =W \cdot O E=W \cdot O B \sin \phi \\
& =W \cdot r \sin \phi=W \cdot r \tan \phi \quad(\because \sin \phi=\tan \phi \text { when } \phi \text { is very small }) \\
& =W \cdot r \cdot \mu \\
T & =\mu W r
\end{aligned}
$$

If a circle is drawn with O as centre and $O E$ as radius, it is called a friction circle. Power lost in friction is given by

$$
P=T . \omega \text { watt }
$$

where ω is the angular speed of shaft.

3.15 PIVOT AND COLLAR FRICTION

The rotating shafts are quite frequently subjected to axial load which is known as thrust. This axial load produces lateral motion of the shaft along its axis which is not desirable. In order to prevent the lateral motion of shaft one or more bearing surfaces called pivots and collars are provided. These surfaces may be flat or conical. A bearing pivot, and a collar is provided along with thing surface provided at the end of a shaft is known as shown in Fig. 3.16. The collars and pivots the length of shaft with bearing surface of revolution as steam turbines, propeller shafts of ships take the axial load of the shaft. For example, the shafts of bearing is at the end of vertical shaft, it is called an axial thrust on pivot or collars. When the the shaft and the bearing which leads is called foot step bearing. There is some friction between nome loss of power.

6.8. PIVOT AND COLLAR BEARING

The rotating shafts are frequently subjected to axial thrust. These shafts can be kept in correct axial position if bearing surfaces are provided. The bearing surfaces which are flat or conical carry the axial thrust. The bearing surfaces placed at the end of a shaft are known as pivots. The pivot may have a flat surface or a conical surface or truncated conical surface as hown in Fig. 6.8 (a), (b) and (c) respectively.

(a)

(b)

(c)

Fig. 6.8
The bearing surfaces provided at any position along the shaft (but not at the end of the shaft), to carry the axial thrust, is known as collar. The surface of the collar may be flat (normal to the axis of shaft) or of conical shape as shown in Fig. 6.9 (a) and (b) respectively. The collar bearings are also known as thrust bearings.

Coilared bearing
(a)

(b)

Fig. 6.9

For a new bearing, the contact between the whole surface. This means that the pressure over the rubbing surfag may be good over the uniformly distributed. But when the bearing becomes old, all parts of may be assumed as not move with the same velocity and hence the wear will be different rubbing surfaces will pressure distribution will not be uniform. The rate of wear of surfaces at different radii. The sure and the rubbing velocities between the surfaces.

The design of bearings is based on the following assumptions though neither of them is strictly true:
(i) the pressure is uniformly distributed over the bearing surfaces, and
(ii) the wear is uniform over the bearing surface.

The power lost, due to friction in pivot and collar bearings, are calculated on the above two assumptions.

6.9. FLAT PIVOT

The bearing surface placed at the end of the shaft is known as pivot. If the surface is flat as shown in Fig. 6.10, then the bearing surface is called flat pivot or foot-step. There will be friction along the surface of contact between the shaft and bearing. The power lost can be obtained by calculating the torque.

Let $W=$ Axial load, or load transmitted to the bearing surface,
$R=$ Radius of pivot,
$\mu=$ Co-efficient of friction,
$p=$ Intensity of pressure in $\mathrm{N} / \mathrm{m}^{2}$, and
$T=$ Total frictional torque.
Consider a circular ring of radius r and thickness $d r$ as shown in Fig. 6.10.
\therefore Area of ring $\quad=2 \pi r . d r$
We will consider the two cases, namely
(i) case of uniform pressure over bearing surface and
(ii) cise of uniform wear over bearing surface.
6.9.1. Case of Uniform Pressure. When the pressure is assumed to be uniform over the bearing surface, then intensity of pressure (p) is given by

$$
p=\frac{\text { Axial load }}{\text { Area of crosssection }}=\frac{W}{\pi R^{2}}
$$

Fig. 6.10

Now let us find the load transmitted to the ring and also frictional torque on the ring. Load transmitted to the ring,

$$
\begin{aligned}
d W & =\text { Pressure on the ring } \times \text { Area of ring } \\
& =p \times 2 \pi r d r
\end{aligned}
$$

Frictional force* on the ring,

$$
d W=\mu \times \text { load on ring }
$$

*Load on the ring is vertically downward. Hence frictional force on the ring will be equal to $\mu \times$ normal reaction i.e., $\mu \times$ load on ring. Here normal reaction on the ring is equal to load on the ring. Hence frictional force on ring, $d F=\mu \times d W$.

$$
=\mu \times p \times 2 \pi r d r
$$

\therefore Frictional torque on the ring

$$
=\text { Friction force } \times \text { Radius of ring }=d F \times r
$$

$\therefore \quad$ Frictional torque, $\quad d T=\mu \times p \times 2 \pi r d r \times r$

$$
=2 \pi \mu p r^{2} d r
$$

The total frictional torque (T) will be obtained by integrating the above equation from 0 to R.
\therefore Total frictional torque, $T=\int_{0}^{R} 2 \pi \mu p r^{2} d r$

$$
\begin{align*}
& =2 \pi \mu p \int_{0}^{R} r^{2} d r \quad(\because \mu \text { and } p \text { are constant }) \\
& =2 \pi \mu p\left[\frac{r^{3}}{3}\right]_{0}^{R}=2 \pi \mu p\left[\frac{R^{3}}{3}\right]=\frac{2}{3} \pi \mu p R^{3} \\
& =\frac{2}{3} \pi \times \mu \times \frac{W}{\pi R^{2}} \times R^{3} \quad\left(\because \text { From }(i), p \frac{W}{\pi R^{2}}\right) \\
& =\frac{2}{3} \mu W R \tag{6.2}
\end{align*}
$$

$\therefore \quad$ Power lost in friction $\quad=T \times \omega$

$$
\begin{array}{ll}
=T \times \frac{2 \pi N}{60} & \left(\because \omega=\frac{2 \pi N}{60}\right) \\
=\frac{2 \pi N T}{60} & \ldots(6.3) \tag{6.3}
\end{array}
$$

6.9.2. Case of Uniform Wear. For the uniform wear of the bearing surface, the load transmitted to the various circular rings should be same (or should be constant). But load transmitted to any circular ring is equal to the product of pressure and area of the ring. Hence for uniform wear, the product of pressure and area of ring should be constant. Area of the ring is directly proportional to the radius of the ring. Hence for uniform wear, the product of pres sure and radius should be constant or $p \times r=$ constant.

$$
\begin{align*}
& \text { Hence for uniform wear, we have } \\
& \qquad p \times r=\text { Constant } \tag{6.4}\\
& \therefore \quad p=\frac{C}{r} \tag{i}
\end{align*}
$$

Now we know that load transmitted to the ring

$$
\begin{align*}
& =\text { Pressure } \times \text { Area or ring } \\
& =p \times 2 \pi r d r \\
& =\frac{C}{r} \times 2 \pi r d r \quad\left[\because \text { From }(i), p=\frac{C}{r}\right] \tag{ii}\\
& =2 \pi C d r
\end{align*}
$$

Total load transmitted to the bearing, is obtained by integrating the above equation from 0 to R.
\therefore Total load transmitted to the bearing

$$
\begin{aligned}
& =\int_{0}^{R} 2 \pi C d r=2 \pi C \int_{0}^{R} d r=2 \pi C[r]_{0}^{R} \\
& =2 \pi C R
\end{aligned}
$$

$$
\therefore \quad 2 \pi C R=W
$$

or

$$
\begin{equation*}
C=\frac{W}{2 \pi R} \tag{iii}
\end{equation*}
$$

Now frictional force on the ring,

$$
\begin{aligned}
d F & =\mu \times \text { Load on ring }=\mu \times d W \\
& =\mu \times 2 \pi C d r
\end{aligned}
$$

Hence frictional torque on the ring,
$[\because$ From $(i i)$, load on ring $=2 \pi C d r]$

$$
\begin{aligned}
d T & =\text { Frictional force on ring } \times \text { radius } \\
& =\mu \times 2 \pi C d r \times r
\end{aligned}
$$

\therefore Total frictional torque, $T=\int_{0}^{R} d T$

$$
\begin{array}{rlr}
& =\int_{0}^{R} \mu \times 2 \pi C r d r & \\
& =2 \pi \mu C \int_{0}^{R} r d r & \quad[\mu \text { and } C \text { are constant] } \\
& =2 \pi \mu C\left[\frac{r^{2}}{2}\right]_{0}^{R}=2 \pi \mu C \times \frac{R^{2}}{2} & \\
& =2 \pi \mu \times \frac{W}{2 \pi R} \times \frac{R^{2}}{2} & \quad\left[\because \text { From (iii),C }=\frac{W}{2 \pi R}\right] \\
T & =\frac{1}{2} \times \mu W R & \tag{6.5}
\end{array}
$$

$$
\therefore \text { Power lost in friction } \quad=T \times \omega=\frac{2 \pi N T}{60}
$$

Problem 6.2. Find the power lost in friction assuming (i) uniform pressure and (ii) uniform wear when a vertical shaft of 100 mm diameter rotating at 150 r.p.m. rests on a flat end foot step bearing. The co-efficient of friction is equal to 0.05 and shaft carries a vertical load of 15 kN .

Sol. Given :

Diameter, $D=100 \mathrm{~mm}=0.1 \mathrm{~m} \quad \therefore \quad R=\frac{0.1}{2}=0.05 \mathrm{~m}$
Speed, $N=150$ r.p.m., Friction co-efficient, $\mu=0.05$
Load, $W=15 \mathrm{kN}=15 \times 10^{3} \mathrm{~N}$
(i) Power lost in friction assuming uniform pressure

For uniform pressure, frictional torque is given by equation (6.2) as

$$
\begin{aligned}
T & =\frac{2}{3} \mu W R \\
& =\frac{2}{3} \times 0.05 \times 15 \times 10^{3} \times 0.05 \mathrm{Nm}=25 \mathrm{Nm} \\
\text { Power lost in friction } & =\frac{2 \pi N T}{60} \\
& =\frac{2 \pi \times 150 \times 25}{60} \mathrm{~W}=392.7 \mathrm{~W} . \text { Ans. }
\end{aligned}
$$

(ii) Power lost in friction assuming uniform wear

For uniform wear, the frictional torque is piven

6.10. CONICAL PIVOT

$$
\begin{aligned}
T & =\frac{1}{2} \mu W R \\
& =\frac{1}{2} \times 0.05 \times 15 \times 10^{3} \times 0.05 \mathrm{Nm}=18.75 \mathrm{Nm} \\
& =\frac{2 \pi N T}{60} \\
& =\frac{2 \pi \times 150 \times 18.75}{60} \mathrm{~W}=294.5 \mathrm{~W} . \text { Ans. }
\end{aligned}
$$

The bearing surface placed at the end of a shaft and having a conical surface, is known as conical pivot
as shown in Fig. 6.11.

Let $W=$ Axial load, or load transmitted to the bearing surface
$\mu=$ Co-efficient of friction
$R=$ Radius of shaft
$\alpha=$ Semi-angle of the cone
$p=$ Pressure intensity normal to the cone surface.
Consider a circular ring of radius r and thickness $d r$. The actual thickness of the sloping ring will be $\frac{d r}{\sin \alpha}$ as shown in Fig. 6.11 (b) in which $A B=d r$ on enlarged scale, angle $A C B=\alpha$ and sloping length of ring $=A C=\frac{A B}{\sin \alpha}=\frac{d r}{\sin \alpha}$.
\therefore Area of ring along conical surface
$=2 \pi r \times$ Actual thickness of sloping ring

$$
=2 \pi r \times \frac{d r}{\sin \alpha}
$$

Fig. 6.11

Now we will consider two cases namely :
(i) Case of uniform pressure
(ii) Case of uniform wear.
6.10.1. Case of Uniform Pressure. Let us first find the load acting on the circular ring, normal to the conical surface.
\therefore Load on the ring normal to conical surface, $d W^{*}=$ Pressure \times Area of ring along conical surface $=p \times 2 \pi r \times \frac{d r}{\sin \alpha}$

Vertical component of the above load [Refer to Fig. 6.11 (c)]

$$
\begin{aligned}
d W & =\left[p \times 2 \pi r \times \frac{d r}{\sin \alpha}\right] \times \sin \alpha \\
& =p \times 2 \pi r \times d r
\end{aligned}
$$

$$
\left(\because \quad d W=d W^{*} \sin \alpha\right)
$$

\therefore Total vertical load transmitted to the bearing

$$
\begin{align*}
& =\int_{0}^{R} p \times 2 \pi r \times d r \\
& =p \times 2 \pi \int_{0}^{R} r d r \quad(\because \quad \text { pressure is uniform and hence constant }) \tag{6.6}\\
& =p \times 2 \pi \times\left[\frac{r^{2}}{2}\right]_{0}^{R}=p \times 2 \pi \times \frac{R^{2}}{2}=p \times \pi R^{2}
\end{align*}
$$

But total vertical load transmitted is also $=W$

$$
\therefore \quad W=p \times \pi R^{2}
$$

Also

$$
\begin{equation*}
p=\frac{W}{\pi R^{2}} \tag{i}
\end{equation*}
$$ cone.

The above equation shows that pressure intensity is independent of the angle of the Now the frictional force on the ring along the conical surface,

$$
\begin{aligned}
d F & =\mu \times \text { Loan on ring normal to conical surface }=\mu \times d W^{*} \\
& =\mu \times\left(p \times 2 \pi r \times \frac{d r}{\sin \alpha}\right)
\end{aligned}
$$

\therefore Moment of this frictional force about the shaft axis $(d T)$

$$
\begin{align*}
& =\text { Frictional torque on the ring } \\
& =\text { Frictional force } \times \text { Radius }=d F \times r \\
& =\mu \times\left(p \times 2 \pi r \times \frac{d r}{\sin \alpha}\right) \times r \tag{6.7}
\end{align*}
$$

Total moment of the frictional force about the shaft axis or total frictional torque on the conical surface is obtained by integrating the above equation from 0 to R.
\therefore Total frictional torque,

$$
\begin{array}{rlr}
T & =\int_{0}^{R} \mu \times p \times 2 \pi r \times \frac{d r}{\sin \alpha} \times r \\
& =\frac{2 \pi \times \mu \times p}{\sin \alpha} \int_{0}^{R} r^{2} d r \quad(\because \quad \mu, p \text { and } \alpha \text { are constant }) \\
& =\frac{2 \pi \times \mu \times p}{\sin \alpha}\left[\frac{r^{3}}{3}\right]_{0}^{R} \frac{2 \pi \times \mu \times p}{\sin \alpha} \times \frac{R^{3}}{3} & \\
& =\frac{2 \pi \times \mu}{\sin \alpha} \times \frac{W}{\pi R^{2}} \times \frac{R^{3}}{3} & \quad\left[\because \quad \text { From }(i i), p=\frac{W}{\pi R^{2}}\right] \\
& =\frac{2}{3} \times \frac{\mu W R}{\sin \alpha} \tag{6.8}
\end{array}
$$

\therefore Power lost in friction $=\frac{2 \pi N T}{60}$.
6.10.2. Case of Uniform Wear. From equation (6.4), for uniform wear, we know that

$$
\begin{array}{ll}
& p \times r=\text { Constant }(\text { say }=C) \\
\therefore \quad & p \times r=C
\end{array}
$$

From equation (6.6), total vertical load transmitted to the bearing

$$
\begin{aligned}
& =\int_{0}^{R} p \times 2 \pi r \times d r \\
& =\int_{0}^{R} \frac{C}{r} \times 2 \pi r \times d r \\
& =2 \pi \times C \int_{0}^{R} d r=2 \pi \times C[r]_{0}^{R} \\
& =2 \pi \times C \times R
\end{aligned}
$$

or

$$
p=\frac{C}{r}
$$

$$
\left(\because \quad p=\frac{C}{r}\right)
$$

But total vertical load transmitted to the bearing is also equal to W

$$
\begin{aligned}
\therefore \quad W & =2 \pi \times C \times R \\
C & =\frac{W}{2 \pi R}
\end{aligned}
$$

Now the frictional torque on the ring is given by the equation (6.7) as
\therefore Total frictional torque,

$$
\begin{align*}
T & =\int_{0}^{R} d T=\int_{0}^{R} 2 \pi \mu \times \frac{W}{2 \pi R} \times r \times \frac{d r}{\sin \alpha} \\
& =2 \pi \mu \times \frac{W}{2 \pi R} \times \frac{1}{\sin \alpha} \int_{0}^{R} r d r=2 \pi \mu \times \frac{W}{2 \pi R} \times \frac{1}{\sin \alpha} \times \frac{R^{2}}{2} \\
& =\frac{1}{2} \times \frac{\mu W R}{\sin \alpha} \tag{6.9}
\end{align*}
$$

\therefore Power lost in friction $=\frac{2 \pi N T}{60}$.
6.10.3. Truncated Conical Pivot. Fig. 6.12 shows the truncated conical pivot of external and internal radii as r_{1} and r_{2}.
(i) Case of Uniform Pressure

Total vertical load transmitted to the bearing is obtained from equation (6.6) in which imits of integration are from r_{2} to r_{1}.

$$
\begin{aligned}
& d T=\mu \times p \times 2 \pi r \times \frac{d r}{\sin \alpha} \times r \\
& =\mu \times \frac{C}{r} \times 2 \pi r \times \frac{d r}{\sin \alpha} \times r \quad\left(\because p=\frac{C}{r} \text { for uniform wear }\right) \\
& =2 \pi \mu C \times r \times \frac{d r}{\sin \alpha} \\
& =2 \pi \mu \times \frac{W}{2 \pi R} \times r \times \frac{d r}{\sin \alpha} \quad\left(\because C=\frac{W}{2 \pi R}\right)
\end{aligned}
$$

\therefore Total vertical load transmitted to the bearing

$$
\begin{aligned}
& =\int_{r_{2}}^{r_{1}} p \times 2 \pi r \times d r \\
& =p \times 2 \pi \int_{r_{2}}^{r_{1}} r \times d r \\
& \quad(p \text { is constant for uniform pressure }) \\
& =p \times 2 \pi\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}}=p \times 2 \pi\left[\frac{r_{1}^{2}-r_{2}^{2}}{2}\right]
\end{aligned}
$$

But total vertical load $=W$

$$
\therefore \quad W=p \times 2 \pi\left[\frac{r_{1}^{2}-r_{2}^{2}}{2}\right]=p \times \pi\left[r_{1}^{2}-r_{2}^{2}\right]
$$

or

$$
p=\frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}
$$

Fig. 6.12

Total frictional torque on the....(6.9 A) tion (6.7) from r_{2} to r_{1}.

$$
\begin{align*}
\therefore \quad & =\int_{r_{2}}^{r_{1}} \mu \times p \times 2 \pi r \times \frac{d r}{\sin \alpha} \times r \\
& =\frac{2 \mu \times \pi \times p}{\sin \alpha} \int_{r_{2}}^{r_{1}} r^{2} d r \quad \quad(\mu, p \text { and } \alpha \text { are constant) } \\
& =\frac{2 \pi \times \mu \times p}{\sin \alpha}\left[\frac{r^{3}}{3}\right]_{r_{2}}^{r_{1}} \frac{2 \pi \times \mu \times p}{\sin \alpha}\left[\frac{r_{1}^{3}-r_{2}^{3}}{3}\right] \quad \\
& \left.=\frac{2 \pi \times \mu}{\sin \alpha} \times \frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)} \times \frac{r_{1}^{3}-r_{2}^{3}}{3}\right] \quad\left[\because \quad \text { From }(6.9 \mathrm{~A}), p=\frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}\right] \\
& =\frac{2}{3} \frac{\mu W}{\sin \alpha} \times\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \tag{6.10}
\end{align*}
$$

(ii) Case of Uniform Wear

For uniform wear, $p \times r=C$
or

$$
p=\frac{C}{r}
$$

The total vertical load transmitted io the bearing is obtained from equation (6.6) in which limits of integration are from r_{2} to r_{1}.
\therefore Total vertical load transmitted

$$
\begin{aligned}
& =\int_{r_{2}}^{r_{1}} p \times 2 \pi r \times d r \\
& =\int_{r_{2}}^{r_{1}} \frac{C}{r} \times 2 \pi r \times d r \\
& =2 \pi C \int_{r_{2}}^{r_{1}} d r=2 \pi C[r]_{r_{2}}^{r_{1}}=2 \pi C\left[r_{1}-r_{2}\right]
\end{aligned}
$$

But total vertical load $=W$
or

$$
\begin{aligned}
W & =2 \pi C\left[r_{1}-r_{2}\right] \\
C & =\frac{W}{2 \pi\left[r_{1}-r_{2}\right]}
\end{aligned}
$$

The total frictional torque for uniform wear is obtained by integrating the equation (6.8A) from r_{2} to r_{1}.
\therefore Total frictional torque,

$$
\begin{aligned}
T & =\int_{r_{2}}^{r_{1}} 2 \pi \mu \times C \times r \times \frac{d r}{\sin \alpha} \\
& =\int_{r_{2}}^{r_{1}} 2 \pi \mu \times \frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \times r \times \frac{d r}{\sin \alpha} \quad\left(\because C=\frac{W}{2 \pi\left(r_{1}-r_{2}\right)}\right)
\end{aligned}
$$

$$
T=\frac{2 \pi \mu \times W}{2 \pi\left(r_{1}-r_{2}\right)} \times \frac{1}{\sin \alpha} \int_{r_{2}}^{r_{1}} r d r
$$

$$
=\frac{\mu W}{\left(r_{1}-r_{2}\right)} \times \frac{1}{\sin \alpha}\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}} \frac{\mu W}{\left(r_{1}-r_{2}\right)} \times \frac{1}{\sin \alpha}\left[\frac{r_{1}^{2}-r_{2}^{2}}{2}\right]
$$

$$
\begin{equation*}
=\frac{1}{2} \times \frac{\mu W}{\sin \alpha}\left(r_{1}+r_{2}\right) \tag{6.11}
\end{equation*}
$$

Problem 6.3. A conical pivot with angle of cone as 120°, supports a vertical shaft of diameter 300 mm . It is subjected to a load of 20 kN . The co-efficient of friction is 0.05 and the speed of shaft is 210 r.p.m. Calculate the power lost in friction assuming (i) uniform pressure and (ii) uniform wear.

Sol. Given :

$$
\begin{array}{rlrl}
2 \alpha & =120^{\circ} & \therefore & \alpha=60^{\circ} ; \\
D & =300 \mathrm{~mm}=0.3 \mathrm{~m} \quad \therefore & R=0.15 \mathrm{~m} ; \\
W & =20 \mathrm{kN}=20 \times 10^{3} \mathrm{~N} ; & & \mu=0.05 ; \\
N & =210 \text { r.p.m. }
\end{array}
$$

(i) Power lost in friction for uniform pressure

The frictional torque is given by equation (6.8) as

$$
\begin{aligned}
T & =\frac{2}{3} \times \frac{\mu W R}{\sin \alpha} \\
& =\frac{?}{3} \wedge \frac{0.05 \times 20 \times 10^{3} \times 0.15}{\sin 60^{\circ}}=115.53 \mathrm{Nm} \\
\therefore \quad \text { Power lost } \quad & =\frac{2 \pi N T}{60} \\
& =\frac{2 \pi \times 210 \times 115.53}{60}=2540.6 \mathrm{~W}=\mathbf{2 . 5 4} \mathbf{k W} . \text { Ans. }
\end{aligned}
$$

(ii) Power lost in friction for uniform wear

The friction torque is given by equation (6.9) as

$$
T=\frac{1}{2} \times \frac{\mu W R}{\sin \alpha}
$$

$$
=\frac{1}{2} \times \frac{0.05 \times 20 \times 10^{3} \times 0.15}{\sin 60^{\circ}}=86.60 \mathrm{Nm}
$$

\therefore Power lost $\quad=\frac{2 \pi N T}{60}$

$$
=\frac{2 \pi \times 210 \times 86.6}{60}=1904.4 \mathrm{~W}=1.9044 \mathrm{~kW} . \text { Ans. }
$$

Problem 6.4. A load of $25 k N$ is supported by a conical pivot with angle of cone as 120°. The intensity of pressure is not to exceed $350 \mathrm{kN} / \mathrm{m}^{2}$. The external radius is 2 times the internal radius. The shaft is rotating at 180 r.p.m. and co-efficient of friction is 0.05 . Find the power absorbed in friction assuming uniform pressure.

Sol. Given :
Load, $W=25 \mathrm{kN}=25 \times 10^{3} \mathrm{~N}$; Angle of cone, $2 \alpha=120^{\circ}$ or $\alpha=60^{\circ}$
Pressure, $p=350 \mathrm{kN} / \mathrm{m}^{2}=350 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$; External radius $=2 \times$ internal radius
Hence $r_{1}=2 r_{2}$; Speed, $N=180$ r.p.m. ; and $\mu=0.05$
Using equation (6.9A) for uniform pressure, we get
or

$$
p=\frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}
$$

$$
350 \times 10^{3}=\frac{25 \times 10^{3}}{\pi\left[\left(2 r_{2}\right)^{2}-r_{2}^{2}\right]}
$$

$$
\left(\because \quad r_{1}=2 r_{2}\right)
$$

or

$$
\begin{aligned}
{\left[\left(2 r_{2}\right)^{2}-r_{2}^{2}\right] } & =\frac{25}{\pi \times 350} \\
& =0.02273
\end{aligned}
$$

or

$$
3 r_{2}^{2}=0.02273
$$

or

$$
r_{2}=\sqrt{\frac{0.02273}{3}}=0.087 \mathrm{~m}
$$

$$
\therefore \quad r_{1}=2 r_{2}=2 \times 0.087=0.174 \mathrm{~m}
$$

To find the power absorbed in friction, first calculate the total frictional torque when pressure is uniform.

Frictional torque when pressure is uniform is given by equation (6.10) as

$$
\begin{aligned}
T & =\frac{2}{3} \times \frac{\mu W}{\sin \alpha} \times\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \\
& =\frac{2}{3} \times \frac{0.05 \times 25 \times 10^{3}}{\sin 60^{\circ}}\left(\frac{0.174^{3}-0.087^{3}}{0.174^{2}-0.087^{2}}\right) \\
& =962.278\left(\frac{0.005268-0.0006585}{0.03027-0.007569}\right)=962.278\left(\frac{0.0046095}{0.0227}\right) \\
& =195.37 \mathrm{Nm}
\end{aligned}
$$

$\therefore \quad$ Power absorbed in friction,

$$
P=\frac{2 \pi N T}{60}=\frac{2 \pi \times 180 \times 195.37}{60}=3682.6 \mathrm{~W}=3.6826 \mathrm{~kW} . \text { Ans. }
$$ not at the end of the shaft), to carry axing surface provided at any position along the shaft (but If the surface is flat, then bearing surface is thrust is known as collar which may be flat or conical. collar bearings are also known as thrust bearing the torqu as flat collar as shown in Fig. 6.13. The

Fig. 6.13
Let $r_{1}=$ External radius of collar
$r_{2}=$ Internal radius of collar
$p=$ intensity of pressure
$W=$ Axial load or total load transmitted to the bearing surface
$\mu=$ Co-efficient of friction
$T=$ Total frictional torque
Consider a circular ring of radius r and thickness $d r$ as shown in Fig. 6.13 (a).
\therefore Area of ring

$$
\begin{align*}
& =2 \pi r d r \\
& =\text { Pressure } \times \text { Area of ring } \\
& =p \times 2 \pi r d r \tag{i}
\end{align*}
$$

Fig. 6.13 (a)

Load on the ring $\quad=$ Pressure \times Area of ring
Frictional force on the ring $=\mu \times$ Load on ring

$$
=\mu \times p \times 2 \pi r d r
$$

Frictional torque on the ring, $d T=$ Frictional force \times Radius

$$
\begin{aligned}
& =(\mu \times p \times 2 \pi r d r) \times r \\
& =2 \pi \mu p r^{2} d r
\end{aligned}
$$

\therefore Total frictional torque,

$$
\begin{align*}
T & =\int_{r_{2}}^{r_{1}} d T \\
& =\int_{r_{2}}^{r_{1}} 2 \pi \mu p r^{2} d r \tag{ii}
\end{align*}
$$

(i) Uniform Pressure
$p=$ Constant
Total load transmitted to the bearing

$$
=\int_{r_{2}}^{r_{1}} \text { Load on ring }
$$

$$
\begin{aligned}
W & =\int_{r_{2}}^{r_{1}} p \times 2 \pi r d r \quad(\because \quad \text { Load on ring from }(i)=p \times 2 \pi r d r) \\
& =p \times 2 \pi \int_{r_{2}}^{r_{1}} r d r \\
& =2 \pi p\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}}=2 \pi p\left[\frac{r_{1}^{2}-r_{2}^{2}}{2}\right]=\pi \times p\left[r_{1}^{2}-r_{2}^{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad p=\frac{W}{\pi\left[r_{1}^{2}-r_{2}^{2}\right]} \tag{6.12}
\end{equation*}
$$

Total frictional torque is given by equation (ii),

$$
\begin{align*}
\therefore & =\int_{r_{2}}^{r_{1}} 2 \pi \mu p r^{2} d r \\
& =2 \pi \mu p \int_{r_{2}}^{r_{1}} r^{2} d r \quad \quad(\because p \text { is constant }) \\
& =2 \pi \mu p\left[\frac{r^{3}}{3}\right]_{r_{2}}^{r_{1}} \quad \quad\left[\operatorname{But} \text { from }(6.12), p=\frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}\right] \\
& =2 \pi \mu p\left[\frac{r_{1}^{3}-r_{2}^{3}}{3}\right]=2 \pi \mu \times \frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)} \times\left(\frac{r_{1}^{3}-r_{2}^{3}}{3}\right) \\
& =\frac{2}{3} \mu W\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right] \quad \ldots(6.13) \tag{6.13}
\end{align*}
$$

\therefore Power lost in friction,

$$
P=\frac{2 \pi N T}{60}
$$

(ii) Uniform Wear

$$
\begin{array}{rrrl}
& p \times r & =\text { constant } \\
\therefore & p & =\frac{C}{r}
\end{array}
$$

Total load transmitted to the bearing

$$
\begin{align*}
& =\int_{r_{2}}^{r_{1}} \text { Load on ring }=\int_{r_{2}}^{r_{1}} p \times 2 \pi r d r \\
\therefore \quad W & =\int_{r_{2}}^{r_{1}} p \times 2 \pi r d r \\
& =\int_{r_{2}}^{r_{1}} \frac{C}{r} \times 2 \pi r d r \\
& =2 \pi C \int_{r_{2}}^{r_{1}} d r \\
& =2 \pi C[r]_{r_{2}}^{r_{1}}=2 \pi C\left[r_{1}-r_{2}\right] \\
C & =\frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \tag{iii}
\end{align*} \quad(\because \quad C \text { is constant })
$$

Total frictional torque is given by equation (ii),

$$
\begin{align*}
& T=\int_{r_{2}}^{r_{1}} 2 \pi \mu p r^{2} d r \\
&\left.=2 \pi \mu \int_{r_{2}}^{\prime_{1}} p r^{2} d r \quad \quad \text { (Here } p \text { is not constant it is }=\frac{C}{r}\right) \\
&=2 \pi \mu \int_{r_{2}}^{r_{1}} \frac{C}{r} r^{2} d r \\
&=2 \pi \mu \int_{r_{2}}^{r_{1}} C r d r=2 \pi \mu C \int_{r_{2}}^{r_{1}} r d r \quad(C \text { is constant }) \\
&=2 \pi \mu C\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}}=2 \pi \mu C\left[\frac{r_{2}^{2}-r_{1}^{2}}{2}\right] \quad\left[\because C=\frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \text { from (iii) }\right] \\
&=2 \pi \mu \times \frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \times\left[\frac{r_{2}{ }^{2}-r_{1}^{2}}{2}\right] \quad[\because(6.14) \\
&=\frac{\mu W}{2}\left(r_{1}+r_{2}\right) \quad \tag{6.14}
\end{align*}
$$

\therefore Power lost in friction

$$
P=\frac{2 \pi N T}{60}
$$

If the axial load on the bearing is too great, then the bearing pressure on the collar will become more than the limiting bearing pressure which is approximately equal to $400 \mathrm{kN} / \mathrm{m}^{2}$. Hence to reduce the intensity of pressure on collar, two or more collars are used (or multi-collars are used) as shown in Fig. 6.14.

If $n=$ number of collars in multi-collar bearing, then
(i) $n=\frac{\text { Total load }}{\text { Load permissible on one collar }}$
(ii) $p=$ Intensity of the uniform pressure

$$
\begin{aligned}
& =\frac{\text { Load }}{\text { No. of collars } \times \text { Area of one-collar }} \\
& =\frac{W}{n \times \pi\left[r_{1}^{2}-r_{2}^{2}\right]}
\end{aligned}
$$

(iii) Total torque transmitted remains constant i.e.,

$$
T=\frac{2}{3} \times \mu W\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right]
$$

Fig. 6.14

Note. The frictional torque for uniform pressure is greater than that of uniform wear. Hence for safe design of bearing surfaces when power lost in friction is to be determined and no assumption is mentioned, assume uniform pressure. But when power transmitted is to be determined and no assumption is stated, assume uniform wear.
150 Problem 6.5. In a collar thrust bearing the external and internal radii are 250 mm and efficient respectively. The total axial load is 50 kN and shaft is rotating at 150 r.p.m. The corient of friction is equal to 0.05 . Find the power lost in friction assuming uniform pressure.

Sol. Given :
External radius, $\quad r_{1}=250 \mathrm{~mm}=0.25 \mathrm{~m}$
Internal radius, $\quad r_{2}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
Total axial load, $\quad W=50 \mathrm{kN}=50 \times 10^{3} \mathrm{~N}$
Speed,

$$
N=150 \mathrm{r} . \mathrm{p} . \mathrm{m}
$$

Co-efficient of friction, $\mu=0.05$
For uniform pressure, the total frictional torque is given by equation (6.13), as

$$
\begin{aligned}
T & =\frac{2}{3} \mu W\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right] \\
& =\frac{2}{3} \times 0.05 \times 50 \times 10^{3}\left[\frac{0.25^{3}-0.15^{3}}{0.25^{2}-0.15^{2}}\right] \\
& =1666.67 \times\left(\frac{0.015625-0.003375}{0.0625-0.0225}\right)=1666.67 \times \frac{0.01225}{0.04} \\
& =51.0 .42 \mathrm{Nm}
\end{aligned}
$$

\therefore Power lost in friction, $\quad P=\frac{2 \pi N T}{60}$

$$
=\frac{2 \pi \times 150 \times 510.42}{60}=8017.6 \mathrm{~W}=8.0176 \mathrm{~kW} . \text { Ans. }
$$

Problem 6.6. In a thrust bearing the external and internal radii of the contact surfaces are 210 mm and 160 mm respectively. The total axial load is 60 kN and co-efficient of friction $=0.05$. The shaft is rotating at 380 r.p.m. Intensity of pressure is not to exceed $350 \mathrm{kN} / \mathrm{m}^{2}$. Calculate:
(i) power lost in overcoming the friction and
(ii) number of collars required for the thrust bearing.

Sol. Given :
External radius,

$$
r_{1}=210 \mathrm{~mm}=0.21 \mathrm{~m}
$$

Internal radius,
Total axial load, $r_{2}=160 \mathrm{~mm}=0.16 \mathrm{~m}$

Co-efficient of friction,

$$
W=60 \mathrm{kN}=60 \times 10^{3} \mathrm{~N}
$$

Speed,

$$
\mu=0.05
$$

Intensity of pressure,

$$
\begin{aligned}
& N=380 \text { r.p.m. } \\
& p=350 \mathrm{kN} / \mathrm{m}^{2}=350 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Here the power lost in overcoming the friction is to be determined. Also no assumption is mentioned. Hence it is safe to assume uniform pressure.
(i) Power lost in overcoming friction

For uniform pressure, total frictional torque is given by equation (6.13) as

$$
\begin{aligned}
T & =\frac{2}{3} \mu W\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right] \\
& =\frac{2}{3} \times 0.05 \times 60 \times 10^{3}\left[\frac{0.21^{3}-0.16^{3}}{0.21^{2}-0.16^{2}}\right] \\
& =2000 \times\left[\frac{0.009261-0.004096}{0.0441-0.0256}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \qquad=2000 \times \frac{0.005165}{0.0185}=558.378 \mathrm{Nm} \\
& \therefore \quad \text { Power lost in friction, } \quad P=\frac{2 \pi N T}{60} \\
& \therefore \\
& \therefore \\
& \text { (ii) Number of collars required. }
\end{aligned}
$$

Number of collars, $\quad n=\frac{\text { Total load }}{\text { Load per collar }}$
Now load per collar for uniform pressure is obtained from equation*(6.12), as

$$
p=\frac{W^{*}}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}
$$

where W^{*} is the load per collar.

$$
\begin{aligned}
\therefore \quad W^{*} & =p \times \pi\left(r_{1}{ }^{2}-r_{2}^{2}\right) \\
& =350 \times 10^{3} \times \pi\left(0.21^{2}-0.16^{2}\right) \\
& =350 \times 10^{3} \times \pi(0.0441-0.0256)=20341.8 \mathrm{~N} \\
\therefore \quad \text { Number of collars } & =\frac{\text { Total load }}{\text { Load per collar }} \\
& =\frac{W}{W^{*}}=\frac{60 \times 10^{3}}{203418}=2.95=3 \text { collars. Ans. }
\end{aligned}
$$

6.11. FRICTION CLUTCHES

The device used to transmit the rotary motion of one shaft to another, the axes of which are coincident, is known a clutch or friction clutch. With the help of friction clutch, the power is transmitted from one shaft to another shaft which must be started and stopped frequently as in the case of automobile for automotive purposes. The engine shaft and gear box shaft is connected with the help of friction clutches.

The following types of friction clutches are mostly used :
(i) Disc clutch or single plate clutch, (ii) Multi-plate clutch, and
(iii) Cone clutch.

The principle of disc and cone clutches are came as that of the pivot and collar bearings. Though cone clutches and multiple-disc clutch are no longer in use for power transmission of power directly from the engine shaft by solid friction, multiple plate clutch is mostly used in automobiles. All modern cars have single plate clutch with a fabric facing on each side of the plate. The clutch plate is positioned between the flywheel and a solid plate, known as pressure plate.
6.11.1. Disc Clutch or Single Plate Clutch. Fig. 6.15 shows the diagram of a single plate clutch (or disc clutch) which consists of a single clutch plate with friction lining (i.e., a lining of friction material) on both sides. This plate is attached to a hub (which is splined). The hub is free to move axially along the splines of the driven shaft. There is a pressure plate inside the clutch body. The pressure plate pushes the clutch plate towards the flywheel by a set of strong springs. The clutch body (or cover plate) is bolted to the flywheel. The pressure plate and the flywheel rotate with the driving shaft. The movement of the clutch pedal (not ${ }^{\text {shown }}$ in Fig. 6.15) is transferred to the pressure plate through a thrust bearing.

$$
=2000 \times \frac{0.005165}{0.0185}=558.378 \mathrm{Nm}
$$

\therefore Power lost in friction, $\quad P=\frac{2 \pi N T}{60}$
$\therefore \quad P=\frac{2 \pi \times 380 \times 558.378}{60}=20$
(ii) Number of collars required.

Number of collars, $\quad n=\frac{\text { Total load }}{\text { Load per collar }}$
Now load per collar for uniform pressure is obtained from equation ${ }^{\circ}$ (6.12), as

$$
p=\frac{W^{*}}{\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)}
$$

where W^{*} is the load per collar.

$$
\begin{aligned}
\therefore \quad W^{*} & =p \times \pi\left(r_{1}^{2}-r_{2}^{2}\right) \\
& =350 \times 10^{3} \times \pi\left(0.21^{2}-0.16^{2}\right) \\
& =350 \times 10^{3} \times \pi(0.0441-0.0256)=20341.8 \mathrm{~N} \\
\therefore \quad \text { Number of collars } & =\frac{\text { Total load }}{\text { Load per collar }} \\
& =\frac{W}{W^{*}}=\frac{60 \times 10^{3}}{203418}=2.95=3 \text { collars. Ans. }
\end{aligned}
$$

6.11. FRICTION CLUTCHES

The device used to transmit the rotary motion of one shaft to another, the axes of which are coincident, is known a clutch or friction clutch. With the help of friction clutch, the power is transmitted from one shaft to another shaft which must be started and stopped frequently as in the case of automobile for automotive purposes. The engine shaft and gear box shaft is connected with the help of friction clutches.

The following types of friction clutches are mostly used :
(i) Disc clutch or single plate clutch, (ii) Multi-plate clutch, and
(iii) Cone clutch.

The principle of disc and cone clutches are came as that of the pivot and collar bearings. Though cone clutches and multiple-disc clutch are no longer in use for power transmission of power directly from the engine shaft by solid friction, multiple plate clutch is mostly used in automobiles. All modern cars have single plate clutch with a fabric facing on each side of the plate. The clutch plate is positioned between the flywheel and a solid plate, known as pressure plate.
6.11.1. Disc Clutch or Single Plate Clutch. Fig. 6.15 shows the diagram of a single plate clutch (or disc clutch) which consists of a single clutch plate with friction lining (i.e., a lining of friction material) on both sides. This plate is attached to a hub (which is splined). The hub is free to move axially along the splines of the driven shaft. There is a pressure plate inside the clutch body. The pressure plate pushes the clutch plate towards the flywheel by a set of strong springs. The clutch body (or cover plate) is bolted to the flywheel. The pressure plate and the flywheel rotate with the driving shaft. The movement of the clutch pedal (not ${ }^{6} \mathrm{WW}_{\mathrm{n}}$ in Fig. 6.15) is transferred to the pressure plate through a thrust bearing.

Fig. 6.15
Fig. $6.15(a)$ shows the position of the clutch when it is in engaged position. This position will be when the foot is taken off from the clutch pedal. The set of strong springs will move the pressure plate to bring it in contact with the clutch plate which is attached to the hub. The hub moves axially along the splines of the driven shaft. Thus the clutch plate is tightly gripped between the pressure plate and the flywheel. There is a friction lining on both sides of the clutch plate. The friction lining on one side of plate is in contact with flywheel whereas the friction lining on other side of the clutch plate is in contact with pressure plate. Due to the
tightly gripping of clutch plate between pressure plate and flywheel, the clutch plate and hence driven shaft starts rotating,

Fig. 6.15 (b) shows the position of the clutch when it is in disengaged position. This position will be when the clitch pedal is pressed down by foot (not shown in Fig.). The set of springs will be compressed and the pressure plate will move away from flywheel. This action removes the pressure from the clutch plate. The clutel plon The friction linings on the clutch plato will be freot plate will move back from the flywheel. flowheel. The flywheel will rotate without driviree of contact with the pressure plate or the

The power will be transmitted from thing the clutch plate and thus driven shaft.
position. If the torque due to frictional form the driving shaft to the driven shaft in engaged more than the torque to be transmitted, (provided by friction linings on the clutch plate) is shafts.

Theory of Single Plate Clutch

Refer to Fig. 6.16.
Let r_{1} = External radius of friction lining on clutch plate
$r_{2}=$ Internal radius of friction lining
$p=$ Intensity of pressure
$W=$ Total axial load (or Axial thrust with which the friction surfaces are held together)
$\mu=$ Co-efficient of friction
$T=$ Torque transmitted.
The theory of single plate clutch is also based on the same principle as that of collar bearing. In case of collar bearing, the power lost due to friction should be reduced and hence the value of co-efficient of friction should decrease. But in case of clutch the power transmitted by friction linings should be more and hence co-efficient of friction should be increased.

Fig. 6.16
Also in case of a new clutch, the intensity of pressure is approximately uniform over the
entire surface whereas in an old clutch the uniform wear theory is more approximate
Consider a circular ring of radius r and thickness $d r$ as shown in Fig. 6.16.
Area of ring,
Axial load on ring,

$$
\begin{aligned}
d A & =2 \pi r d r \\
d W & =\text { Pressure } \times \text { Area of ring } \\
& =p \times 2 \pi r d r
\end{aligned}
$$

Frictional force on the ring, $d F=\mu \times$ Load on ring

$$
=\mu \times(p \times 2 \pi r d r)
$$

Frictional torque on ring, $\quad d T=$ Frictional force \times Radius

$$
\begin{align*}
& =d F \times r \\
& =(\mu \times p \times 2 \pi r d r) \times r \\
& =\mu \times p \times 2 \pi r^{2} d r \tag{6.15}
\end{align*}
$$

(i) For Uniform Pressure

$$
\begin{array}{ll}
& p=\text { Constant } \\
\therefore & p=\frac{W}{\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)} \tag{6.16}
\end{array}
$$

where $W=$ Total axial thrust with which contact surfaces (or friction surfaces) are held together.
Total friction torque is obtained by integrating equation (6.14) from r_{2} to r_{1}.
\therefore Total friction torque acting on the friction surface,

$$
\begin{align*}
T & =\int_{r_{2}}^{r_{1}} d T=\int_{r_{2}}^{r_{1}} \mu \times p \times 2 \pi r^{2} d r \\
& =2 \pi \mu p\left[\frac{r^{3}}{3}\right]_{r_{2}}^{r_{1}}=2 \pi \mu p\left[\frac{r_{1}^{3}-r_{2}{ }^{3}}{3}\right] \\
& =\frac{2}{3} \pi \mu \times \frac{W}{\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)} \times\left(r_{1}^{3}-r_{2}{ }^{3}\right) \quad\left[\because P=\frac{W}{\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)}\right] \\
& =\frac{2}{3} \mu W\left[\frac{r_{1}^{3}-r_{2}{ }^{3}}{r_{1}{ }^{2}-r_{2}{ }^{2}}\right] \tag{6.17}
\end{align*}
$$

Total frictional torque acting on the friction surface can also be expressed in terms of mean radius (R_{m}) of the friction surface as

$$
\begin{equation*}
T=\mu W \times R_{m} \tag{6.18}
\end{equation*}
$$

Comparing the above two equations, we get the value of R_{m} as

$$
\begin{equation*}
R_{m}=\frac{2}{3}\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \tag{6.19}
\end{equation*}
$$

In a single clutch plate, there are two friction surfaces, one on each side of the friction plate, hence total frictional torque on the clutch plate is given by

$$
\begin{align*}
T^{*} & =2 T \\
& =2 \times\left[\frac{2}{3} W\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right)\right] \tag{6.19A}
\end{align*}
$$

where $T^{*}=$ Total frictional torque on the clutch plate.
(ii) For Uniform Wear

$$
\begin{array}{rlr}
& p \times r & =\text { constant } \\
\therefore \quad p & =\frac{C}{r}
\end{array}
$$

We know that axial load on ring [Refer to Fig. 6.16]

$$
d W=p \times 2 \pi r d r
$$

\therefore Total axial load is given by integrating the above equation

$$
\begin{array}{ll}
\therefore & W \\
& =\int_{r_{2}}^{r_{1}} p \times 2 \pi r d r \\
& =\int_{r_{2}}^{r_{1}} \frac{C}{r} \times 2 \pi r d r \tag{6.20}\\
& =2 \pi C[r]_{r_{2}}^{r_{1}}=2 \pi C\left[r_{1}-r_{2}\right] \\
\therefore \quad C & =\frac{W}{2 \pi\left(r_{1}-r_{2}\right)}
\end{array}
$$

$$
\left(\because p=\frac{C}{r}\right)
$$

The total frictional torque on the friction surface is obtained by integrating equation (6.15) from r_{2} to r_{1}.

$$
\begin{align*}
\therefore & =\int_{r_{2}}^{r_{1}} d T=\int_{r_{2}}^{r_{1}} \mu \times p \times 2 \pi r^{2} d r \\
& =\int_{r_{2}}^{r_{1}} \mu \times \frac{C}{r} \times 2 \pi r^{2} d r=\mu \times C \times 2 \pi \int_{r_{2}}^{r_{1}} r d r \\
& =\mu \times C \times 2 \pi\left[\frac{r^{2}}{2}\right]_{r_{2}}^{r_{1}}=\mu \times C \times 2 \pi \times\left[\frac{r_{1}{ }^{2}-r_{2}^{2}}{2}\right] \\
& =\mu \times C \times \pi\left[r_{1}{ }^{2}-r_{2}{ }^{2}\right] \dot{\AA} \mu \times \frac{W}{2 \pi\left(r_{1}-r_{2}\right)} \times \pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right) \\
& =\frac{\mu \times W}{2} \times\left(r_{1}+r_{2}\right) \tag{6.21}\\
& =\mu \times W \times R_{m} \tag{6.22}
\end{align*}
$$

where $R_{m}=$ Mean radius $=\frac{r_{1}+r_{2}}{2}$
\therefore Total torque on a single clutch plate, is given by

$$
\begin{align*}
T^{*} & =2 T \\
& =2 \times\left[\frac{\mu W}{2}\left(r_{1}+r_{2}\right)\right] \tag{6.24}
\end{align*}
$$

N.B. (i) For power transmission by friction through a clutch, uniform wear theory gives safer result. Hence uniform wear should be assumed in case of friction clutch, unless it is specified otherwise.

Problem 6.7. Calculate the power transmitted by a single plate clutch at a speed of 2000 r.p.m., if the outer and inner radii of friction surfaces are 150 mm and 100 mm respectively. The maximum intensity of pressure at any point of contact surface should not exceed $0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Take both sides of the plate as effective and co-efficient of friction $=0.3$. Assume uniform wear.

Sol. Given :

Speed, $N=2000$ r.p.m.
Outer radius of friction surface, $r_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
Inner radius,
Maximum pressure, $\quad p_{\max }=0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Co-efficient of friction,
$\mu=0.3$
No. of effective sides
$=2$

For uniform wear, we have
or

$$
\begin{aligned}
p \times r & =\text { constant }(\text { say }=C) \\
p_{1} \times r_{1} & =p_{2} r_{2}=C
\end{aligned}
$$

As for uniform wear, the product of pressure and radius is constant, hence pressure will be more where radius is less. Therefore at inner radius, the pressure will be more.
or

$$
\begin{aligned}
p_{\max } \times r_{2} & =C \\
\left(0.8 \times 10^{5}\right) \times 0.1 & =C \\
C & =0.8 \times 10^{4}
\end{aligned}
$$

or
$\left(\because \quad r_{2}\right.$ is inner radius)

$$
\left(\because \quad p_{\max }=0.8 \times 10^{5} \text { and } r_{2}=0.1 \mathrm{~m}\right)
$$

Using equation (6.20) for uniform wear,

$$
\begin{aligned}
W & =2 \pi C\left(r_{1}-r_{2}\right) \\
& =2 \pi \times 0.8 \times 10^{4} \times(0.15-0.10) \mathrm{N}=2513.27 \mathrm{~N}
\end{aligned}
$$

The torque due to both active surfaces is given by equation (6.24) as

$$
\begin{aligned}
T^{*} & =2 \times\left[\frac{\mu W}{2}\left(r_{1}+r_{2}\right)\right] \\
& =2 \times\left[\frac{0.3 \times 2513.27}{2}(0.15+0.10)\right] \mathrm{Nm}=188.49 \mathrm{Nm}
\end{aligned}
$$

\therefore Power transmitted by the clutch is given by

$$
\begin{aligned}
P & =\frac{2 \pi N T}{60} \\
& =\frac{2 \pi \times 2000 \times 188.49}{60}=39477.25 \mathrm{~W}=\mathbf{3 9 . 4 7 7} \mathbf{~ k W} . \quad \text { Ans. }
\end{aligned}
$$

Problem 6.8. Determine the external and internal radii of the friction plate of a single clutch if maximum torque transmitted is 90 Nm . The external radius of the friction plate is 1.5 times the internal radius and the maximum intensity of pressure at any point of contact surface should not exceed $0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Take both sides of the plate as effective and coefficient of friction $=0.3$. Assume uniform wear. Also calculate the axial force exerted by the springs.

Sol. Given :
Torque, $T=90 \mathrm{Nm}$; external radius $=1.5 \times$ internal radius i.e., $r_{1}=1.5 r_{2}$;

$$
p_{\max }=0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} ; \mu=0.3
$$

No. of effective sides $=2$.
For uniform wear, $p \times r=$ constant $\quad($ say $=C)$

$$
p_{1} \times r_{1}=p_{2} r_{2}=C
$$

The pressure will be maximum at the inner radius.
or

$$
\therefore \quad p_{\max } \times r_{2}=C
$$

Now using equation (6.20) for uniform wear,

$$
\begin{align*}
W & =2 \pi C\left(r_{1}-r_{2}\right) \\
& =2 \pi \times 0.8 \times 10^{5} \times r_{2}\left(1.5 r_{2}-r_{2}\right) \\
& \quad\left[\because \quad \text { From }(i), C=0.8 \times 10^{5} \times r_{2} \text { and } r_{1}=1.5 r_{2}\right] \\
& =2 \pi \times 0.8 \times 10^{5} \times r_{2}^{2} \times(1.5-1)=2 \pi \times 0.8 \times 10^{5} \times r_{2}{ }^{2} \times 0.5 \tag{ii}
\end{align*}
$$

The frictional torque due to both active surfaces is given by

$$
\begin{align*}
& T^{*}=2 \times\left[\frac{\mu W}{2}\left(r_{1}+r_{2}\right)\right] \\
&=2 \times\left[\frac{0.3 \times 251327.4 r_{2}^{2}}{2}\left(1.5 r_{2}+r_{2}\right)\right] \quad\left(\because W=251327.4 r_{2}{ }^{2}\right) \\
&=0.3 \times 251327.4 r_{2}^{3}(1.5+1) \\
&=0.3 \times 251327.4 \times 2.5 \times r_{2}^{3} \mathrm{Nm} \tag{iii}\\
& \text { transmitted }=90 \mathrm{Nm}
\end{align*}
$$

But maximum torque transmitted $=90 \mathrm{Nm}$
Hence equating the two values of the torque given by equations (iii) and (iv),
$0.3 \times 251327.4 \times 2.5 \times r_{2}{ }^{3}=90$

$$
\begin{aligned}
r_{2} & =\left(\frac{90}{0.3 \times 251327.4 \times 2.5}\right)^{1 / 3} \\
& =\left(4.77465 \times 10^{-4}\right)^{1 / 3}=0.07818 \mathrm{~m} \simeq \mathbf{7 8 . 2} \mathrm{~mm} . \text { Ans. } \\
r_{1} & =1.5 r_{2}=1.5 \times 78.2=\mathbf{1 1 7 . 3} \mathbf{~ m m} . \text { Ans. }
\end{aligned}
$$

$\begin{aligned} & r_{1}=1.5 r_{2}=1.5 \times 78.2 \\ & \text { Substituting the value of } r_{2} \text { in equation (ii), we get }\end{aligned}$

6.11.2. Multi-plate Clutch. Fig. 6.17 shows the diagram of multi-plate clutch with friction plates having friction linings on both sides except the first plate which is adjacent to the flywheel. This plate is having friction lining on one side. The friction plates are connected
on the top to the flywheel. Hence the friction the driving shaft. The friction plates are also free to move axially.

Fig. 6.17
The discs or plates are also supported on splines of the driven shaft. Hence these plates rotate with driven shaft. These plates are situated in between the friction plates and can also slide axially as shown in Fig. 6.17. Thus Fig. 6.17 shows the position of the friction plates and disc plates in disengaged position.

In the engaged position (which will be when the foot is taken off from the clutch pedal), the set of strong springs will press the discs into contact with the friction plates (or friction linings on the friction plates). Hence the power will be transmitted from the driving to the driven shaft.

Multi-plate clutch is used when a large torque is to be transmitted such as in case of motor cars and machine tools.

Theory of Multi-plate Clutch

Let $\quad r_{1}=$ External radius of friction lining on friction plate, $r_{2}=$ Internal radius of friction lining on friction plate, $W=$ Total axial load,

FRCTION

$$
\begin{align*}
p & =\text { Intensity of pressure } \tag{227}\\
n_{1} & =\text { Number }
\end{align*}
$$

$n_{1}=$ Number of friction plates on driving shaft,
$n_{2}=$ Number of dises on the driven shaft
Then the number of active surfaces or friction surfaces (n) will be given as
Total torque transmitted is given by,

$$
\begin{equation*}
T=n \times \mu \times W \times R_{m} \tag{6.25}
\end{equation*}
$$

where $R_{m}=$ Mean radius of friction surfaces

$$
\begin{aligned}
& =\left(\frac{r_{1}+r_{2}}{2}\right) \\
& =\frac{2}{3}\left[\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right]
\end{aligned}
$$

(For uniform wear)
(For uniform pressure)

Problem 6.14. A multi-clutch has six plates (friction rings) on the driving shaft and six plates on the driving shaft. The external radius of the friction surface is 115 mm whereas the internal radius is 80 mm . Assuming uniform wear and co-efficient of friction as 0.1 , find the power transmitted at 2000 r.p.m. Axial intensity of pressure is not to exceed $0.16 \mathrm{~N} / \mathrm{mm}^{2}$.

Sol. Given :
No. of friction plates, $\quad n_{1}=6$
No. of discs on driven shaft, $n_{2}=6$
\therefore No. of active surfaces (or friction surfaces) are given as,

$$
n=n_{1}+n_{2}-1=6+6-1=11
$$

External radius of friction surface, $r_{1}=115 \mathrm{~mm}=0.115 \mathrm{~m}$
Internal radius, $\quad r_{2}=80 \mathrm{~mm}=0.8 \mathrm{~m}$
Co-efficient of friction, $\mu=0.1$
Speed,

$$
N=2000 \text { r.p.m. }
$$

Max. intensity of pressure, $\quad p_{\max }=0.16 \mathrm{~N} / \mathrm{mm}^{2}=0.16 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
Theory assumed $=$ Uniform wear.
Total torque transmitted is given by equation (6.26) as

$$
\begin{equation*}
T=n \times \mu \times W \times R_{m} \tag{i}
\end{equation*}
$$

where $R_{m}=$ Mean radius of friction surface

$$
\begin{aligned}
& =\frac{r_{1}+r_{2}}{2} \\
& =\frac{0.115+0.08}{2}=0.0975 \mathrm{~m}
\end{aligned}
$$

Let us now find the value of W.
For uniform wear, $p \times r=$ constant $=C$
For maximum pressure, radius is minimum. Hence pressure will be maximum at internal radius.

$$
\begin{aligned}
& \text { nal radius. } & p_{\max } \times r_{2} & =C \\
\therefore & & & \\
\text { or } & & 0.16 \times 10^{6} \times 0.08 & =C \\
\text { or } & & C & =128 \times 10^{2}
\end{aligned}
$$

The expression for axial load (W) for uniform wear is piven by

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
W & =2 \pi C\left(r_{1}-r_{2}\right) \\
& =2 \pi \times 128 \times 10^{2}(0.115-0.08)=2814.867 \mathrm{~N}
\end{array} \\
\text { Substituting the values of } W, \mu, n \text { and } R_{m} \text { in equation }(i), \\
T
\end{array}\right)=11 \times 0.1 \times 2814.867 \times 0.0975=301.894 \mathrm{Nm} \text { as } .
$$

\therefore Power transmitted is given by,

$$
\begin{aligned}
P & =\frac{2 \pi N T}{60} \\
& =\frac{2 \pi \times 2000 \times 301.894}{60}=63228.5 \mathrm{~W}=\mathbf{6 3 . 2 2 8 5} \mathrm{kW} . \text { Ans. }
\end{aligned}
$$

Problem 6.15. A multi-plate clutch transmits 25 kW of power at 1600 r.p.m. It has three discs on the driving shaft and two on the driven shaft. Co-efficient of friction for the friction surfaces is 0.25 . The external and internal radii of friction surfaces are 100 mm and 50 mm respectively. Find the maximum intensity of pressure between the discs. Assume uniform wear. Sol. Given :

$$
\begin{aligned}
P & =25 \mathrm{~kW}=25 \times 10^{3} \mathrm{~W} ; N=1600 \text { r.p.m. } \\
\mu & =0.25 ; r_{1}=100 \mathrm{~mm}=0.1 \mathrm{~m} ; r_{2}=50 \mathrm{~mm}=0.05 \mathrm{~m}
\end{aligned}
$$

No. of dises on driving shaft, $n_{1}=3$; No. of dises on driven shaft, $n_{2}=2$.
\therefore No. of friction (or active) surfaces, $n=n_{1}+n_{2}-1=3+2-1=4$
Theory assumed = Uniform wear.
Let $p_{\text {max }}=$ Max. intensity of pressure.
We know that,

$$
P=\frac{2 \pi N T}{60}
$$

or

$$
25 \times 10^{3}=\frac{2 \pi \times 1600 \times T}{60}
$$

or

$$
T=\frac{25 \times 10^{3} \times 60}{2 \pi \times 1600}=149.207 \mathrm{Nm}
$$

Total torque transmitted is also given by equation (6.26) as

$$
\begin{equation*}
T=n \times \mu \times W \times R_{m} \tag{i}
\end{equation*}
$$

where $R_{m}=$ Mean radius of friction surface

$$
\begin{aligned}
& =\frac{r_{1}+r_{2}}{2} \\
& =\frac{0.1+0.05}{2}=0.075 \mathrm{~m} \\
n & =4 \text { and } \mu=0.25
\end{aligned}
$$

Substituting the values of T, n, μ and R_{m} in equation (i), we get
$149.207=4 \times 0.25 \times W \times 0.075$
$\therefore \quad W=\frac{149.207}{4 \times .25 \times 0.075}=1989.426 \mathrm{~N}$
The expression for axial load (W) for uniform wear is also given by equation (6.20) as

$$
W=2 \pi C\left(r_{1}-r_{2}\right)
$$

Substituting the values of W, r_{1} and r_{2}, we get

$$
1989.426=2 \pi \times C \times(0.1-0.05)
$$

For uniform wear $\quad 2 \pi \times 0.05=6332.54$
The pressure is
maximum at internal radius

$$
\begin{gathered}
p_{\max } \times r_{2}=C \\
p_{\max } \times 0.05=6332.54
\end{gathered}
$$

$$
\left.\left.p_{\max }=\frac{6332.54}{0.05}=1266.50 \mathrm{~N} / \mathrm{m}^{2}=\mathbf{0 . 1 2 6 6 5 ~ \mathrm { N } / \mathrm { mm } ^ { 2 } .} \quad \right\rvert\, \because \quad C=6332.54 \text { and } r_{2}=0.05\right]
$$

Problem 6.16. A power of 60 hW i $=0.12665 \mathrm{~N} / \mathrm{mm}^{2}$. Ans.
Axial intensity of pressure is not to exceed 0.15 Nited by a multi-plate clutch at 1500 r.p.m. surfaces is 0.15 . The external radius of friction mm^{2}. The co-efficient of friction for the friction cqual to 1.25 times the internal radius. Find the surface is 120 mm . Also the external radius is power. Assume uniform wear.

Sol. Given :

$$
\begin{aligned}
& \mu=0.15 ; r_{1}=120 \mathrm{~mm}=0.12 \mathrm{~m} ; r_{1}=1.25 \times r_{2} \\
& \therefore \quad r_{2}=\frac{r_{1}}{1.25}=\frac{0.12}{1.25}=0.096 \mathrm{~m}
\end{aligned}
$$

Assume uniform wear. Find the number of plates required.
For uniform wear,

$$
p \times r=\text { constant }(\text { say }=C)
$$

\therefore Pressure will be maximum, at the internal radius

$$
\begin{aligned}
\therefore & p_{\max } \times r_{2} & =C \\
& \left(0.15 \times 10^{6}\right) \times 0.096 & =C \\
\therefore & C & =0.15 \times 10^{6} \times 0.096=14400
\end{aligned}
$$

For uniform wear, the axial thrust or load (W) is given by equation (6.20) as

$$
\begin{align*}
W & =2 \pi C\left(r_{1}-r_{2}\right) \\
& =2 \pi \times 14400(0.12-0.096) \\
& =2171.47 \mathrm{~N} \tag{i}
\end{align*}
$$

Now let us find the total torque transmitted from the given power,

$$
\begin{align*}
P & =\frac{2 \pi N T}{60} \\
60 \times 10^{3} & =\frac{2 \pi \times 1500 \times T}{60} \\
\therefore \quad T & =\frac{60 \times 10^{3} \times 60}{2 \pi \times 1500}=381.972 \mathrm{Nm} \tag{ii}
\end{align*}
$$

But the total torque transmitted is also given by equation (6.26) as

$$
\begin{equation*}
T=n \times \mu \times W \times R_{m} \tag{iii}
\end{equation*}
$$

$n=$ no. of friction surfaces or active surfaces
$R_{m}=$ Mean radius of friction surfaces

$$
=\frac{r_{1}+r_{2}}{2}
$$

$$
=\frac{0.12+0.096}{2}=0.108 \mathrm{~m}
$$

$$
W=2171.47
$$

Substituting the known values in equation (iii), we get

$$
\begin{aligned}
T & =n \times 0.15 \times 2171.47 \times 0.108 \\
& =n \times 35.1778
\end{aligned}
$$

$$
\text { [From equation }(i)]
$$

Equating the two values of T given by equations $(i i)$ and $(i v)$,

$$
381.972=n \times 35.1778
$$

$$
\therefore \quad n=\frac{381.972}{35.1778}=10.85 \text { or } 11 \text { surfaces }
$$

\therefore Number of friction surfaces required $=\mathbf{1 1}$ surfaces. Ans. But no. of friction surfaces,

$$
\begin{aligned}
& n=n_{1}+n_{2}-1 \text { or } 11=n_{1}+n_{2}-1 \\
& n_{1}+n_{2}=11+1=12
\end{aligned}
$$

Hence there will be total 12 plates. The six plates (6) will be revolving with the driving shaft and other six with the driven shaft.
6.11.3. Cone Clutch. Fig. 6.18 shows the diagram of a cone clutch, in which the contact surfaces are in the form of cones. The driver cone is keyed to the driving shaft whereas the driven cone is keyed to the driven shaft. In the engaged position, the friction surfaces of the from driving shaft to the driven shaft. For disengaging the this position torque is transmitted back through a lever system against the force of spring.

Fig. 6.18
The contact surfaces of the clutch may be metal to metal contact, but more often the driven cone surface is lined with some friction material. In action the cone clutch is similar to the truncated conical pivot.

Let $r_{1}=$ External radius of friction surface
$r_{2}=$ Internal radius of friction surface
$\alpha=$ Semi cone angle or the angle of the friction surface with the axis of the shaft
$W=$ Total axial load required to engage the clutch supplied by spring
$R_{m}=$ Mean radius of friction surface
$\mu=$ Co-efficient of friction
$b=$ Width of contact surface or width of cone face
$=\frac{\left(r_{1}-r_{2}\right)}{\sin \alpha} \quad$ [See Fig. 6.18 (a)]
(i) Case of Uniform Pressure tions :

Similar to the truncated cone pivot, for uniform pressure we have the following equa,

$$
p=\frac{W}{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}
$$

or

$$
W=p \times \pi\left(r_{1}^{2}-r_{2}^{2}\right)
$$

and

$$
\begin{equation*}
T=\frac{2}{3} \times \frac{\mu W}{\sin \alpha}\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \tag{6.28}
\end{equation*}
$$

(ii) Case of Uniform Wear
and

$$
\begin{gather*}
p \times r=\text { constant (say } C) \\
W=2 \pi C\left(r_{1}-r_{2}\right) \tag{6.29}
\end{gather*}
$$

$$
p_{\max } \times r_{2}=C
$$

Also

$$
\begin{equation*}
T=\frac{1}{2} \frac{\mu W}{\sin \alpha}\left(r_{1}+r_{2}\right) \tag{6.30}
\end{equation*}
$$

(iii) Driving Torque based on Mean radius

Let $p_{m}=$ Intensity of pressure at mean radius normal to friction surface
$W_{n}=$ Total load normal to friction surface
$=($ pressure normal to friction surface $) \times$ Area of friction surface based on mean radius

$$
\begin{align*}
& =p_{n} \times\left(2 \pi R_{m} \times b\right) \tag{6.31}\\
W & =\text { Component of } W_{n} \text { in axial direction } \\
& =W_{n} \times \sin \alpha \quad[\text { See Fig. } 6.18(b)]
\end{align*}
$$

Equation (6.33) gives the torque in terms of mean radius and load normal to friction surface.

Problem 6.17. A cone clutch of cone angle 30° is used to transmit a power of 10 kW at 800 r.p.m. The intensity of pressure between the contact surfaces is not to exceed $85 \mathrm{kN} / \mathrm{m}^{2}$. The width of the conical friction surface is half of the mean radius. If co-efficient of friction $=0.15$, then find the dimensions of the contact surfaces. Assume uniform wear. Also find the axial load or force requace? friction surface?

Sol. Given :
Cone angle $=30^{\circ} \therefore$ Semi-cone angle, $\alpha=15^{\circ}$
Power, $P=10 \mathrm{~kW}=10 \times 10^{3} \mathrm{~W}$; $N=800 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Max. pressure, $p_{\text {max }}=85 \mathrm{kN} / \mathrm{m}^{2}=85 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
Width, $b=\frac{1}{2} \times$ Mean radius $=\frac{1}{2} \times R_{m}=\frac{1}{2}\left(\frac{r_{1}+r_{2}}{2}\right)\left(\because\right.$ For uniform wear, $\left.R_{m}=\frac{r_{1}+r_{2}}{2}\right)$
Co-efficient of friction, $\mu=0.15$
Find : (i) dimensions of contact surfaces i.e., r_{1} and r_{2}.
(ii) Axial force of load required to keep the clutch engaging.

Assumed uniform wear.
or

$$
\left.\begin{array}{ll}
\text { We know that, } \quad P & =\frac{2 \pi N T}{60} \\
10 \times 10^{3} & =\frac{2 \pi \times 800 \times T}{60} \\
\therefore \quad & T
\end{array}\right)=\frac{60 \times 10 \times 10^{3}}{2 \pi \times 800}=119.366 \mathrm{Nm}
$$

Now width ' b ' is given as

$$
\begin{equation*}
b=\frac{1}{2}\left(\frac{r_{1}+r_{2}}{2}\right)=\frac{r_{1}+r_{2}}{4} \tag{ii}
\end{equation*}
$$

Also the value of ' b ' from equation (6.27) is given as

$$
\begin{equation*}
b=\frac{r_{1}-r_{2}}{\sin \alpha}=\frac{r_{1}-r_{2}}{\sin 15^{\circ}}=\frac{r_{1}-r_{2}}{0.2588} \tag{iii}
\end{equation*}
$$

Hence equating the two values of ' b ' given by equations (ii) and (iii),

$$
\begin{align*}
\frac{r_{1}+r_{2}}{4} & =\frac{r_{1}-r_{2}}{0.2588} \\
r_{1}+r_{2} & =\frac{4}{0.2588}\left(r_{1}-r_{2}\right) \\
& =15.456\left(r_{1}-r_{2}\right)=15.456 r_{1}-15.456 r_{2} \\
16.456 r_{2} & =14.456 r_{1} \\
r_{1} & =\frac{16.456}{14.456} r_{2} \\
r_{1} & =1.138 r_{2} \tag{iv}
\end{align*}
$$

Now let us find the value of W (axial load) for uniform wear.
For uniform wear, $p \times r=C$ (constant)
The pressure will be maximum at internal radius

$$
\therefore \quad \begin{array}{r}
p_{\text {max }} \times r_{2}=C \tag{v}\\
85 \times 10^{3} \times r_{2}=C
\end{array}
$$

The value of W for uniform wear is given by equation (6.29) as

$$
\begin{aligned}
\text { niform wear is given by equation (6.29) as } \\
\begin{aligned}
W & =2 \pi C\left(r_{1}-r_{2}\right) \\
& \left.=2 \pi \times 85 \times 10^{3} r_{2}\left(r_{1}-r_{2}\right) \quad \mid \because \quad \text { From }(v), C=85 \times 10^{3} \times r_{2}\right] \\
& =534070 r_{2}\left(r_{1}-r_{2}\right)
\end{aligned}
\end{aligned}
$$

The frictional torque for uniform wear is given by equation (6.30), as

$$
\begin{array}{c}1 \mu W\end{array} \quad \ldots(v i)
$$

$$
\begin{aligned}
T & =\frac{1}{2} \frac{\mu W}{\sin \alpha}\left(r_{1}+r_{2}\right) \\
& =\frac{1}{2} \times \frac{0.15 \times 534070 r_{2}\left(r_{1}-r_{2}\right)}{\sin 15^{\circ}}\left(r_{1}+r_{2}\right) \\
& \left.=154762 r_{2}\left(r_{1}-r_{2}\right)\left(r_{1}+r_{2}\right) \quad \text { From }(v i), \mathrm{W}=534070 r_{2}\left(r_{1}-{ }_{2}\right)\right]
\end{aligned}
$$

Substituting the
above equation, we get

$$
\therefore \quad r_{1}=1.138 r_{2}
$$

$$
\begin{aligned}
119.366 & =154762 r_{2}\left(r_{1}^{2}-r_{2}^{2}\right) \\
& =154762 r_{2}\left[\left(1.138 r_{2}\right)^{2}-r_{2}^{2}\right] \\
& =154762 r_{2}\left(1.295044 r^{2}-r_{2}^{2}\right)=45661 r_{2}^{3} \\
r_{2} & =\left(\frac{119.366}{45661}\right)^{1 / 3}=0.138 \mathrm{~m}=138 \mathrm{~mm} . \text { Ans. } \\
r_{1} & =1.138 r_{2} \\
& =1.138 \times 0.138=0.157 \mathrm{~m}=157 \mathrm{~mm} .
\end{aligned}
$$

Substituting the values of r_{1} and r_{2} in equation (vi), we get

$$
\begin{aligned}
W & =534070 r_{2}\left(r_{1}-r_{2}\right) \\
& =534070 \times 0.138(0.157-0.138)=\mathbf{1 4 0 0 . 3} \mathbf{N} . \text { Ans. }
\end{aligned}
$$

Width of the friction surface is given by equation (6.27) as

$$
b=\frac{r_{1}-r_{2}}{\sin \alpha}=\frac{157-138}{\sin 15^{\circ}}=\frac{19}{0.2588}=73.4 \mathrm{~mm} . \quad \text { Ans. }
$$

Brakes and Dynamometers

8.1. INTRODUCTION

A brake is a device used either to bring to rest a body which is in motion or to hold a body in a state of rest or of uniform motion against the action of external forces or couples. Actually the brake offers the frictional resistance to the moving body and this frictional resistance retards the motion and the body comes to rest. In this process, the kinetic energy of the body is absorbed by brakes.

A dynamometer is a device used to measure the frictional resistance or frictional torque. This frictional resistance (or frictional torque) is obtained by applying a brake. Hence dynamometer is also a brake in addition it has a device to measure the frictional resistance (or frictional torque). This chapter deals with different types of brakes and dynamometers.

8.2. TYPES OF BRAKES

The brakes are classified as :
(a) Hydraulic brakes,
(b) Electric brakes,
((c) Mechanical brakes.
This chapter deals with mechanical brakes only. The following are the important types of mechanical brakes :
(i) Simple block or Shoe brake.
(a) Single block or Shoe brake
(b) Double block or Shoe brake.
(ii) Band brake
(iii) Band and block brake.
(iv) Internal expanding shoe brake.
8.2.1. Simple Block or Shoe Brake. A simple arrangement for applying a braking force is shown in Fig. 8.1. The face of a brake has a special friction material which has a high value of co-efficient of friction.

A single block or shoe brake consists of a block or shoe which is pressed against a rotating drum as shown in Fig. 8.1. The block is rigidly fixed to the lever. The force is applied at one end of the lever and the other end of the lever is pivoted on a fixed fulcrum O. As the force is applied to the lever, the block is pressed against the rotating drum. The friction between the block and the drum causes a tangential force to act on the drum, which tends to prevent its rotation.

Fig. 8.1
The block is made of a softer material than that of the drum so that the block can be replaced easily on wearing. For light and slow vehicles, wood and rubber are used whereas for heavy and flat vehicles, cast steel is used.

Let $P=$ Force applied at the lower end
$r=$ Radius of the drum
$\mu=$ Co-efficient of friction
$R_{N}=$ Normal reaction on the block
$2 \theta=$ Angle made by contact surface of the block at the centre of the drum
$F^{*}=$ Frictional force acting on block $=\mu R_{N}$
$T_{B}=$ Braking torque.
When force P is applied at the lever end, the block is pressed against the rotating drum. The block exerts a radial force on the drum (i.e. this force passes through the centre of the drum). The drum will exert a normal reaction $\left(R_{N}\right)$ on the block. Hence the radial force on the drum will be equal to the normal reaction $\left(R_{N}\right)$ on the block.

Assuming that the normal reaction R_{N} and the frictional force $F^{*}\left(=\mu R_{N}\right)$ act at the midpoint of the block, we have

Braking torque on the drum $=$ Frictional force \times radius
or

$$
\begin{align*}
T_{B} & =F^{*} \times r \\
& =\mu R_{N} \times r \quad\left(\because \quad F^{*}=\mu \times R_{N^{\prime}}\right)
\end{align*}
$$

The braking torque can be calculated if the value of R_{N} is known in equation (8.1). The value of R_{N} is obtained by considering the equilibrium of the block.

In Fig. 8.1, the drum is rotating clock-wise. Hence the frictional force on the drum will be acting in the opposite direction [i.e. in the anti-clockwise direction as shown in Fig. 8.1 (b)]. The frictional force on the block will be opposite to the direction of the frictional force on the drum. Hence the frictional force on the block will be in the clock-wise direction as shown in Fig. 8.1 (c) (i.e., in the same direction in which drum is rotating). Let the line of action of this frictional force $\left(\mu R_{N}\right)$ passes through the fulcrum O of the lever. The forces acting on the block are:
(i) R_{N} (Normal reaction), (ii) μR_{N} (Frictional force), (iii) P (Applied force). Taking moments of all forces about the pivot O, we have

$$
R_{N} \times a=P \times L
$$

(The frictional force μR_{N} passes through O, hence its moment is'zero)

$$
\therefore \quad R_{N}=\frac{P \times L}{a}
$$

Substituting this value of R_{N} is equation (8.1), we get the braking torque as,

$$
T_{B}=\mu \times \frac{P \times L}{a} \times r
$$

Equation (8.2) gives the value of braking torque when the line of action of the frictional force passes through the fulcrum O of the lever.

It is not necessary that the line of action of the frictional force ($\mu \times R_{N}$) should pass through the fulerum O of the lever. The line of action of the frictional force may be at a distance b below or above the fulcrum O.

Let us consider these two cases :
Case 1. When the line of action of the frictional force $\left(\mu R_{N}\right)$ is at a distance ' b ' below the fulcrum O and the drum rotates clockwise as shown in Fig. 8.2.

The forces acting on the block are: (i) R_{N} acting upwards, (ii) μR_{N} frictional force on block acting in the same direction in which drum is rotating and (iii) P (acting downwards.)

Fig. 8.2
Taking moments about the fulcrum O, we get
or

$$
\begin{aligned}
R_{N} \times a+\mu R_{N} \times b & =P \times L \\
R_{N}(a+\mu \times b) & =P \times L \\
R_{N} & =\frac{P \times L}{(a+\mu b)}
\end{aligned}
$$

Substituting this value of R_{N} is equation (8.1), we get braking torque $\left(T_{B}\right)$ as,

$$
\begin{align*}
T_{B} & =\mu \times \frac{P \times L}{(a+\mu b)} \times r \\
& =\frac{\mu \times P \times L \times r}{(a+\mu b)} \tag{8.3}
\end{align*}
$$

Now consider the above case when drum is rotating in anti-clockwise direction. If the drum is rotating in anti-clockwise direction as shown in Fig. 8.3 then the frictional force $\mu \times R_{N}$ will also be acting in anti-clockwise direction. The moment of all forces acting on the block (i.e. $P_{N}, \mu R_{N}$ and P) about the fulcrum O will give,

$$
\begin{aligned}
R_{N} \times a & =P \times L+\mu R_{N} \times b \\
R_{N} \times a-\mu R_{N} \times b & =P \times L
\end{aligned}
$$

or

or

$$
\begin{align*}
R_{N}(a-\mu b) & =P \times L \\
R_{N} & =\frac{P \times L}{(a-\mu b)}
\end{align*}
$$

Substituting the above value in equation (8.1), we get braking torque T_{B}, as

$$
\begin{align*}
T_{B} & =\mu \times \frac{P \times L}{(a-\mu b)} \times r \\
& =\frac{\mu \times P \times L \times r}{(a-\mu b)} \tag{8.5}
\end{align*}
$$

Consider the equation (8.4) again. From equation (8.4), the expression for the force (P) required to apply the brake is obtained as

$$
\begin{equation*}
P=\frac{R_{N}(a-\mu b)}{L} \tag{8.5A}
\end{equation*}
$$

In equation (8.5A) if, $a \leq \mu b$, then P will be negative or zero. This means that no-external force is required to apply the brake and hence the brake is self-locking. Hence the condition for the brake to be self-locking is

$$
\begin{equation*}
a \leq \mu b \tag{8.5B}
\end{equation*}
$$

Again consider equation (8.4). From equation (8.4), we have the value of P as

$$
\begin{align*}
P & =\frac{R_{N}(a-\mu b)}{L} \\
& =\frac{R_{N} \times a-\mu R_{N} \times b}{L} \tag{8.5C}
\end{align*}
$$

In the above equation ' $R_{N} \times a$ ' is the moment of R_{N} about the fulcrum O whereas ' $\mu R_{N} \times$ b ' is the moment of frictional force about the fulcrum. This moment is having negative sign.

Hence in this case the force P required to apply the brake decreases due to frictional force. Or in other words, the frictional force helps to apply the brake. Such types of brakes are known as self-energised brakes. In actual practice the brake should be self-energising and not self-locking. For the above case, the self-locking brake and self-energised brakes are possible. If $P=0$ it is a self-locking brake. If $P>0$ it is self-energising brake.

Case 2. When the line of action of the frictional force $\left(\mu R_{N}\right)$ is at a distance ' b ' above the ${ }^{\text {(ii) }} \mu R_{N}$ and (iii)P. The frictional force ($\mu \times R_{N}$) on block is acting in the direction of rotation of drum. Taking the mo frictional force ($\mu \times R_{N}$) on block is acting in the direction of rotation of

$$
\begin{aligned}
& R_{N} \times a=P \times L+\mu R_{N} \times b
\end{aligned}
$$

$$
R_{N} \times a-\mu R_{N} \times b=P \times L
$$

$R_{N}(a-\mu \times b)=P \times L$

Fig. 8.4

$$
\therefore \quad R_{N}=\frac{P \times L}{(a-\mu b)}
$$

Substituting this value of R_{N} in equation (8.1), we get braking torque (T_{B}) as

$$
\begin{align*}
T_{B} & =\mu \times \frac{P \times L}{(a-\mu b)} \times r \\
& =\frac{\mu \times P \times L \times r}{(a-\mu b)}
\end{align*}
$$

In this case also, the brake may be self-locking or self-energised. If $P=0$, the brake is self-locking and if $P>0$ the brake is self-energised.

If the drum is rotating in anti-clockwise direction as shown in Fig. 8.5, then frictional force (μR_{N}) will also be acting in anti-clockwise direction.

Fig. 8.5
Taking the moments of all forces about the fulcrum, we get
or
Or

$$
\begin{aligned}
R_{N} \times a+\mu R_{N} \times b & =P \times L \\
R_{N}(a+\mu b) & =P \times L \\
R_{N} & =\frac{P \times L}{(a+\mu b)}
\end{aligned}
$$

Substituting this value in equation (8.1), we get braking torque as

$$
T_{B}=\mu \times \frac{P \times L}{(a+\mu b)} \times r
$$

$$
\begin{equation*}
=\frac{\mu \times P \times L \times r}{(a+\mu b)} \tag{8.7}
\end{equation*}
$$

For all the above expressions, the normalock. This is true only if the angle made by assumed to be acting at the mide centre of the rotating drum is less than or equal to 40° i.e. contact surface of the contact is more that 40°, the normalent co-efficient of friction μ^{\prime} as given
$\leq 40^{\circ}$. But if angle conalaced by an the centre. In that case, μ has to by

$$
\begin{equation*}
\mu^{\prime}=\frac{4 \mu \sin \theta}{2 \theta+\sin 2 \theta} \quad \text { or } \quad \mu\left[\frac{4 \sin \theta}{2 \theta+\sin 2 \theta}\right] \tag{8.8}
\end{equation*}
$$

where $\mu=$ Actual co-efficient of friction.
Note. (i) For Case 1, self-locking of brake takes place if brake drum is rotating anti-clockwise direction.

Problem 8.1. The brake drum of a single block brake is rotating at 500 r.p.m. in the clockwise direction. The diameter of the drum is 400 mm and the single block brake is of the type as shown in Fig. 8.2. The force required at the end of the lever to apply the brake is 300 N . If angle of contact is 30° and $L=1 \mathrm{~m}, a=300 \mathrm{~mm}$ and $b=25 \mathrm{~mm}$ then determine the braking torque. The co-efficient of friction is equal to 0.3 .

Sol. Given (Refer to Fig. 8.2)
Speed,
Dia. of drum

$$
\begin{aligned}
N & =500 \text { r.p.m. } \\
& =400 \mathrm{~mm}=0.4 \mathrm{~m}
\end{aligned}
$$

\therefore Radius of drum,

$$
r=\frac{400}{2}=200 \mathrm{~mm}=0.2 \mathrm{~m}
$$

Force at the end of lever,

$$
P=300 \mathrm{~N}
$$

Angle of contact,

$$
2 \theta=30^{\circ}
$$

Length of lever from fulcrum,
Distance of centre of the block from fulcum,

$$
a=300 \mathrm{~mm}=0.3 \mathrm{~m}
$$

Perpendicular distance between line of action of frictional force and fulcrum,

Rotation of drum

$$
\begin{aligned}
b & =25 \mathrm{~mm}=0.025 \mathrm{~m} \\
& =\text { clockwise } . \\
\mu & =0.3
\end{aligned}
$$

Co-efficient of friction,
Taking the moments of all forces $\left(R_{N}, \mu R_{N}\right.$ and P) about fulcrum, we get

$$
\begin{gathered}
R_{N} \times a+\mu R_{N} \times b=P \times L \\
R_{N} \times 0.3+0.3 \times R_{N} \times 0.025=300 \times 1
\end{gathered}
$$

$$
R_{N}(0.3+0.3 \times 0.025)=300
$$

$$
\begin{aligned}
R_{N} & =\frac{300}{0.3+0.3 \times 0.025} \\
& =\frac{300}{0.3075}=975.6 \mathrm{~N}
\end{aligned}
$$

Braking torque $\left(T_{B}\right)$ is given by equation (8.1) as

$$
\begin{aligned}
T_{B} & =\mu R_{N} \times r \\
& =0.3 \times 975.6 \times 0.2=\mathbf{5 8 . 5 3 6} \mathrm{Nm}
\end{aligned}
$$

Alternately

When the drum is rotating clock-wise and line of action of the frictional force is at a distance ' b ' below the fulcrum (Refer to Fig. 8.2), the braking torque is given by equation (8.3). Hence using equation (8.3), we get

$$
\begin{aligned}
T_{B} & =\frac{\mu \times P \times L \times r}{(a+\mu b)} \\
& =\frac{0.3 \times 300 \times 1 \times 0.2}{(0.3+0.3 \times 0.025)} \\
& =\frac{18}{0.3075}=\mathbf{5 8 . 5 3 6} \mathbf{~ N m . ~ A n s . ~}
\end{aligned}
$$

Problem 8.2. If the brake drum in problem 8.1 rotates in the anti-clockwise direction as shown in Fig. 8.3 and all other data remain the same, then determine : (i) the braking torque and (ii) value of ' b ' for self-locking of the brake.

Sol. Refer to Fig. 8.3.
The data from Problem 8.1 :

$$
N=500 \text { r.p.m., } r=0.2 \mathrm{~m}, P=300 \mathrm{~N}, L=1 \mathrm{~m}, a=0.3 \mathrm{~m}, b=0.025 \mathrm{~m} \text { and } \mu=0.3 \text {. }
$$

(i) Braking Torque (T_{B})

When the brake drum is rotating anti-clockwise and line of action of frictional force $\left(\mu R_{N}\right)$ is at a distance ' b ' below the fulcrum as shown in Fig. 8.3 , the braking torque is given by equation (8.5). Hence using equation (8.5), we get

$$
\begin{aligned}
T_{B} & =\frac{\mu \times P \times L \times r}{(a-\mu b)} \\
& =\frac{0.3 \times 300 \times 1 \times 0.2}{0.3-0.3 \times 0.025} \\
& =\frac{18}{0.2925}=\mathbf{6 1 . 5 3 8} \mathbf{~ N m} . \quad \text { Ans. }
\end{aligned}
$$

(ii) Value of 'b' for self-locking of the brake

The condition for self-locking of the brake, is given by equation (8.5B) as

$$
a \leq \mu b
$$

The values of ' a ' and ' μ ' are given. For self-locking of the brake, the value of ' b ' is to be obtained. Substituting the values of a and μ in the equation, we get

or	$\frac{0.3}{0.3}$	$\leq b$	
or	1	$\leq b$	
or	b	$\geq 1 \mathrm{~m}$.	Ans.

Problem 8.3. The brake drum of a single block brake of diameter 300 mm is rotating at 600 r.p.m. as shown in Fig. 8.6. The force required at the end of the lever to apply the brake is $0 . \mathrm{N}$. If angle of contact is 90° and co-efficient of friction between the drum and brake block is 0.3, find the braking torque.

Sol. Given :

$$
\begin{aligned}
& P=600 \mathrm{~N} ; d=300 \mathrm{~mm} \text { or } r=150 \mathrm{~mm}=0.15 \mathrm{~m} ; 2 \theta=90^{\circ} ; \\
& \mu=0.3 ; b=40 \mathrm{~mm}=0.04 \mathrm{~m} ; a=250 \mathrm{~mm}=0.25 \mathrm{~m} ; L=550 \mathrm{~mm}=0.55 \mathrm{~m} .
\end{aligned}
$$

Fig. 8.6
As the angle of contact is more than 40°, hence equivalent co-efficient of friction $\left(\mu^{\prime}\right)$ is given by equation (8.8) as

$$
\begin{aligned}
\mu^{\prime} & =\mu\left[\frac{4 \sin \theta}{2 \theta+\sin 2 \theta}\right] \\
& =0.3\left[\frac{4 \times \sin 45^{\circ}}{\frac{\pi}{2}+\sin 90^{\circ}}\right] \quad\left(\because 2 \theta=90^{\circ}=\frac{\pi}{2} \text { radians and } \theta=45^{\circ}\right) \\
& =\frac{0.3 \times 4 \times 0.7071}{15708+1}=0.33
\end{aligned}
$$

The forces acting on the block are :
(i) Normal reaction, R_{N}
(ii) Frictional force $\quad=\mu^{\prime} \times R_{N}=0.33 \times R_{N}$
(iii) Applied force, $\quad P=600 \mathrm{~N}$

Taking moments of all forces about the fulcrum O, we get

$$
\begin{aligned}
R_{N} \times 250 & =\mu^{\prime} \times R_{N} \times 40+600 \times 550 \\
250 R_{N} & =0.33 \times 40 \times R_{N}+330000
\end{aligned}
$$

or
or

$$
250 R_{N}-13.2 R_{N}=330000
$$

$$
=13.20 R_{N}+330000
$$

$$
\begin{aligned}
236.8 R_{N} & =330000 \\
R_{N} & =\frac{330000}{236.8}=1393.58 \mathrm{~N}
\end{aligned}
$$

Braking torque (T_{B}) is given by equation (8.1) as

$$
\begin{aligned}
T_{B} & =\text { Frictional force } \times \text { radius of drum } \\
& =\left(\mu^{\prime} \times R_{N}\right) \times(r) \\
& =(032)
\end{aligned}
$$

$$
\begin{aligned}
& =(0.33 \times 1393.58) \times(0.15)=\mathbf{6 8 . 9 8} \mathrm{Nm} . \quad \text { Ans. } \\
& \text { els of a bicycle are of di. }
\end{aligned}
$$

Problem 8.4. The wheels of a bicycle are of diameter 800 mm . A rider on this bicycle is travelling atal brake is applied to the rear wheel. level road. The total mass of rider and bicycle is 110 kg . A brake is applied the rear wheel. The pressure applied mass of rider and bicycle is 110 kg . officient of friction is 0.06. Before the cycle comes to applied. On the brake is 100 N and co-
(i) distance travelled by the bicycle and to rest, find:
(ii) number of turns of its wheel.

Fig. 8.7
\therefore
Braking torque

$$
\begin{aligned}
R_{N} & =\frac{800 \times 700}{750}=746.67 \mathrm{~N} \\
& =\text { Frictional force } \times \text { radius } \\
& =\left(\mu R_{N}\right) \times r \\
& =0.35 \times 746.67 \times 0.15 \mathrm{Nm}=\mathbf{3 9 . 2} \mathbf{N m} . \text { Ans. }
\end{aligned}
$$

Double Block or Shoe Brake

When a single block brake is pressed against a rotating drum, a side thrust on the bearing of the shaft supporting the drum will act due to normal reaction $\left(R_{N}\right)$. This produces the bending of the shaft. This can be prevented by using two blocks on the two sides of the drum as shown in Fig. 8.8. The braking torque becomes two times. The braking torque is given by

$$
\begin{gathered}
T_{B}=\mu R_{N 1} \times r+\mu R_{N 2} \times r \\
=\left(\mu R_{N 1}+\mu R_{N 2}\right) \times r
\end{gathered}
$$

The value of $R_{N 1}$ is obtained by taking moments of the forces $R_{N 1}, \mu R_{N 1}$ and P about fulcrum O_{1}. Similarly the value of $R_{N 2}$ is obtained by taking moments of the forces $R_{N 2}, \mu R_{N 2}$ and P about fulcrum O_{2}.

Fig. 8.8
8.2.2. Band Brake. If band is used for bringing a rotating body to rest, then it is known a band brake. A band brake may be a simple band brake or a differential brake.
(a) Simple Band Brake. It consists of one or more ropes, belt or flexible steel band lined with friction material, which embraces a part of the circumference of the rotating drum. Fig. 8.9 shows a simple band brake in which one end of the band is attached with the fulcrum (or fixed pin) of the lever while the other end is attached to the lever at a distance ' a ' from the fulcrum. In order to apply the brake, the band is tightened round the drum and the friction between the band and the drum provides the tangential braking torque.

The force P is applied at the free end of the lever which turns about the fulcrum O. This tightens the band on the drum and hence the brakes are applied. The braking force is provided by the friction between the band and the drum. The force P at the end of the lever for clockwise rotation and anti-clockwise rotation of drum is obtained as explained below :

Let $\theta=$ Angle of lap of the band on the drum,
$T_{1}=$ Tension in the tight side of the band,
$T_{2}=$ Tension in the slack side of the band,
$r=$ Radius of the drum,
$\mu=$ Co-efficient of friction between band and the drum, $t=$ Thickness of band,
$r_{c}=$ Effective radius of the drum $=\left(r+\frac{t}{2}\right)$, and
$P=$ Force at the end of the lever.

Fig. 8.9
Limiting ratio of tensions is given by,
or

$$
\begin{equation*}
\frac{T_{1}}{T_{2}}=e^{\mu \theta} \tag{8.9}
\end{equation*}
$$

Net torque on drum

$$
\begin{equation*}
2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu \theta \tag{8.9A}
\end{equation*}
$$

This is also the braking torque on the drum
$\therefore \quad$ Braking torque on the drum is given by

$$
\begin{aligned}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
& =\left(T_{1}-T_{2}\right) \times r_{e}
\end{aligned}
$$

where $r_{c}=$ Effective radius of band.
(i) Value of \mathbf{P} for Clock-wise rotation of drum. For clock-wise rotation drum as shown in Fig. 8.9, the end of the band connected to the fulcrum O will be slack side with tension T_{2} and the end of the band attached to A will be tight side with tension T_{1}.

Taking moments about the fulcrum O, we get

$$
\begin{equation*}
P \times L=T_{1} \times a \quad\left(\because T_{2} \text { passes through } O\right) \tag{8.10}
\end{equation*}
$$

Where $L=$ Distance $O B$ and $a=$ perpendicular distance from O to the line of action of T_{1}.
(ii) Value of \mathbf{P} for Anti-clockwise rotation of drum. For anti-clockwise rotation of the drum as shown in Fig. 8.10, the end of the band connected to the fulcrum O will be tight
side with tension T_{1} and the end of the band attached to A will be slack side with tension T_{2}. Taking the moments about the fulcrum O, we get

$$
\begin{equation*}
P \times L=T_{2} \times a \tag{8.11}
\end{equation*}
$$

$\left(\because \quad T_{1}\right.$ passes through O)
where $\quad L=$ Length of lever from fulerum i.e. distance $O B$
$a=$ Perpendicular distance from O to the line of action of T_{2}.
Note. For simple band brake, one end of band is ahways connected to the fulcrum,

Fig. 8.10
Problem 8.6. A simple band brake is applied to a rotating drum of diameter 500 mm . The angle of lap of the band on the drum is 270°. One end of the band is attached to a fulcrum pin of the lever and other end is to a pin 100 mm from the fulcrum. If the co-efficient of friction is 0.25 and a braking force of 90 N is applied at a distance of 600 mm from the fulcrum, find the braking torque when the drum rotates in the (i) anti-clockwise direction, and (ii) clockwise direction.

Sol. Given :
Simple band brake. This means one end of brake is connected to fulcrum. Other data is :

$$
\begin{aligned}
& \quad d=500 \mathrm{~mm}=0.5 \mathrm{~m} ; r=0.25 \mathrm{~m} ; \theta=270^{\circ}=270 \times \frac{\pi}{180}=4.713 \mathrm{rad} ; \\
& \text { Distance } a=100 \mathrm{~mm}=0.1 \mathrm{~m} ; L=600 \mathrm{~mm}=0.6 \mathrm{~m} ; \mu=0.25 ; P=90 \mathrm{~N} . \\
& B=\text { braking torque. }
\end{aligned}
$$

Let $T_{B}=$ braking torque.
(i) Drum rotates in anti-clockwise direction

Refer to Fig. 8.10 in which the drum is rotating in anti-clockwise direction. The braking torque is the net torque on the drum and it is given by,

$$
\begin{equation*}
T_{B}=\left(T_{1}-T_{2}\right) \times r \tag{i}
\end{equation*}
$$

Let us first find the values of T_{1} and T_{2}. r is known. But the values of T_{1} and T_{2} are unknown.
Taking the moments of

$$
T_{2} \times a=P \times L
$$

or

$$
\begin{aligned}
T_{2} & =\frac{P \times L}{a} \\
& =\frac{90 \times 0.6}{0.1}=540 \mathrm{~N}
\end{aligned}
$$

Now using equation (8.9) for limiting ratio of tensions,

$$
\frac{T_{1}}{T_{2}}=\mathrm{e}^{\mu \times \theta}
$$

or
or

$$
2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu \times \theta
$$

$$
\begin{aligned}
\log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{\mu \times \theta}{2.3} \\
& =\frac{0.25 \times 4.713}{2.3}=0.5123
\end{aligned}
$$

$\therefore \quad \frac{T_{1}}{T_{2}}=$ Antilog of $0.5123=3.253$
or

$$
\begin{aligned}
T_{1} & =3.253 \times T_{2} \\
& =3.253 \times 540 \\
& =1756.62 \mathrm{~N}
\end{aligned} \quad\left(\because T_{2}=540 \mathrm{~N}\right)
$$

Substituting the values of T_{1}, T_{2} and r in equation (i), we get the braking torque as

$$
\begin{aligned}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
& =(1756.62-540) \times 0.25 \mathrm{Nm} \\
& =\mathbf{3 0 4 . 1 5 5} \mathbf{N m} . \quad \text { Ans. }
\end{aligned}
$$

(ii) Drum rotates in clockwise direction

Refer to Fig. 8.9 in which drum is rotating in clockwise direction. The braking torque is given by,

$$
T_{B}=\left(T_{1}-T_{2}\right) \times r
$$

Let us first find the values of T_{1} and T_{2}. Taking moments of all forces shown in Fig. 8.9 about O, we get
or

$$
\begin{aligned}
T_{1} \times a & =P \times L \\
T_{1} & =\frac{P \times L}{a} \\
& =\frac{90 \times 0.6}{0.1}=540 \mathrm{~N}
\end{aligned}
$$

Also the know that
or or

$$
\begin{aligned}
\frac{T_{1}}{T_{2}} & =e^{\mu \times \theta} \\
2.3 \log \frac{T_{1}}{T_{2}} & =\mu \times \theta \\
\log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{\mu \times \theta}{2.3} \\
& =\frac{0.25 \times 4.713}{2.3}=0.5123 \\
\therefore \quad \frac{T_{1}}{T_{2}} & =\text { Antilog of } 0.5123=3.253
\end{aligned}
$$

$$
\therefore \quad T_{2}=\frac{T_{1}}{3.253}=\frac{540}{3.253}=166 \mathrm{~N}
$$

\therefore Braking torque is given by,

$$
\begin{aligned}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
& =(540-166) \times 0.25=93.5 \mathrm{Nm} . \quad \text { Ans. }
\end{aligned}
$$

Problem 8.7. Fig. S. 11 shows a simple band brake which is applied to a shaft carrying a flywheel (i.c. rotating drum) of mass 300 kg and of radius of gyration 350 mm . The flywheel rotates at 200 r.p.m. The brake drum diameter is 260 mm and co-cfficient of friction is 0.20 . The angle of lap of the band on the drum is 210°. If the braking torque is 39 Nm , find :
(i) the force applied at the lever end,
(ii) the number of turns of the flywheel before it comes to rest,
(iii) the time taken by the flywheel to come to rest.

Sol. Given :
For a simple band brake, one end of the band should be connected to the fulcrum whereas the other end of the band may be connected to the lever either towards the same side is which force P is acting or towards the opposite side in which P is acting. Here the other end is in opposite direction.

The other given data is :

$$
\text { mass, } \begin{aligned}
m & =300 \mathrm{~kg} ; \text { radius of gyration, } k=350 \mathrm{~mm}=0.35 \mathrm{~m} ; \\
N & =200 \mathrm{r} . \text { p.m. } ; d=260 \mathrm{~mm} ; r=130 \mathrm{~mm}=0.13 \mathrm{~m} ; \\
\mu & =0.20 ; \theta=210^{\circ} \text { or } 210 \times \frac{\pi}{180} \mathrm{rad}=3.666 \mathrm{rad}
\end{aligned}
$$

braking torque, $T_{B}=39 \mathrm{Nm}$

Fig. 8.11
(i) Force applied at the end of the lever

Let $P=$ Force applied at the lever end.
The braking torque is given by,

$$
\begin{align*}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
39 & =\left(T_{1}-T_{2}\right) \times 0.13 \\
\left(T_{1}-T_{2}\right) & =\frac{39}{0.13}=300 \mathrm{~N} \tag{i}
\end{align*}
$$

Let us now find the tensions T_{1} and T_{2}. We know that
or

$$
\begin{align*}
\frac{T_{1}}{T_{2}} & =e^{\mu \times \theta} \\
2.3 \log \frac{T_{1}}{T_{2}} & =\mu \times \theta=0.2 \times 3.666=0.7322 \\
\therefore \quad \log \frac{T_{1}}{T_{2}} & =\frac{0.7322}{2.3}=0.3188 \\
\frac{T_{1}}{T_{2}} & =\text { Antilog of } 0.3188=2.08 \\
T_{1} & =2.08 T_{2} \tag{ii}
\end{align*}
$$

Substituting the value of T_{1} in equation (i), we get

$$
2.08 T_{2}-T_{2}=300
$$

or

$$
\begin{aligned}
1.08 T_{2} & =300 \\
T_{2} & =\frac{300}{1.08}=277.77 \mathrm{~N}
\end{aligned}
$$

Substituting this value of T_{2} in equation (ii), we get

$$
T_{1}=2.08 \times 277.77=577.76 \mathrm{~N}
$$

To find the value of P, take the moments of all forces (i.e. T_{1}, T_{2} and P) about the fulcrum O.

$$
\begin{aligned}
\therefore \quad P \times 390 & =T_{2} \times 130 \\
\therefore & =\frac{T_{2} \times 130}{390} \\
& =\frac{277.77 \times 130}{390}=\mathbf{9 2 . 5 9} \mathbf{N} . \text { Ans. }
\end{aligned}
$$

(ii) Number of turns of the flywheel before it comes to rest.

Let $n=$ Number of turns of the flywheel before it comes to rest.
The kinetic energy of the rotation of the flywheel is used to overcome the workdone due to braking torque $\left(T_{B}\right)$, before the flywheel comes to rest.

Now K.E. of the rotation* of flywheel

$$
\begin{align*}
& =\frac{1}{2} \times I * \omega^{2} \\
& =\frac{1}{2} \times m k^{2} \times \omega^{2} \quad \quad\left(\because \quad I=m k^{2}\right) \\
& =\frac{1}{2} \times m k^{2} \times\left(\frac{2 \pi N}{60}\right)^{2} \quad\left(\because \omega=\frac{2 \pi N}{60}\right) \\
& =\frac{1}{2} \times 300 \times 0.35^{2} \times\left(\frac{2 \pi \times 200}{60}\right)^{2} \\
& =8060.17 \mathrm{Nm} \tag{iii}
\end{align*}
$$

$\therefore \quad$ Work done by the braking torque in ' n ' number of turns of the flywheel $=T_{B} \times$ Angular displacement in n turns
*K.E. due to linear velocity $=\frac{1}{2} m V^{2}$ whereas the K.E. due to rotation $=\frac{1}{2} I \times \omega^{2}$ where $I=m k^{2}$.

$$
\begin{array}{r}
=T_{B} \times 2 \pi \times n \quad(\because \text { Angular displacement for one turn }=2 \pi) \tag{iu}\\
\ldots \text { (iu) }
\end{array}
$$

$$
=39 \times 2 \pi \times n
$$

But K.E. of flywheel $=$ Work done by braking torque
(iii) Time taken by flywheel to come to rest after applying the brake

$$
N=200 \text { r.p.m. }
$$

This means that 200 revolutions are made in one minute. The flywheel comes to rest after applying the brake in 32.89 revolution. Let us find the time for 32.89 revolution.

Time for 200 revolution $=1$ minute
Time for 1 revolution $\quad=\frac{1}{200} \mathrm{~min}$
Time for 32.89 revolution $=\frac{1}{200} \times 32.89=0.16445 \mathrm{~min}$
$=0.16445 \times 60$ seconds
$=9.867$ seconds. Ans.
Problem 8.8. Fig. 8.12 shows a simple band brake which is applied on a drum of diameter 400 mm . The drum is rotating at 180 r.p.m. The angle of lap of the band on the drum is 270° and co-efficient of friction is 0.25 . One end of the band is attached to a fixed pin (i.e. fulcrum) and other end to the lever arm at a distance of 100 mm from the fulcrum. The lever length is 600 mm . The lever arm is placed perpendicular to the diameter that bisects the angle of contact. Determine :
(i) the necessary force required at the end of the lever arm to stop the drum if a power of 30 kW is being absorbed. Also find the direction of this force.

Fig. 8.12
(ii) width of steel band if maximum tensile stress in the band is not to exceed $50 \mathrm{~N} / \mathrm{mm}^{2}$. Take thickness of band as 3 mm .

Sol. Given :

 (i.e. fulcrum). The other data is :

Let us find first the distance $O C$.
Distance

$$
O D=\frac{O A}{2}=\frac{100}{2}=50 \mathrm{~mm}
$$

$$
\angle E F C=\frac{1}{2}[360-270]=45^{\circ}
$$

$$
\therefore \quad \angle F C E=45^{\circ}
$$

$$
\left[\because \quad \text { In } \triangle E F C, \angle E F C=45^{\circ} ; \angle F E C=90^{\circ} \quad \therefore \quad \angle F C E=45^{\circ}\right]
$$

In $\triangle O C D, \angle D C O=45^{\circ}, \quad \therefore \quad \cos 45^{\circ}=\frac{O D}{O C}$

$$
\therefore \quad O C=\frac{O D}{\cos 45^{\circ}}=\frac{50}{\cos 45^{\circ}}=70.71 \mathrm{~mm}
$$

Substituting the values of $O C, O B$ and T_{2} in equation (iii),

$$
P \times 600=3536.77 \times 70.71
$$

$$
\therefore \quad P=\frac{3536.77 \times 70.71}{600}=416.8 \mathrm{~N} . \quad \text { Ans. }
$$

(ii) Width of band

Given :

Max. tensile stress $=50 \mathrm{~N} / \mathrm{mm}^{2}$. Thickness, $t=3 \mathrm{~mm}$.
Let $b=$ Width of band
The maximum tension in the band is T_{1}. The value of T_{1} is 11494.5 N
\therefore Maximum tension $\quad=11494.5 \mathrm{~N}$
But maximum tension $=$ Max. tensile stress \times Area of cross-section of band

$$
\begin{array}{rlrl}
11494.5 & =50 \times[b \times t]=50 \times[b \times 3] \\
& & b & =\frac{11494.5}{50 \times 3}=\mathbf{7 6 . 6 3} \mathbf{m m} .
\end{array}
$$

(b) Differential Band Brake. In case of differential band brake no end of the band is connected to the fulcrum. Fig. 8.13 shows a differential band brake in which the ends of the band are connected at A and B which are on different sides of the fulcrum O.

When the drum rotates in the clock-wise direction, the end of the band attached at A will be tight with tension T_{1} whereas the end of the band attached at B will be slack with tension T_{2} as shown in Fig. 8.13(a). The value of force P at the end of the lever, can be obtained
as explained below :

Let $\quad a=$ perpendicular distance from fulcrum O on the line of action of tension T_{2}
$L=$ length of lever from O.
Consider the equilibrium of lever $B O C$. The force acting on the lever $B O C$ are (i) force, P, (ii) tension T_{1} at A and (iii) tension T_{2} at B as shown in Fig. 8.13 (b).

Taking moments of all forces about O, we get
or

$$
P \times L+T_{1} \times b=T_{2} \times a
$$

$$
\begin{align*}
& P \times L & =T_{2} \times a-T_{1} \times b \\
\therefore & P & =\frac{T_{2} \times a-T_{1} \times b}{L} \tag{i}
\end{align*}
$$

Fig. 8.13. Differential band brake.
But T_{1} is always more than T_{2}. Hence in the above equation the force P will be positive if

$$
\begin{gather*}
T_{2} \times a>T_{1} \times b \\
T_{1} \times b<T_{2} \times a \\
\frac{T_{1}}{T_{2}}<\frac{a}{b} \tag{ii}
\end{gather*}
$$

In equation (i), the force P will be zero or negative if

$$
\begin{align*}
T_{2} \times a & \leq T_{1} \times b \\
\frac{T_{2}}{T_{1}} & \leq \frac{b}{a} \tag{iii}
\end{align*}
$$

If the force P is zero or negative, then the brake becomes as self locking. Hence for selflocking of the brake when drum rotates clock-wise the condition is

$$
\begin{equation*}
\frac{T_{2}}{T_{1}} \leq \frac{b}{a} \tag{8.12}
\end{equation*}
$$

Anti-clockwise rotation

Fig. 8.14 shows a differential band brake in which brake drum is rotating anti-clockwise. The end of the band connected to B will be tight with tension T_{1} whereas the end of the band connecting to A will be slack with tension. T_{2}.

Taking the moments about the fulcrum O, we get
or

$$
\begin{aligned}
P \times L+T_{2} \times b & =T_{1} \times a \\
P \times L & =T_{1} \times a-T_{2} \times b \\
P & =\frac{T_{1} \times a-T_{2} \times b}{L}
\end{aligned}
$$

Fig. 8.14. Anti-clockwise rotation.
For self-locking of the brake, the force P should be zero or negative. But force P will be zero or negative if
or

$$
\begin{align*}
T_{1} \times a & \leq T_{2} \times b \\
\frac{T_{1}}{T_{2}} & \leq \frac{b}{a} \tag{8.13}
\end{align*}
$$

Problem 8.9. Fig. 8.15 shows a differential band brake of drum diameter 400 mm . The two ends of the band are fixed to the points on the opposite side of fulcrum of the lever at a distance of 50 mm and 160 mm from the fulcrum as shown in Fig. 8.15. The brake is to sustain a torque of 300 Nm . The co-efficient of friction between band and the brake is 0.2. The angle of contact is 210° and the length of lever from the fulcrum is 600 mm . Determine :
(i) the force required at the end of the lever for the clockwise and anti-clockwise rotation of the drum.
(ii) value of $O B$ for the brake to be self-locking for clockwise rotation.

Fig. 8.15
Sol. Given :
Differential band brake, which means no ends of the band is connected to the fulcrum. The other data is :

$$
\begin{aligned}
& d=400 \mathrm{~mm} \text { or } r=200 \mathrm{~mm}=0.2 \mathrm{~m} ; \\
& \text { Distance } O A=50 \mathrm{~mm} \text {, distance } O B=160 \mathrm{~mm}, T_{B}=300 \mathrm{Nm}, \mu=0.2, L=600 \mathrm{~mm}^{\mathrm{m}} \\
& \theta=210^{\circ}=210 \times \frac{\pi}{180}=3.665 \mathrm{rad}
\end{aligned}
$$

(i) Force at the end of lever for clock-wise rotation

Refer to Fig. 8.16. For the clockwise rotation of the drum, the end of the band connected to A will be tight with tension T_{1} whereas the end of the band connected to B will be slack with tension T_{2}. Consider the equilibrium of $B O C$.

Fig. 8.16
Taking the moments of all forces acting on $B O C$,
(The focus acting on $B O C$ are T_{2}, T_{1} and P) about fulcrum O, we get

$$
\begin{align*}
& T_{1} \times A O+P \times O C=T_{2} \times O B \tag{i}\\
& T_{1} \times 50+P \times 600=T_{2} \times 160 \tag{ii}
\end{align*}
$$

Let us first find the values of T_{1} and T_{2}, so that the value of P can be obtained.
Using equation,

$$
\begin{array}{rlrl}
\frac{T_{1}}{T_{2}} & =e^{\mu \times \theta} \\
2.3 \log \left(\frac{T_{1}}{T_{2}}\right) & =\mu \times \theta=0.2 \times 3.665=0.733 \\
\log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{0.733}{2.3}=0.3187 \\
\therefore & \frac{T_{1}}{T_{2}} & =\text { Anti-log of } 0.3187=2.083 \\
\therefore & T_{1} & =2.083 T_{2} \tag{iii}
\end{array}
$$

The braking torque is given by,

$$
\begin{array}{rlr}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
300 & =\left(T_{1}-T_{2}\right) \times 0.2 \\
& =\left(2.083 T_{2}-T_{2}\right) \times 0.2 \\
& =1.083 \times T_{2} \times 0.2 & (\because \quad r=0.2 \mathrm{~m}) \\
\therefore \quad & \left(\because \quad T_{1}=2.083 T_{2}\right) \\
\therefore \quad T_{2} & =\frac{300}{1.083 \times 0.2}=1385 \mathrm{~N} &
\end{array}
$$

Substituting the value of T_{2} in equation (iii), we get

$$
\therefore \quad T_{1}=2.083 \times 1385=2884.95 \mathrm{~N}
$$

$$
\text { Substituting the values of } T_{1} \text { and } T_{2} \text { in equation (ii), we get }
$$

$$
2884.95 \times 50+P \times 600=1385 \times 160
$$

$$
144247.5+600 P=221600
$$

Force at the end of the lever for anti-clockwise rotation
Refer to Fig. S.17. For the anti-clockwise rotation of the drum, the end of the band attached to B will be tight with tension T_{1} whereas the end attached to A will be slack with
tension T_{n}. Consider the equilibrium of lever $B O C$. Taking moments of all fart P) about fulcrum O, we get

$$
\begin{aligned}
P \times 600+T_{2} \times 50 & =T_{1} \times 160 \\
\text { or } \quad P & =\frac{T_{1} \times 160-T_{2} \times 50}{600}
\end{aligned}
$$

The value of P can be obtained if values of T_{1} and T_{2} are known. The values $\quad \cdots(A)$ are obtained by using equation :

$$
\frac{T_{1}}{T_{2}}=e^{\mu \theta} \quad \text { or } 2.3 \log \frac{T_{1}}{T_{2}}=\mu \times \theta
$$

Fig. 8.17
or
or
or
or
and

$$
P=\frac{77352.5}{600}=128.92 \mathrm{~N} . \quad \text { Ans. }
$$

$$
\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{\mu \times \theta}{2.3}=\frac{0.2 \times 3.665}{2.3}=0.3187
$$

$$
\frac{T_{1}}{T_{2}}=\text { Antilog of } 0.3187=2.083
$$

$$
T_{1}=2.083 T_{2}
$$

$T_{1}=2.083 T_{2}$
The braking torque is given by equation,

$$
\therefore \quad=1.083 T_{2}-0.2
$$

$$
\begin{aligned}
T_{B} & =\left(T_{1}-T_{2}\right) \times r \\
300 & =\left(2.083 T_{2}-T_{2}\right) \times 0.2 \quad\left(\because \quad T_{1}=2.083 T_{2} \text { and } r=0.2\right) \\
& =1.083 T_{2}-0.2
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=2.083 \times T_{2}=2.083 \times 1385=2884.95 \mathrm{~N} \\
& \text { Substituting the values of } T_{1} \text { and } T_{2} \text { in equation }(A) \text {, we get } \\
& P=\frac{2884.95 \times 160-1385 \times 50}{600} \\
&=\frac{461592-69250}{600}=\mathbf{N 5 3 . 9} \mathrm{N} . \text { Ans. }
\end{aligned}
$$

(ii) Value of $O B$ for the brake to be self-locking for clockwise rotation

Refer to Fig. S.16. For clockwise rotation of the drum, we have equation (i), as

$$
T_{1} \times A O+P \times O C=T_{2} \times O B
$$

The brake will be self-locking, if P is zero. Hence substituting $P=0$ in the above equation, we get

$$
T_{1} \times O A=T_{2} \times O B
$$

The vaiues of T_{1}, T_{2} and $O A$ are known, hence the value of $O B$ can be obtained

$$
\begin{array}{ll}
\therefore & O B
\end{array}=\frac{T_{1} \times O A}{T_{2}}, ~=\frac{2884.95 \times 50}{1385}=\mathbf{1 0 4 . 1 5} \mathbf{~ m m} . \text { Ans. }
$$

Problem 8.10. Fig. 8.18 shows a barrel and a differential band brake which are keyed to the same shaft. A rope is wound round a barrel and supports a load of 200 kN . The brake drum diameter is 600 mm and diameter of barrel is 300 mm . The two ends of the bands are attached to pins on opposite sides of the fulcrum of the brake lever at a distances of 20 mm and 80 mm as shown in Fig. 8.18. The angle of contact of band brake is 270° and co-efficient of friction 0.25. Determine the minimum force required at the end of the lever to support the load, if the length of the lever from the fulcrum is 2400 mm .

Fig. 8.18
Soi. Civen :
Max. load, $W=200 \mathrm{kN}=200 \times 10^{3} \mathrm{~N} ; d=600 \mathrm{~mm}$ or $r=300 \mathrm{~mm}=0.3 \mathrm{~m}$;
Dia. of barrel, $D=300 \mathrm{~mm}$ or radius of barrel, $R=150 \mathrm{~mm}=0.15 \mathrm{~m}$;
Distiance $O A=20 \mathrm{~mm}$; distance $O B=80 \mathrm{~mm} ; \theta=270^{\circ}=270 \times \frac{\pi}{180}=4.712 \mathrm{rad}$;

$$
\mu=0.25, L=2400 \mathrm{~mm}
$$

Let $P=$ Minimum force at the end of the lever to support the load
As $O B$ is greater than $O A$, therefore the force P will act downward.
Let us find the two values of P when drum rotates clockwise and then anti-clockwise.
(i) Drum rotates clockwise

Refer to Fig. 8.19. For clockwise rotation, the end of the band attached to A will be tight with tension T_{1} whereas the end attached to B will be slack with tension T_{2}.

$$
\therefore \quad T_{1}-T_{2}=10^{5}
$$

or
or

$$
\left(3.25 T_{2}-T_{2}\right)=10^{5}
$$

$$
2.25 T_{2}=10^{5}
$$

$$
\begin{array}{ll}
\therefore & T_{2}=\frac{10^{5}}{2.25}=44444.44 \mathrm{~N} \\
\therefore & T_{1}=3.25 T_{2}=3.25 \times 44444.44 \\
& =144444.44 \mathrm{~N}
\end{array}
$$

Substituting the value of T_{2} in equation (i), we get

$$
\begin{array}{rlrl}
\therefore & P & =\frac{44444.44}{30} \\
& =\mathbf{1 4 8 1 . 4 8} \mathbf{N} . \text { Ans. }
\end{array}
$$

8.2.3. Band and Block Brake. If the band and also the blocks are used for applying brakes to a rotating body, then it is known as band and blockbrake. Fig. 8.21 shows the band and block brake which is the modification of the band brake and consists of a number of wooden blocks fixed inside a flexible steel band. The friction between the blocks and the drum provides braking action. When the brake is applied, the blocks are pressed against the drum. The wooden blocks have a higher co-efficient of friction. This increases the effectiveness of the brake. Also the wooden blocks can be easily replaced if worn out.

Fig. 8.21
Let there are ' n ' number of blocks, each subtending on angle 2θ at the drum centre as shown in Fig. 8.21 (b). Let the drum rotates in clockwise direction. For clockwise rotation, the end of band attached to A will be tight with tension T_{n} whereas the end attached to B will be slack with tension, T_{0}.

Let $n=$ Number of blocks
$T_{n}=$ Tension on tight side after n block
$T_{0}=$ Tension on slack side
$\mu=$ Co-efficient of friction
$T_{1}=$ Tension in the band between first and second block
$T_{2}=$ Tension in the band between second and third block.

Consider one of the blocks (say first block) as shown in Fig. 8.21 (b). Each block embrass a short arc on the drum. The first block is in equilibrium under the action of following forces :
(i) Tension T_{0} on the slack side
(ii) Tension T_{1} on the tight side i.e. tension in the band between first and second block
(iii) Normal reaction R_{N}
(iv) Force of friction ($\mu \times R_{N}$) acting on the block in the direction of rotation of drum.

The frictional force on the drum will be in the opposite direction of the rotation of the drum (i.e. in anti-clockwise direction). And the frictional force on the block will be in the opposite direction of the frictional force on drum. Hence the friction force on the block will be in clockwise direction. This means that frictional force on the block will act in the direction of rotation of the drum.

Resolving the forces [acting on the block shown in Fig. 8.21 (b)] tangentially

$$
\begin{array}{rrr}
T_{1} \cos \theta-T_{0} \cos \theta & =\mu R_{N} & \left(\because T_{1} \text { is more than } T_{0}\right) \\
\left(T_{1}-T_{0}\right) \cos \theta=\mu R_{N}
\end{array} \quad \ldots(i)
$$

Dividing equation (i) by equation (ii),

$$
\frac{\left(T_{1}-T_{0}\right) \cos \theta}{\left(T_{1}+T_{0}\right) \sin \theta}=\frac{\mu R_{N}}{R_{N}}
$$

or
or

$$
\frac{\left(T_{1}-T_{0}\right)}{\left(T_{1}+T_{0}\right)} \times \frac{1}{\tan \theta}=\mu
$$

$$
\frac{\left(T_{1}-T_{0}\right)}{\left(T_{1}+T_{0}\right)}=\frac{\mu \tan \theta}{1}
$$

Let us find the ratio of tensions T_{1} / T_{0}. From the above equation, we have

$$
\begin{aligned}
\left(T_{1}-T_{0}\right) & =\left(T_{1}+T_{0}\right) \mu \tan \theta \\
& =T_{1} \times \mu \tan \theta+T_{0} \times \mu \tan \theta \\
T_{1}-T_{1} \times \mu \tan \theta & =T_{0}+T_{0} \mu \tan \theta \\
T_{1}(1-\mu \tan \theta) & =T_{0}(1+\mu \tan \theta)
\end{aligned}
$$

or
Similarly, for the second block the ratio of tensions will be given by

$$
\frac{T_{2}}{T_{1}}=\frac{1+\mu \tan \theta}{1-\mu \tan \theta} \text { and so on. }
$$

For the ' n th' block, the ratio of tensions will be

$$
\frac{T_{n}}{T_{n-1}}=\frac{1+\mu \tan \theta}{1-\mu \tan \theta}
$$

Hence the ratio of tensions in the tight and slack sides of the complete band and block
brake can be obtained as :

$$
\frac{T_{n}}{T_{0}}=\frac{T_{n}}{T_{n-1}} \times \ldots \ldots \times \frac{\dot{T}_{3}}{T_{2}} \times \frac{T_{2}}{T_{1}} \times \frac{T_{1}}{T_{0}}
$$

$$
\begin{align*}
& =\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right) \times \ldots \ldots \times\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right) \times\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right) \times\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right) \\
& =\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right)^{n} \tag{8.14}
\end{align*}
$$

where $\theta=$ Half of the angle subtended by each block on the centre of the drum.

$$
\text { Net torque on drum } \quad=\left(T_{n}-T_{0}\right) \times r
$$

Now the braking torque on the drum will be

$$
\begin{equation*}
T_{B}=\left(T_{n}-T_{0}\right) \times r \tag{8.15}
\end{equation*}
$$

where $r=$ Effective radius of band.
Problem 8.12. The maximum braking torque acting on a band and block brake (shown in Fig. 8.22 (a)) is 2000 Nm . The band is lined with 15 blocks each of which subtends an angle of 12° at the centre of rotating drum. The co-efficient of friction between the band and block is 0.3. The diameter of the drum is 680 mm whereas the thickness of blocks is 60 mm . Find the least force required at the end of the lever which is 480 mm long.

Fig. 8.22
Sol. Given :

$$
\begin{aligned}
T_{B} & =2000 \mathrm{Nm} ; n=15 ; 2 \theta=12^{\circ} \text { or } \theta=6^{\circ}=6 \times \frac{\pi}{180}=0.1047 \mathrm{rad} ; \\
\mu & =0.3, d=680 \mathrm{~mm} ; t=60 \mathrm{~mm} ;
\end{aligned}
$$

Dia. of band $=d+2 t=680+2 \times 60=800 \mathrm{~mm}$ or radius of band $r=400 \mathrm{~mm}=0.4 \mathrm{~m}$;

$$
L=480 \mathrm{~mm}
$$

As distance $O A>$ distance $O B$, hence force P must be applied at C downwards.
The force P will be least, if the end of the band attached to A is slack and the end attached to B is tight.This is only possible if drum rotates clockwise as shown in Fig. 8.22 (a).

For the band and block brake, using equation (8.14), we get

$$
\frac{T_{n}}{T_{0}}=\left(\frac{1+\mu \tan \theta}{1-\mu \tan \theta}\right)^{n}
$$

$$
\begin{align*}
& =\left(\frac{1+0.3 \times \tan 6^{\circ}}{1-0.3 \times \tan 6^{\circ}}\right)^{15}=\left(\frac{1+0.3 \times 0.1051}{1-0.3 \times 0.1051}\right)^{15} \\
& =\left(\frac{1.0315}{0.9685}\right)^{15}=(1.065)^{15}=2.573 \\
\therefore \quad T_{n} & =2.573 T_{o} \tag{i}
\end{align*}
$$

or
The braking torque is given by equation (8.15),

$$
\begin{aligned}
T_{B} & =\left(T_{n}-T_{0}\right) \times r \\
2000 & =\left(2.573 T_{o}-T_{o}\right) \times 0.4 \quad\left(\because T_{n}=2.573 T_{0} \text { and } r=0.4\right)
\end{aligned}
$$

$$
=1.573 T_{0} \times 0.4
$$

or

$$
\begin{array}{ll}
& T_{o}=\frac{2000}{1.573 \times 0.4}=3178.6 \\
\therefore \quad T_{n} & =2.573 \times T_{o}=2.573 \times 3178.6=8178.5 \mathrm{~N}
\end{array}
$$

Now taking the moments of all force acting on the brake lever, about fulcrum, we get [Refer to Fig. 8.22 (b)]

$$
P \times 480+T_{n} \times 25=T_{o} \times 125
$$

or

$$
480 P=T_{o} \times 125-T_{n} \times 25
$$

$$
P=\frac{T_{0} \times 125-T_{n} \times 25}{480}
$$

$$
=\frac{3178.6 \times 125-8178.6 \times 25}{480}
$$

$$
=\frac{4767900-204465}{480}=401.8 \mathrm{~N} . \text { Ans. }
$$

Problem 8.13. Find:
(i) the maximum braking torque,
(ii) the angular retardation of the brake drum and
(iii) the time taken by the system to come to rest from the rated speed of 240 r.p.m.

When a band and block having 12 blocks, each of which subtends and angle of 18° at the drum centre, is applied to a rotating drum of diameter 800 mm . The blocks are 100 mm thick. The drum and the flywheel mounted on the same shaft have a mass of 1600 kg and have a combined radius of gyration of 500 mm . The two ends of the band are attached to the pins on the opposite sides of the brake fulcrum at a distance of 35 mm and 140 mm from the fulcrum. The co-efficient of friction between the blocks and drum may be taken as 0.3. A force of 150 N is applied at a distance of 800 mm from the fulcrum to apply the brake.

Sol. Given :
$n=12 ; 2 \theta=18^{\circ}$ or $\theta=9^{\circ}$; dia. of drum, $d=800 \mathrm{~mm}$; thickness of block, $t=100 \mathrm{~mm}$, total mass, $m=1600 \mathrm{~kg}$; combined radius of gyration, $k=500 \mathrm{~mm}=0.5 \mathrm{~m}$;
$O B=35 \mathrm{~mm} ; O A=140 \mathrm{~mm} ; \mu=0.3 ; L=800 \mathrm{~mm}, P=150 \mathrm{~N}$
Dia. of band, $D=d+2 t=800+2 \times 100=1000 \mathrm{~mm} ; r=500 \mathrm{~mm}=0.5 \mathrm{~m}$

(i) Maximum Braking Torque

As distance $O A$ is greater than distance $O B$, the force P must act downwards at C. For maximum braking torque (or for least force to apply the brake), the brake should be arranged so that the tight side of the band is attached to the shorter distance i.e. tight side of band should be attached to B. This is possible if drum rotates clockwise, as shown in Fig. 8.23.
\therefore Braking torque is given by equation (8.15) as

$$
\begin{aligned}
T_{B} & =\left(T_{n}-T_{o}\right) \times r \\
& =(12335-3940.88) \times 0.5=4197 \mathrm{Nm} . \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { Dia. of band }= \\
\text { rum }
\end{array}\right. \\
& \left.\qquad \therefore \quad r=\frac{1000}{2}=500 \mathrm{~mm}=0.5 \mathrm{~m}\right)
\end{aligned}
$$

(ii) Angular retardation of the brake drum

Let $\alpha=$ Angular retardation
We know that
Net torque $=I \times \alpha$
(where $I=$ mass moment of inertia $=m \times k^{2}=1600 \times 0.5^{2}=400$)
or

$$
\begin{array}{rlrl}
& \left(T_{n}-T_{o}\right) \times r & =I \times \alpha \\
& \text { Braking torque } & =I \times \alpha \\
\therefore & & 4197 & =m k^{2} \times \alpha \\
& =1600 \times 0.5^{2} \times \alpha=400 \times \alpha \\
\therefore \quad & \alpha & =\frac{4197}{400}=10.49 \mathbf{~ r a d} / \mathbf{s}^{2} . \text { Ans. }
\end{array}
$$

(iii) Time taken by the system to come to rest from the rated speed of 240 r.p.m. Let

$$
t=\text { Time taken }
$$

Initial angular speed, $\quad \omega_{0}=\frac{2 \pi N_{0}}{60}=\frac{2 \pi \times 240}{60}=25.13 \mathrm{rad} / \mathrm{s}$
Final angular speed,

$$
\omega=0
$$

Using

$$
\omega=\omega_{0}-\alpha \times t \quad \text { (-ve sign is due to retardation) }
$$

\therefore

$$
\begin{aligned}
t & =\frac{\omega_{0}-\omega}{\alpha} \\
& =\frac{25.13-0}{10.49}=\mathbf{2 . 3 9} \mathbf{~ s . ~ A n s . ~}
\end{aligned}
$$

8.2.4. Internal Expanding Shoe Brake. If the shoe is provided on the interior of the rotating drum and braking effect is produced due to the expansion of the shoe, then it is known as internal expanding shoe brake. Fig. 8.24 shows an internal expanding shoe brake which are commonly used in motor cars and light trucks. This consists of two shoes S_{1} and S_{2} whose outer surfaces are lined with some friction material (generally with Ferodo) to increase the coefficient of friction. Each shoe is pivoted at one end about a fixed fulcrum O_{1} and O_{2} and the other end is having contact with a cam (or with each piston in a common hydraulic cylinder. There are two equal diameter pistons in a common hydraulic cylinder.) As the cam rotates, the shoes are pushed outwards and makes a contact with the drum. The friction between shoes and drum produces the braking torque and hence reduces the speed of the drum. The shoes are helu in off position by a spring as shown in Fig. 8.24. Under normal running of the vehicle the drum rotates freely as the outer diameter of the shoes is a little less than the internal diameter of the drum.

The force required to operate such a brake can be calculated if we know the total forces acting on such a brake. Let us consider, the drum is rotating in anti-clockwise direction. For
anti-clockwise rotation of the drum, the left hand shoe is known as leading or primary shoe whereas the right hand shoe is known as trailing or secondary shoe.

Fig. 8.24
Let $F_{1}=$ Force exerted by cam on the leading shoe
$F_{2}=$ Force exerted by cam on the trailing shoe
$b=$ Width of brake lining
$r=$ Internal radius of the wheel drum
$p_{n}=$ Normal pressure
$p_{1}=$ Maximum intensity of normal pressure for the leading shoe
$p_{2}=$ Maximum intensity of normal pressure for trailing shoe
Consider a small length of brake lining say length $A C$ which subtends an angle $\delta \theta$ at the centre as shown in Fig. 8.24 (b). Also let length $O A$ makes an angle θ with $O O_{1}$. As the shoe turns about O_{1}, the rate of wear of the shoe lining at A will be directly proportional to the perpendicular distance from O_{1} to $O A$ i.e. distance $O_{1} B$ as shown in Fig. 8.24 (c).

Now from the figure, we have

$$
O_{1} B=O O_{1} \sin \theta
$$

Hence rate of wear at $A \propto O_{1} B$ or $O O_{1} \sin \theta$ or $\sin \theta$
The normal pressure at A (i.e. p_{N}) is written as
or

$$
\begin{aligned}
& p_{N} \propto \sin \theta \\
& p_{N}=p_{1} \sin \theta
\end{aligned}
$$

where p_{1} is constant of proportionality and is known as maximum intensity of pressure
$\therefore \quad$ Normal force acting on the element,

$$
\delta R_{N}=\text { Normal pressure } \times \text { Area of element }
$$

$$
\begin{aligned}
& =p_{N} \times(b \times r . \delta \theta) \\
& =p_{1} \times \sin \theta \times b \times r \delta \theta
\end{aligned}
$$

\therefore Braking or friction force on the element,

$$
\begin{aligned}
d F & =\mu \times \delta R_{N} \\
& =\mu \times p_{1} \times \sin \theta \times b r \delta \theta
\end{aligned}
$$

\therefore Braking torque, due to element about O,

$$
\begin{aligned}
\delta T_{B} & =\delta F \times r \\
& =\mu \times p_{1} \times \sin \theta \times b \times r \times \delta \theta \times r \\
& =\mu p_{1} \times b r^{2} \times \sin \theta . \delta \theta
\end{aligned}
$$

The total braking torque about O for whole of one shoe (i.e. leading shoe) is obtained by integrating the above equation between limits θ_{1} and θ_{2}.

$$
\begin{align*}
\therefore \quad T_{B_{1}} & =\int_{\theta_{1}}^{\theta_{2}} \mu p_{1} \times b r^{2} \times \sin \theta \times d \theta \\
& =\mu \times p_{1} \times b r^{2} \times \int_{\theta_{1}}^{\theta_{2}} \sin \theta \cdot d \theta \\
& =\mu \times p_{1} \times b r^{2} \times[-\cos \theta]_{\theta_{1}}^{\theta_{2}} \\
& =\mu p_{1} b r^{2}\left[\cos \theta_{1}-\cos \theta_{2}\right] \tag{8.16}
\end{align*}
$$

Moment of normal force (δR_{N}) about fulcrum O_{1},

$$
\begin{aligned}
\delta M_{N} & =\delta R_{N} \times O_{1} B=\delta R_{N} \times\left(O O_{1} \sin \theta\right) \\
& =\left(p_{1} \times \sin \theta \times b \times r \times \delta \theta\right) \times\left(O O_{1} \sin \theta\right) \\
& =p_{1} \times \sin ^{2} \theta \times(b \times r . \delta \theta) \times O O_{1}
\end{aligned}
$$

Total moment of normal forces for the leading shoe about O_{1},

$$
\begin{align*}
M_{N_{1}}= & \int_{\theta_{1}}^{\theta_{2}} p_{-} \times \sin ^{2} \theta \times(b \times r \times \delta \theta) O O_{1} \\
= & p_{1} \times b . r . O O_{1} \int_{\theta_{1}}^{\theta_{2}} \sin ^{2} \theta d \theta=p_{1} \times b \times r \\
& \times O O_{1} \int_{\theta_{1}}^{\theta_{2}}\left[\frac{1-\cos 2 \theta}{2}\right] d \theta \quad\left[\because \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}\right] \\
= & p_{1} \times b \times r \times O O_{1}\left[\frac{\theta-\frac{\sin 2 \theta}{2}}{2}\right]_{\theta_{1}}^{\theta_{2}}=\frac{1}{2} \times p_{1} \times b \times r \times O O_{1}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{\theta_{1}}^{\theta_{2}} \\
= & \frac{1}{2} \times p_{1} \times b \times r \times O O_{1}\left[\theta_{2} \cdots \frac{\sin 2 \theta_{2}}{2}-\left(\theta_{1}-\frac{\sin 2 \theta_{1}}{2}\right)\right] \\
= & \frac{1}{2} \times p_{1} \times b \times r \times O O_{1}\left[\left(\theta_{2}-\theta_{1}\right)+\frac{1}{2}\left(\sin 2 \theta_{1}-\sin 2 \theta_{2}\right)\right] \tag{8.17}
\end{align*}
$$

Moment of frictional force δF about the fulcrum O_{1}

$$
\begin{aligned}
\delta M_{F} & =\delta F \times A B=\delta F[A O-O B]=\delta F\left[r-O O_{1} \cos \theta\right] \\
& =\mu p_{1} \sin \theta \times b r \delta \theta\left[r-O O_{1} \cos \theta\right] \quad\left[\because \quad \delta F=\mu p_{1} \sin \theta \times b \times r \times \delta \theta\right] \\
& =\mu p_{1} \times b r\left[r \sin \theta-O O_{1} \cos \theta \sin \theta\right] \delta \theta \\
& =\mu p_{1} \times b r\left[r \sin \theta-\frac{O O_{1}}{2} \sin 2 \theta\right] \delta \theta \quad[\because 2 \cos \theta \sin \theta=\sin 2 \theta]
\end{aligned}
$$

Total moment of frictional force about fulcrum O_{1} for one shoe is obtained by integrating the above equation between limits θ_{1} and θ_{2}.
\therefore Total moments, $M_{F_{1}}=\int_{\theta_{1}}^{\theta_{2}} \mu p_{1} b r\left(r \sin \theta-\frac{O O_{1}}{2} \sin 2 \theta\right) \delta \theta$

$$
\begin{align*}
& \quad=\mu p_{1} \times b \times r \int_{\theta_{1}}^{\theta_{2}}\left(r \sin \theta-\frac{O O_{1}}{2} \sin 2 \theta\right) \delta \theta \\
& =\mu p_{1} \times b \times r\left[r(-\cos \theta)-\frac{O O_{1}}{2}\left(-\frac{\cos 2 \theta}{2}\right)\right]_{\theta_{1}}^{\theta_{2}} \\
& =\mu p_{1} \times b \times r\left[-r \cos \theta+\frac{O O_{1}}{4} \cos 2 \theta\right]_{\theta_{1}}^{\theta_{2}} \\
& =\mu p_{1} \times b \times r\left[-r \cos \theta_{2}+\frac{O O_{1}}{4} \cos 2 \theta_{2}-\left(-r \cos \theta_{1}+\frac{O O_{1}}{4} \cos 2 \theta_{1}\right)\right] \\
& =\mu p_{1} \times b \times r\left[r\left(\cos \theta_{1}-\cos \theta_{2}\right)+\frac{O O_{1}}{4}\left(\cos 2 \theta_{2}-\cos 2 \theta_{1}\right)\right] \quad \ldots(8.1 \tag{8.18}
\end{align*}
$$

Now the force required to operate the leading or primary shoe is obtained by taking moments of all forces acting on the leading shoe about fulcrum O_{1}. [See Fig. 8.24 (c)].

Taking moments about O_{1}, we get
$F_{1} \times L+$ Total moment due to normal force' + Total moment due to frictional force $=0$ or $\quad F_{1} \times L-M_{N_{1}}+M_{F_{1}} \equiv 0 \quad$ (Moment due to R_{N} is clockwise, whereas due to F_{1} or

$$
\begin{equation*}
F_{1} \times L=M_{N_{1}}-M_{F_{1}} \tag{8.19}
\end{equation*}
$$

and frictional force it is anti-clockwise)

The force $\left(F_{2}\right)$ required to operate the secondary shoe is obtained by taking moments of all forces acting on secondary shoe, about fulcrum O_{2}. [See Fig. 8.24 (d)].

(c)

(d)

Fig. 8.24

$$
\begin{equation*}
\therefore \quad F_{2} \times L=M_{N_{2}}+M_{F_{2}} \tag{8.20}
\end{equation*}
$$

If $M_{F_{2}}>M_{N_{2}}$, the brake will be self-locking.
where

$$
\begin{aligned}
& M_{N_{2}}=\frac{1}{2} \times p_{2} \times b \times r \times O O_{2}\left[\left(\theta_{2}-\theta_{1}\right)+\frac{1}{2}\left(\sin 2 \theta_{1}-\sin 2 \theta_{2}\right)\right] \\
& M_{F_{2}}=\mu \times p_{2} \times b \times r\left[r\left(\cos \theta_{1}-\cos \theta_{2}\right)+\frac{O O_{2}}{4}\left(\cos 2 \theta_{2}-\cos 2 \theta_{1}\right)\right]
\end{aligned}
$$

and

$$
\begin{equation*}
T_{B_{2}}=\mu \times p_{2} \times b \times r^{2}\left[\cos \theta_{1}-\cos \theta_{2}\right] \tag{8.21}
\end{equation*}
$$

and total braking torque on both shoes,

$$
\begin{align*}
T_{B} & =T_{B_{1}}+T_{B_{2}} \tag{8.22}\\
& =\mu \times p_{1} \times b \times r^{2}\left[\cos \theta_{1}-\cos \theta_{2}\right]+\mu \times p_{2} \times b \times r^{2}\left[\cos \theta_{1}-\cos \theta_{2}\right] \\
& =\mu \times b \times r^{2} \times\left[\cos \theta_{1}-\cos \theta_{2}\right]\left(p_{1}+p_{2}\right) \tag{8.23}
\end{align*}
$$

Problem 8.14. Calculate the braking torque applied by an internal expanding shoe brake shown in Fig. 8.24 on the rotating drum of diameter 300 mm if the drum is rotating (i) anticlockwise and (ii) clockwise. The other data given is :

Force F on each shoe

$$
\begin{aligned}
& =90 \mathrm{~N} \\
\mu & =0.3 \\
b & =40 \mathrm{~mm} \\
\theta_{1} & =30^{\circ}, \theta_{2}=135^{\circ} \\
L & =200 \mathrm{~mm}, O O_{1}=120 \mathrm{~mm}
\end{aligned}
$$

Co-efficient of friction,
Width of the brake lining,

Distance :
Sol. Given : [Refer to Fig. 8.24]
Dia. of drum, $d=300 \mathrm{~mm}$ or radius $r=150 \mathrm{~mm}=0.15 \mathrm{~m} ; F_{1}=F_{2}=90 \mathrm{~N} ; \mu=0.3$;
$b=40 \mathrm{~mm}=0.04 \mathrm{~m} ; \theta_{1}=30^{\circ} ; \theta_{2}=135^{\circ} ; L=200 \mathrm{~mm}=0.2 \mathrm{~m} ; O O_{1}=120 \mathrm{~mm}=0.12 \mathrm{~m}$.
(i) Braking Torque for anti-clockwise rotation

Let

$$
\begin{aligned}
T_{B} & =\text { Total braking torque } \\
& =T_{B_{1}}+T_{B_{2}}
\end{aligned}
$$

where $\quad T_{B_{1}}=$ braking torque on leading shoe

$$
T_{B_{2}}=\text { braking torque on trailing shoe }
$$

The braking torque on.leading shoe is given equation (8.16) as

$$
\begin{equation*}
T_{B_{1}}=\mu \times p_{1} \times b \times r^{2}\left(\cos \theta_{1}-\cos \theta_{2}\right) \tag{i}
\end{equation*}
$$

In the above equation, the value of p_{1} is unknown. Let us first find the value of p_{1}. This is obtained by using equation (8.19) as

$$
\begin{aligned}
F_{1} \times L= & M_{N_{1}}-M_{F_{1}} \\
= & \frac{1}{2} \times p_{1} \times b \times r \times O O_{1}\left[\left(\theta_{2}-\theta_{1}\right)+\frac{1}{2}\left(\sin 2 \theta_{1}-\sin 2 \theta_{2}\right)\right] \\
& \quad-\mu \times p_{1} \times b r \times\left[r\left(\cos \theta_{1}-\cos \theta_{2}\right)+\frac{O O_{1}}{4}\left(\cos 2 \theta_{2}-\cos 2 \theta_{1}\right)\right] .
\end{aligned}
$$

Fig. 8.29
Cancelling ' m ' to both sides, we get

$$
\mu \times g \cos \alpha-g \sin \alpha=a
$$

\therefore Retardation,
\therefore Acceleration,

$$
\begin{aligned}
& a=\mu \times g \times \cos \alpha-g \sin \alpha \\
& =g(\mu \cos \alpha-\sin \alpha) \\
& =9.81\left(0.6 \times \cos 15^{\circ}-\sin 15^{\circ}\right) \\
& =9.81(0.6 \times 0.966-0.2588)=3.147 \mathrm{~m} / \mathrm{s}^{2} \\
& a=-3.147 \mathrm{~m} / \mathrm{s}^{2} \\
& v^{2}-u^{2}=2 \times a \times S \\
& 0^{2}-15^{2}=2 \times(-3.147) \times S
\end{aligned}
$$

or

The time ' t ' is obtained by using equation,
or

$$
\begin{aligned}
v & =u+a t \\
0 & =15+(-3.147) \times t \\
\therefore \quad t & =\frac{15}{3.147}=4.76 \text { seconds. Ans. }
\end{aligned}
$$

8.4. DYNAMOMETER

A dynamometer is a device used to measure the frictional resistance or frictional torque. This frictional resistance or frictional torque is obtained by applying a brake. The dynamometer consists of a brake and also a device of measuring the by applying a brake. The dynamometer dynamometer is a brake with a device of measuring the braking force (or braking torque). Hence After knowing frictional torque, the measuring the frictional resistance or frictional torque.

Following are the two the power of the engine can be obtained.
(i) Absorption dynampes of dynamometers:
(ii) Transmis and

Absorption dynamometer.
whereas transmission dynamers absorb the available power in doing work against friction where the power is suitably measurs transmit the available power to some other machines

Absorption dynamometers consists of some form of brakes in which provision is made for measuring the frictional torque on the drum. The following are the important types of absorption dynamometer :
(i) Prony brake dynamometer
(ii) Rope brake dynamometer.
8.5.1. Prony Brake Dynamometer. Fig. 8.30 shows the Prony brake dynamometer which consists of two wooden blocks placed around a pulley fixed to the shaft of an engine whose power is required to be measured. Each of the wooden blocks embraces rather less than one half of the pulley rim. The two blocks can be drawn together by means of bolts, nuts and springs so as to increase the pressure on the pulley. The lower block carries an arm (lever) to the end of which a weight W can be applied. A second arm projects from the block in the opposite direction and carries a balance weight B, which balances the brake when unloaded. Two stops S, S are provided and the lever arm will float between these stops. The friction torque on the pulley may be increased by screwing up the bolts, until it balances the torque due to available power.

Fig. 8.30
For measuring the power of the engine, the long end of the lever is loaded with a known weight W. Now the nuts are tightened until the shaft runs at a constant speed and the lever is in horizontal position. Under thesé conditions, the torque due to weight W will balance the frictional torque on the pulley due to the frictional resistance between the blocks and the pulley. This means that the moment due to weight W will be equal to the frictional torque.

Let $W=$ Weight at the end of the lever,
$R=$ Radius of the pulley,
$\mu=$ Co-efficient of friction between pulley and blocks
$L=$ Horizontal distance of weight W from the centre of the pulley,
$N=$ Speed of the shaft in r.p.m.

Torque on the shaft,
$\therefore \quad$ Power of the engine

$$
\begin{aligned}
T & =W \times L \\
& =\text { Torque } \times \text { Angular speed } \\
& =T \times \omega \\
& =T \times \frac{2 \pi N}{60}
\end{aligned}
$$

From the above equation, it is clear that the power of the engine is independent of: (i) radius of the pulley, R (ii) co-efficient of friction between pulley and wooden blocks and (iii) pressure exerted by tightening the nuts.
8.5.2. Rope Brake Dynamometer. Fig. 8.31 shows the rope brake dynamometer which consists of one, two or more ropes wound round the rim of a pulley (or flywheel) fixed rigidly to the shaft of the engine whose power is required to be measured. The upper end of the ropes is attached to a spring balance (S) while the lower end carries the dead weight W. The ropes are spaced evenly across the width of the rim by means of three or four wooden blocks at different points round the rim (or around the circumference of the flywheel).

For measuring the power of an engine, the engine is made to run at a constant speed. Under this condition, the torque transmitted by the engine must be equal to the frictional torque due to the ropes.

Fig. 8.31
Let $\quad N=$ Constant speed of the engine shaft
$W=$ Deed weight
$S=$ Spring balance reading
$\begin{aligned} D & =\text { Diameter of flywheel (or Dia. of the rim of pulley) } \\ d & =\text { Dia } \text { of }\end{aligned}$
$d=$ Dia. of rope
Then net load on brake $=(W-S)$
$\therefore \quad$ Frictional torque due to ropes

$$
\begin{aligned}
& =(\text { Net load on brake }) \\
& \quad \times \text { Distance of load line from the centre of shaft } \\
& =(W-S) \times\left(\frac{D+d}{2}\right)
\end{aligned}
$$

But torque transmitted by engine at constant speed

$$
=\text { Frictional torque due to ropes }
$$

$$
=(W-S) \times\left(\frac{D+d}{2}\right)
$$

\therefore Brake power of engine $=$ Torque transmitted by engine \times Angular speed of engine

$$
\begin{align*}
& =(W-S) \times\left(\frac{D+d}{2}\right) \times \omega \\
& =(W-S) \times\left(\frac{D+d}{2}\right) \times \frac{2 \pi N}{60} \quad\left(\because \omega=\frac{2 \pi N}{60}\right) \tag{8.27}
\end{align*}
$$

If dia. of rope (i.e. d) is neglected, then brake power of engine

$$
\begin{align*}
& =(W-S) \times \frac{D}{2} \times \frac{2 \pi N}{60} \\
& =(W-S) \times R \times \frac{2 \pi N}{60} \text { Watts } \quad\left(\because R=\frac{D}{2}\right) \tag{8.28}
\end{align*}
$$

A cooling arrangement is necessary if the brake power of the engine is very large, as in that case the heat produced due to friction between ropes and the flywheel will also be very large. For cooling the rim, the rim should be of channel section on the inside so that cold water may be supplied at one point, carried round the rim and then removed.

Problem 8.17. Calculate the brake power of an engine which is running at a constant speed of 300 r.p.m. and carries a rope brake dynamometer. The dead weight on the engine and spring balance readings are 550 N and 100 N respectively. The diameters of flywheel and rope are 1.8 m and 18.75 mm respectively.

Sol. Given :

$$
N=300 \text { r.p.m. } ; W=550 \mathrm{~N} ; S=100 \mathrm{~N} ; D=1.8 \mathrm{~m} \text { and } d=18.75 \mathrm{~mm}=0.01875 \mathrm{~m}
$$

Using equation (8.27) for brake power, we get
Brake power

$$
\begin{aligned}
& =(W-S) \times\left(\frac{D+d}{2}\right) \times \frac{2 \pi N}{60} \\
& =(550-100) \times\left(\frac{1.89+0.01875}{2}\right) \times \frac{2 \pi \times 300}{60} \mathrm{Watts} \\
& =450 \sim 0.909375 \times 10 \pi \\
& =12856 \text { Watts }=12.856 \mathrm{~kW} . \text { Ans. }
\end{aligned}
$$

8.6. TRANSMISSION DYNAMOMETER

In case of transmission dynamometer, the energy or power is not absorbed. Hence the energy is not wasted in friction but is used for doing work. The energy or power produced by the engine is transmitted through the dynamometer to some other machines where the power developed is suitably measured. The following are the important types of transmission dynamometer:
(i) Epi-cyclic train dynamometer,
(ii) Belt transmission dynamometer, and
(iii) Torsion dynamometer.
8.6.1. Epi-cyclic Train Dynamometer. Fig. 8.32 show an epi-cyclic train dynamometer which consists of a simple epi-cyclic train of gears i.e. spur gear A, internal wheel D having internal teeth and an intermediate wheel C (i.c. pinion). The wheel A with spur gear is keyed to the driving shaft (i.e. engine shaft). Let it rotates in anti-clockwise direction. The wheel D having internal teeth is keyed to the driven shaft and it will rotate in clockwise direction. The gears of the wheel C (which is the intermediate wheel and known as pinion) meshes both the gears of wheel A and of wheel D. Thus the power is transmitted from wheel A to wheel D through the intermediate wheel C. The wheel C revolves freely on a pin fixed to the arm of a lever. The lever is pivoted about the common axis of the driving and driven shafts i.e. at point E. When the dynamometer is at rest, the weight B balances the lever arm.

Fig. 8.32
When the dynamometer is in operation, the tangential force exerted by the wheel A on the wheel C and the tangential reaction of the wheel D on the wheel C will act in the upward direction. Also if the friction of the pin on which wheel C revolves is neglected, then the above two forces will be equal. Hence the total upward force on the lever arm acting through the axis of the wheel C is $2 F$. This force tends to rotate the lever arm about its fulcrum E. The torque due to force $2 F$ on the arm will be $2 F \times a$. This torque will be balanced by the torque due to a dead weight W placed at the end of the lever as shown in Fig. 8.32. The lever arm floats between the stops S, S.

Hence for equilibrium of the lever arm,
Torque due to force

$$
2 F=\text { Torque due to dead weight } W
$$

or

$$
2 F \times a=W \times L
$$

$$
\therefore \quad F=\frac{W \times L}{2 a}
$$

Let $\quad R=$ Radius of wheel A
$N=$ Speed of the rotation of driving shaft (i.e. speed of engine)
$\therefore \quad$ Torque transmitted by engine
$\therefore \quad$ Power transmitted

$$
\begin{aligned}
& =F \times R=\frac{W \times L}{2 a} \times R \\
& =\text { Torque transmitted } \times \omega \\
& =\left(\frac{W \times L}{2 a} \times R\right) \times \frac{2 \pi N}{60} \text { Watts. }
\end{aligned}
$$

8.6.2. Belt Transmission Dynamometer. A belt transmission dynamometer measures the difference between the tensions on the tight and slack sides of a belt when it is running from one pulley to another pulley (i.e. when belt is transmitting power from one pulley to another pulley). This difference of tensions (i.e. $T_{1}-T_{2}$) when multiplied by the speed of the belt. gives the power transmitted.

Fig. 8.33
Fig. 8.33 show a belt transmission dynamometer which is also called Tatham dynamometer. It consists of a driving pulley A, driven pulley B and intermediate pulleys C and D. The driving pulley A is rigidly fixed to the shaft of an engine whose power is to be measured. The driven pulley B is fixed to another shaft to which power is to be transmitted. The intermediate pulleys C and D rotates on pins fixed to the lever. The lever is pivoted at E, the mid point of the two intermediate pulley centres. A continuous belt runs over the driving and the driven pulleys through the two intermediate pulleys. The movement of lever is controlled between two stops S and S one on each side of the lever.

Let the driving pulley A rotates anti-clockwise. The tight and slack sides of the belt will be as shown in Fig. 8.33. The total downward force acting on pulley D is $2 T_{1}$ whereas the total downward force on pulley C is $2 T_{2}$. As $2 T_{1}$ is greater than $2 T_{2}$, therefore the lever starts rotating about E in anti-clockwise direction. In order to balance it, a weight W is suspended at a distance L from E on the lever as shown in Fig. 8.33.

When the lever is in horizontal position, the total moments of all the force about fulcrum E should be zero i.e.

Total anti-clockwise moment $=$ Total clockwise moment
or

$$
\begin{align*}
2 T_{1} \times a & =2 T_{2} \times a+W \times L \\
2 T_{1} \times a-2 T_{2} \times a & =W \times L \\
2 a\left(T_{1}-T_{2}\right) & =W \times L \tag{8.29}\\
\left(T_{1}-T_{2}\right) & =\frac{W \times L}{2 a}
\end{align*}
$$

Let $\quad v=$ Belt speed in m / s
$D=$ Dia. of pulley A
$N=$ Speed of engine shaft

Then

$$
\begin{align*}
v & =\frac{\pi D N}{60} \\
& =\left(T_{1}-T_{2}\right) \times v \\
& =\left(T_{1}-T_{2}\right) \times \frac{\pi D N}{60} \text { Watts } \tag{8.30}
\end{align*}
$$

Note. The power may also be transmitted through the dynamometer from pulley B to pulley A
Problem 8.18. The driving pulley in a belt transmission dynamometer shown in Fig. $\mathcal{S} .33$ rotates at 400 r.p.m. The diameter of the driving pulley is 750 mm , whereas the diameter of pullcys B, C and D are 250 mm each. The load W is suspended at a distance of 800 mm from the fulcrum E.

Find: (i) the value of the weight W required to maintain the lever in a horizontal position when power transmitted is 8 kW .
(ii) the value of W, when the belt just begins to slip on the driving pulley A. The coefficient of friction is 0.2 and the maximum tension in the belt is 1600 N .

Sol. Given : (Refer to Fig. 8.33)

$$
\begin{aligned}
N_{A} & =400 \text { r.p.m. } ; D_{A}=750 \mathrm{~mm}=0.75 \mathrm{~m} ; D_{B}=D_{C}=D_{D}=250 \mathrm{~mm}=0.25 \mathrm{~m} ; \\
L & =800 \mathrm{~mm}=0.8 \mathrm{~m} ; \text { Power }=8 \mathrm{~kW}=8 \times 10^{3} \mathrm{~W}=8000 \mathrm{~W} .
\end{aligned}
$$

(i) Value of W when power transmitted is 8 kW or 8000 W

$$
a=\frac{D_{B}}{2}+\frac{D_{C}}{2}=\frac{0.25}{2}+\frac{0.25}{2}=0.25 \mathrm{~m}
$$

Let $T_{1}=$ Tension on tight side of the belt on pulley A
$T_{2}=$ Tension on slack side of the belt on pulley A.
For power transmitted, using equation (8.30), we get
or

$$
\begin{aligned}
& \text { Power }=\left(T_{1}-T_{2}\right) \times \frac{\pi D N}{60} \\
& 8000=\left(T_{1}-T_{2}\right) \times \frac{\pi \times 0.75 \times 400}{60}
\end{aligned}
$$

$$
\therefore \quad\left(T_{1}-T_{2}\right)=\frac{8000 \times 60}{\pi \times 0.75 \times 400}=509.3
$$

But from equation (8.0), we have

$$
\left(T_{1}-T_{2}\right)=\frac{W \times L}{2 a}
$$

$$
509.3=\frac{W \times 0.8}{2 \times 0.25}
$$

$\therefore \quad W=\frac{509.3 \times 2 \times 0.25}{0.8}=318.3 \mathbf{N}$. Ans.
(ii) Value of W, when the belt just begins to slip on driving pulley A. $=180^{\circ}=\pi \quad$ Max. tension i.e. $T_{1}=1600 \mathrm{~N}$. Also from Fig. 8.33, it is clear that lap angle θ

We know that

$$
\frac{T_{1}}{T_{2}}=e^{\mu \times \theta}
$$

or
or
or
or
r
Using equation (8.29), we get
or
or
or

$$
2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu \times \theta=0.2 \times \pi=0.6284
$$

$$
\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.6284}{2.3}=0.2732
$$

$$
\frac{T_{1}}{T_{2}}=\text { Antilog of } 0.2732=1.876
$$

$$
T_{2}=\frac{T_{1}}{1.876}=\frac{1600}{1.876}=852.87 \mathrm{~N}
$$

$$
\left(T_{1}-T_{2}\right)=\frac{W \times L}{2 a}
$$

$$
(1600-852.87)=\frac{W \times 0.8}{2 \times 0.25}
$$

$$
747.13=\frac{W \times 0.8}{0.5}
$$

$$
W=\frac{747.13 \times 0.5}{0.8}=466.95 \mathrm{~N} . \quad \text { Ans. }
$$

8.6.3. Torsion Dynamometer. The torsion dynamometer works on the principle of angle of twist in a shaft when power is transmitted along the shaft. Actually the torque transmitted is directly proportional to the angle of twist. Hence if angle of twist can be measured accurately, then the corresponding torque transmitted can be calculated.

The driving end of a shaft twists through a small angle relative to the driven end when power is transmitted along the shaft. The angle of twist is obtained from the torsion equation which is given below as

$$
\frac{T}{J}=\frac{C \times \theta}{L}
$$

where $T=$ Torque transmitted,
$J=$ Polar moment of inertia of shaft,
$\theta=$ Angle of twist in radians,
$L=$ Length of shaft,
$C=$ Modulus of rigidity of the shaft material.
From the equation, we have

$$
\begin{array}{rlr}
T & =\frac{C \times \theta}{L} \times J \text { where } \quad J=\frac{\pi}{32} \times D^{4} \\
& \ldots \text { For a solid shaft } \\
& =\frac{\pi}{32}\left(\mathrm{D}_{0}{ }^{4}-D_{i}{ }^{4}\right) & \ldots \text { For a hollow shaft }
\end{array}
$$

For a given shaft, the values of C, J and L are constant. Hence

$$
T=k \times \theta \quad \text { where } k=\frac{C \times J}{L} \text { is a constant }
$$ Torque transmitted $\propto \theta$

Hence torque transmitted is directly proportional to the angle of twist. If angle of twist can be measured by some means then torque can be calculated. From the torque, the power transmitted can be obtained.

In actual practice, the angle of twist is measure for a small length of 'shaft, therefore some magnifying device must be incorporated in the dynamometer for accu. te measurement of the angle of twist. The Bevis-Gibson flash light torsion dynamometer uses this principle.

Bevis-Gibson Flash Light Torsion Dynamometer

Fig. 8.34 shows a Bevis-Gibson torsion dynamometer which consists of two dises A and B fixed on a shaft at points as far apart as possible. Each disc has a narrow radial slot and the two slots are in line when there is no torque transmitted along the shaft. A powerful electric $\operatorname{lamp} L$ is fixed to the bearing cap of the shaft behind $\operatorname{disc} A$. The lamp is masked so as to throw a narrow pencil of light parallel to the axis of shaft. Also this lamp has a slot directly opposite to the slot of $\operatorname{disc} A$. Behind the $\operatorname{disc} B$, an eye-piece E is fitted to the shaft bearing. This eyepiece is capable of slight circumferential adjustment.

Fig. 8.34
The eye-piece is adjusted so as to receive the ray of light which passes from the lamp through the slots in the two discs, when the shaft is at rest. When the shaft rotates without transmitting any torque, a ray of light will be received in the eye-piece once per revolution as shown in Fig. $8.34(b)$. But when shaft is rotating and torque is transmitted, the shaft twists and the slot in the disc B sights its position. Due to this, the ray of light does not reach to the eye-piece as shown in Fig. 8.34 (c). If now the eye-piece is displaced along the circular are by an amount equal to the lag of disc B by means of vernier, then the ray of light will be visible in eye- piece as shown in Fig. $8.34(d)$. Hence the angular displacement of the eye-piece and therefore the angle of twist of the shaft may be measured upto $\frac{1}{100}$ th of a degree.

peptures
1 hotraduction.
2. Turuming Moment Diagram
for a single Cytinder
Double Acting Stenm
Engiue.

1. Thning Moment Diagram for a Four Stroke Cycle Iuenal Combustion
Engine.
2. Jurning Moment Diagram jor a Multicylinder Engine.
; Fhrctuation of Energy.
3. Derermination of Maximum Fluctuation of Energy.
4. Coefificient of Fluctuation of Energ):
5. Flywheel.
?. Coefficient of Fluctuction of Speed.
6. Energy Stored in a Fywheel.
i). Dinerensions of the Flywheel
Rim.

12 Flywheel in Punching Press.

and Flywheel

16.1. Introduction

The turning moment diagram (also known as crankeffort diagram) is the graphical representation of the turning moment or crank-effort for various positions of the crank. It is plotted on cartesian co-ordinates, in which the turning moment is taken as the ordinate and crank angle as abscissa.

16.2. Turning Moment Diagram for a Single Cylinder Double Acting Steam Engine

A turning moment diagram for a single cylinder double acting steam engine is shown in Fig. 16.1. The vertical ordinate represents the turning moment and the horizontal ordinate represents the crank angle.

We have discussed in Chapter 15 (Art. 15.10.) that the turning moment on the crankshaft.

$$
T=F_{\mathrm{p}} \times r\left(\sin \theta+\frac{\sin 2 \theta}{2 \sqrt{n^{2}-\sin ^{2} \theta}}\right)
$$

566 - Thenry of Machines

Fig. 16.1. Turning moment diagram for a single cylinder, double acting steam engine.
where

$$
\begin{aligned}
F_{\mathrm{P}} & =\text { Piston effort }, \\
r & =\text { Radius of crank, } \\
n & =\text { Ratio of the conn }
\end{aligned}
$$

$$
\begin{aligned}
& n=\text { Ratio of the connecting rod from inner dead centre. } \\
& \theta=\text { Angle turned by the crank frement }
\end{aligned}
$$

From the above expression, we see that the turning moment (T) is zero, when the crank angle (θ) is zero. It is maximum when the crank angle is 90° and it is again zero when crank angle is 180°.

This is shown by the curve $a b c$ in Fig. 16.1 and it represents the turning moment diagram for outstroke. The curve cde is the turning moment diagram for instroke and is somewhat similar to the curve $a b c$.

Since the work done is the product of the turning moment and the angle turned, therefore the area of the turning moment diagram represents the work done per revolution. In actual practice, the engine is assumed to work against the mean resisting torque, as shown by a horizontal line $A F$. The height of the ordinate $a A$ represents the mean height of the turning moment diagram. Since it is assumed that the work done by the turning moment per revolution is equal to the work done against the mean resisting torque, therefore the area of the rectangle $a A F e$ is proportional to the work done against the mean resisting torque.

Notes: 1. When the turning moment is positive (i.e. when the engine torque is more than the mean resistinf torque) as shown between points B and C (or D and E) in Fig. 16.1, the crankshaft accelerates and the wort

1. When the furning moment is negative (i.e. when the engine torque is less than the mean resisting ts shown between points C and D in Fig. 16.1, the crankshafl retards and the work is done on the
2. If
mean
Then accelerating torque on the rotating parts of the engine

$$
=T-T_{m \times a n}
$$

4. If $\left(T-T_{\text {mean }}\right.$) is positive, the flywheel accelerates and if ($T-T_{\text {meen }}$) is negative, then the flywheel relards.

16.3.

Juring Moment Diagram for a Four Stroke Cycle Internal
A rurning moment diagram for a four stroke cycle internal combustion engine is shown in Fi. 16.2 . We know that in a four stroke cycle internal combustion engine, there is one working sole a flee the crank has turned through two revolutions, i.e. 720° (or 4π radians).

- Fig. 16.2. Turning moment diagram for a four stroke cycle internal combustion engine.

Since the pressure inside the engine cylinder is less than the atmospheric pressure during lisuction stroke, therefore a negative loop is formed as shown in Fig. 16.2. During the compression yoke, the work is done on the gases, therefore a higher negative loop is obtained. During the thansion or working stroke, the fuel burns and the gases expand, therefore a large positive loop is inained. In this stroke, the work is done by the gases. During exhaust stroke, the work is done on te egres, therefore a negative loop is formed. It may be noted that the effect of the inertia forces on We iston is taken into account in Fig. 16.2.

164. Turning Moment Diagram for a Multi-cylinder Engine

A separate turning moment diagram for a compound steam engine having three cylinders the resultant turning moment diagram is shown in Fig. 16.3. The resultant turning moment Whan is the sum of the turning moment diagrams for the three cylinders. It may be noted that the Wyylnder is the of the turning moment diagrams for the three cylinders. It may be noted that the
Winker is the cylinder, second cylinder is the intemmediate cylinder and the third Winger is the low high pressure cylinder, second cylinder is the intermediate cylinder and the third
to each othere cylinder. The cranks, in case of three cylinders, are usually placed at to each other.

Fig. 16.3. Tuming moment diagram for a multi-cylinder engine.

16.5. Fluctuation of Energy

The fluctuation of energy may be determined by the curning moment diagram for one complete cycle of operation. Consider the turning moment diagram for a single cylinder double acting stean engine as shown in Fig. 16.1. We see that the mean resisting torque line $A F$ cuts the turning momem diacram at points B, C, D and E. When the crank moves from a to p, the work done by the engine is equal to the area $a B p$, whereas the energy required is represented by the area $a A B p$. In other works the engine has done less work (equal to the area $a A B$) than the requirement. This amount of energy is taken from the flywheel and hence the speed of the flywheel decreases. Now the crank moves from p to q, the work done by the engine is equal to the area $p B b C q$, whereas the requirement of energy is represented by the area $p B C q$. Therefore, the engine has done more work than the requirement. This excess work (equal to the area $B b C$) is stored in the flywheel and hence the speed of the flywheel increases while the crank moves from p to q.

Similarly, when the crank moves from q to r, more work is taken from the engine than is developed. This loss of work is represented by the area $C c D$. To supply this loss, the flywheel give up some of its energy and thus the speed decreases white the crank moves from q to r. As the crank moves from r to s, excess energy is again devcloped given by the area $D d E$ and the speed again increases. As the piston moves from s to e, again there is a loss of work and the speed decreases. The variations of energy above and below the mean resisting torque line are called fluctuations of energy. The areas $B b C, C C D, D d E$, etc. represent fluctuations of energy,

A little consideration will show that the engine has a maximum speed either at q or at s. This is due to the fact that the flywheel absorbs energy while the crank moves from p to q and from r tos. On the other hand, the engine has a minimum speed either at p or at r. The reason is that the tlyuherl gives out some of its energy when the crank moves from a to p and q to r. The difference between the maximum and the minimum energies is known as maximum fluctuation of energy.

16.6. Determination of Maximum Fluctuation of Energy

A turning moment diagram for a multi-cylinder engine is shown by a wavy curve in Fs 16.4. The horizontal line $A G$ represents the mean torque line. Let a_{1}, a_{3}, a_{5} be the areas amus the mean torque line and a_{2}, a_{4} and a_{6} be the areas below the mean torque line. These areas ryrew some quantity of energy which is either added or subtracted from the energy of the moving puth the engine.

Envoy al $G=E+a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}$
$=$ Energy at A (i.e. cycle repeats after G)
Let us now suppose that the greatest of names is at B and least at E. Therefore,
Maximum energy in flywheel

$$
=E+a_{1}
$$

Minimum energy in the flywheel

A flywheel stores energy when the supply is in excess and releases energy when energy is in deficit.
\therefore Maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Maximum energy }- \text { Minimum energy } \\
& =\left(E+a_{1}\right)-\left(E+a_{1}-a_{2}+a_{3}-a_{4}\right)=a_{2}-a_{3}+a_{4}
\end{aligned}
$$

Fig. 16.4. Determination of maximum fluctuation of energy.

4.7. Coefficient of Fluctuation of Energy

It may be defined as the ratio of the maximum fluctuation of energy to the work done *eyre. Mathematically, coefficient of fluctuation of energy,

$$
C_{E}=\frac{\text { Maximum fluctuation of energy }}{\text { Work done per cycle }}
$$

Whens: work done per cycle (in N -m or joules) may be obtained by using the following two

1. Work done per cycle $=T_{\text {mean }} \times \theta$
$T_{\text {mean }}=$ Mean torque, and
$\theta=$ Angle turned (in radians), in one revolution.
$=2 \pi$, in case of steam engine and two stroke internal combustion engines
$=4 \pi$. in case of four stroke internal combustion engines.

The mean torque ($T_{\text {man }}$) in $N-m$ may be obtained by using the following relutum :
where

$$
T_{\text {max }}=\frac{P \times(0)}{2 \pi N}=\frac{P}{\omega}
$$

$P=$ Power transmitted in watts,
$N=$ Speed in r.p.m., and
$\omega=$ Angular speed in rad/s $=2 \pi N / 60$
2. The work done per cycle may also be obtained by using the following relation :
where

$$
\text { Work done per cycle }=\frac{P \times 60}{n}
$$

$n=$ Number of working strokes per minute,
$=N$, in case of steam engines and two stroke internal combuswes. engines,
$=N / 2$, in case of four stroke internal combustion engines.
The following table shows the values of coefficient of fluctuation of energy for steam engine and internal combustion engines.

Table 16.1. Coefficient of fluctuation of energy $\left(C_{E}\right)$ for steam and internal combustion engines.

S.No.	Type of engine	Coefficient of fluctuation of energy $\left(C_{\mathbb{E}}\right)$
1.	Single cylinder, double acting steam engine	0.21
2.	Cross-compound steam enginc	0.096
3.	Single cylinder, single acting, four stroke gas engine	1.93
4.	Four cylinders, single acting, four stroke gas engine	0.066
5.	Six cylinders, single acting, four stroke gas engine	0.031

16.8. Flywheel

A flywheel used in machines serves as a reservoir, which stores energy during the period when the supply of energy is more than the requirement, and releases it during the period when the requirement of energy is more than the supply.

In case of steam engines, internal combustion engines, reciprocating compressors and pumps. the energy is developed during one stroke and the engine is to run for the whole cycle on the energ! produced during this one stroke. For example, in internal combustion engines, the energy is developed only during expansion or power stroke which is much more than the engine load and no energy is being developed during suction, compression and exhaust strokes in case of four stroke engines and during compression in case of two stroke engines. The excess energy developed during power stroke is absorbed by the flywheel and releases it to the crankshaft during other strokes in which no ener!!! is developed, thus rotating the crankshaft at a uniform speed. A little consideration will show th: when the flywheel absorbs energy, its speed increases and when it releases energy, the speed decreax' Hence a flywheel does not maintain a constant speed, it simply reduces the fluctuation of speed. If other words, a flywheel controls the speed variations caused by the fluctuation of the engint turning moment during each cycle of operation.

In $\mathrm{m}^{\text {ash }}$ hines where the operation is intermittent like *punching muchines, shearing muchines, namines, crushers. etc., the tlywheel stores energy from the power source during the greater at the operating cycle aud gives it up ducing a small period of the cycle. Thus, the energy . t purer source to the machines is supplied practically at a constant rate throughout the
sur. The function of a ${ }^{*}$ govemor in an engine is entirely different from that of a flywheel. It ithe flan speed of an engine when there are variations in the load, e.g., when like load on the engine it heconves necessary to increase the supply of working fluid. On the other hand, when the load motes working fluid is required. The governor automatically controls the supply of working fluid to * wne with the varying load condition and keeps the mean speed of the engine within certain limits.
didisussed above. the flywheel does not mainain a constant speed, it simply reduces the fluctuation ardidaes not control the speed variations caused by the varying load.
149. Coetficient of Fluctuation of Speed
i The difference between the maximum and minimum speeds during a cycle is called the
Inm fuctuation of speed. The ratio of the maximum fluctuation of speed to the mean speed is效放 coefficient of fluctuation of speed.

Let
N_{1} and $N_{2}=$ Maximum and minimum speeds in r.p.m. during the cycle, and

$$
N=\text { Mean speed in r.p.m. }=\frac{N_{1}+N_{2}}{2}
$$

\therefore Coefficient of fluctuation of speed,

$$
\begin{aligned}
C_{\mathrm{s}} & =\frac{N_{1}-N_{2}}{N}=\frac{2\left(N_{1}-N_{2}\right)}{N_{1}+N_{2}} \\
& =\frac{\omega_{1}-\omega_{2}}{\omega}=\frac{2\left(\omega_{1}-\omega_{2}\right)}{\omega_{1}+\omega_{2}} \\
& =\frac{v_{1}-v_{2}}{v}=\frac{2\left(v_{1}-v_{2}\right)}{v_{1}+v_{2}}
\end{aligned}
$$

The coefficient of fluctuation of speed is a limiting factor in the design of flywheel. It varies apoding upon the nature of service to which the flywheel is employed.
Whe Axeciprocal of the coefficient of fluctuation of speed is known twfifient of steadiness and is denoted by m.

$$
\therefore \quad m=\frac{1}{C_{s}}=\frac{N}{N_{1}-N_{2}}
$$

W. Energy Stored in a Flywheel

A flywheel is shown in Fig. 16.5. We have discussed in 4. 10.5 that when a llywheel absorbs energy, its speed increases * when it gives up energy, its speed decreases.

$m=$ Mass of the flywheel in kg,
$k=$ Radius of gyration of the flywheel in metres.

Fig. 16.5. Flywheel.

572 - Then of Mm hines

 $N=$ Mean yod dung the cycle in $\mathrm{f} p \mathrm{~m}=\frac{N_{1}+N}{2}$.

- : Mean angular cred during the cycle in rave $=\frac{m_{1}}{m}$

We kan the the mean kinetic energy of the fly wheel.

$$
E=\frac{1}{2} \times 1.0^{2}=\frac{1}{2} \times m \cdot n^{2} \cdot m^{2} \quad \quad \text { in } N \cdot m+\pi \quad \text { rom, }
$$

An the speed of the Al whee d changes from ω_{1} to to.: the maximum fluctuation of energy.
$\Delta E=$ Maximin K.E. Minimum K.E.

$$
\begin{align*}
& =\frac{1}{2} \times 1\left(\omega_{1}\right)^{2}-\frac{1}{2} \times 1\left(\omega_{2}\right)^{2}=\frac{1}{2} \times 1\left[\left(\omega_{1}\right)^{2}-\left(\omega_{2}\right)^{2}\right] \\
& =\frac{1}{2} \times 1\left(\omega_{1}+\omega_{2}\right)\left(\omega_{1}-\omega_{2}\right)=1 . \omega_{1}\left(\omega_{1}-\omega_{2}\right) \tag{i}
\end{align*}
$$

$$
\ldots\left(\because \omega=\frac{\omega+\omega_{0}}{2}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
=I \cdot \omega^{2}\binom{\omega_{1}-\omega_{2}}{\omega} \\
=I \cdot \omega^{2} \cdot C_{S}=m \cdot k^{2} \cdot \omega^{2} \cdot C_{S}
\end{array} \\
& \text {... (Multiplying and dividing by on } \\
& \ldots\left(\because J=m \cdot k^{2}\right) \quad \ldots\left(M_{1}\right. \\
& \ldots\left(\because E=\frac{1}{2} \times I .0^{2}\right), \ldots
\end{aligned}
$$

The radius of gyration (k) may be taken equal to the mean radius of the tim (R), because the thickness of rim is very small as compared to the diameter of rim. Therefore, substituting $k=R$. an equation (ii), we have
where

$$
\begin{aligned}
\Delta E & =m \cdot R^{2} \cdot \omega^{2} \cdot C_{\mathrm{S}}=m \cdot v^{2} \cdot C_{\mathrm{S}} \\
v & =\text { Mean linear velocity (i.e. at the mean radius) in } \mathrm{m} / \mathrm{s}=\omega \cdot R
\end{aligned}
$$

Notes. 1. Since of $=2 \pi N / 60$. therefore equation (i) may be written as

$$
\begin{aligned}
\Delta E & =I \times \frac{2 \pi N}{60}\left(\frac{2 \pi N_{1}}{60}-\frac{2 \pi N_{2}}{60}\right)=\frac{4 \pi^{2}}{3600} \times I \times N\left(N_{1}-N_{2}\right) \\
& =\frac{\pi^{2}}{900} \times m \cdot k^{2} \cdot N\left(N_{\mathrm{t}}-N_{2}\right) \\
& =\frac{\pi^{2}}{900} \times m \cdot k^{2} \cdot N^{2} \cdot C_{\mathrm{s}} \quad \quad \ldots\left(\because C_{8}=\frac{N_{1}-N_{2}}{N}\right)
\end{aligned}
$$

3 In the anowe expressions. only the mass moment of ineria of the flywheel rim (f) in comsidered mandien of inertia of the hub and ams is neglected. This is due to the fect that the magne porem wim anis of motation. therefore the mass moment of inertia of the hum and arms is smatl.
Example 16.1. The mass of flywhee of an engine is 6.5 tomnes and the radius of guration serms. If found from the turning moment diagram that the fluctuation of energy is ${ }_{3}$ ithe $^{\text {it }}$ the mean speed of the engine is 120 r.p.m., find the maximum and minimum speeds.
solution. Given : $m=6.5 \mathrm{t}=6500 \mathrm{~kg} ; k=1.8 \mathrm{~m} ; \Delta E=56 \mathrm{kN}-\mathrm{m}=56 \times 10^{3} \mathrm{~N}-\mathrm{m}$: $1512 \mathrm{mp} . \mathrm{mln}$

Let
N_{1} and $N_{2}=$ Maximum and minimum speeds respectively.
We know that fluctuation of energy (ΔE),

$$
\begin{align*}
56 \times 10^{3} & =\frac{\pi^{2}}{900} \times m \cdot k^{2} \cdot N\left(N_{1}-N_{2}\right)=\frac{\pi^{2}}{900} \times 6500(1.8)^{2} 120\left(N_{1}-N_{2}\right) \\
& =27715\left(N_{1}-N_{2}\right) \\
\therefore \quad N_{1}-N_{2} & =56 \times 10^{3} / 27715=2 \text { r.p.m. } \tag{i}
\end{align*}
$$

We also know that mean speed (N),

$$
\begin{equation*}
120=\frac{N_{1}+N_{2}}{2} \text { or } N_{1}+N_{2}=120 \times 2=240 \text { r.p.m. } \tag{ii}
\end{equation*}
$$

From equations (i) and (ii),

$$
N_{1}=121 \text { r.p.m., and } N_{2}=119 \text { r.p.m. Ans. }
$$

Example 16.2. The flywheel of a steam engine has a radius of gyration of 1 m and mass Wivk. The starting torque of the steam engine is $1500 \mathrm{~N}-\mathrm{m}$ and may be assumed constant. demine: 1. the angular acceleration of the flywheel, and 2. the kinetic energy of the flywheel an 10 seconds from the start.

Solution. Given : $k=1 \mathrm{~m} ; m=2500 \mathrm{~kg} ; T=1500 \mathrm{~N}-\mathrm{m}$

LAngular acceleration of the flywheel

Let

$$
\alpha=\text { Angular acceleration of the flywheel. }
$$

We know that mass moment of inertia of the flywheel,

$$
I=m \cdot k^{2}=2500 \times 1^{2}=2500 \mathrm{~kg}-\mathrm{m}^{2}
$$

\therefore Starting torque of the engine (T),

$$
1500=l . \alpha=2500 \times \alpha \text { or } \alpha=1500 / 2500=0.6 \mathrm{rad} / \mathrm{s}^{2} \text { Ans. }
$$

? Rinefic energy of the flywheel
e First of all, let us find out the angular speed of the flywheel after 10 seconds from the start - from rest), assuming uniform acceleration. Let
$\omega_{1}=$ Angular speed at rest $=0$
$\omega_{2}=$ Angular speed after 10 seconds, and
We know $t=$ Time in seconds.
$\omega_{2}=\omega_{1}+\alpha t=0+0.6 \times 10=6 \mathrm{rad} / \mathrm{s}$
\therefore Kinetic energy of the llywheel

$$
=\frac{1}{2} \times 1\left(\omega_{2}\right)^{2}=\frac{1}{2} \times 2500 \times 6^{2}=450000 \mathrm{~N}-\mathrm{m}=45 \mathrm{NN} \cdot \mathrm{~m} A_{\mathrm{m}}
$$

Example 16.3. A horizomal cross compround steam engine develops 301 kW at 90 pm The confficient of fluctuation of energe as fonnd from the furning moment diagram is to be of and the fluctuation of speed is to be kept within $\pm 0.5 \%$ of the mean speed. Find the weisht of the flywhed recuuired, if the radius of gyration is 2 metres.

Solution. Given : $P=300 \mathrm{~kW}=300 \times 10^{7} \mathrm{~W} ; N=90$ r.p.m.; $C_{\mathrm{E}}=0.1 ; k=2 \mathrm{~m}$
We know that the mean angular speed,

$$
\omega=2 \pi \mathrm{~N} / 60=2 \pi \times 90 / 60=9.426 \mathrm{rad} / \mathrm{s}
$$

Let $\quad \omega_{1}$ and $\omega_{2}=$ Maximum and minimum speeds respectively.
Since the fluctuation of speed is $\pm 0.5 \%$ of mean speed, therefore total fluctuation of speed,

$$
\omega_{1}-\omega_{2}=1 \% \omega=0.01 \omega
$$

and coefficient of fluctuation of speed,

$$
C_{\mathrm{s}}=\frac{\omega_{1}-\omega_{2}}{\omega}=0.01
$$

We know that work done per cycle

$$
=P \times 60 / \mathrm{N}=300 \times 10^{3} \times 60 / 90=200 \times 10^{3} \mathrm{~N}-\mathrm{m}
$$

\therefore Maximum fluctuation of energy,

$$
\Delta E=\text { Work done per cycle } \times C_{\mathrm{E}}=200 \times 10^{3} \times 0.1=20 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
$$

Let

$$
m=\text { Mass of the flywheel. }
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
20 \times 10^{3} & =m . k^{2} \cdot \omega^{2} \cdot C_{\mathrm{S}}=m \times 2^{2} \times(9.426)^{2} \times 0.01=3.554 \mathrm{~m} \\
m & =20 \times 10^{3} / 3.554=5630 \mathrm{~kg} \quad \text { Ans. }
\end{aligned}
$$

Example 16.4. The turning moment diagram for a petrol engine is drawn to the following scales: Turning moment, $I \mathrm{~mm}=5 \mathrm{~N}-\mathrm{m}$; crank angle, $1 \mathrm{~mm}=I^{\circ}$. The urning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean tuming moment line taken in order are 295, 685, 40, 340, 960, $270 \mathrm{~mm}^{2}$. The rotating parts are equivalett to a mass of 36 kg at a radius of gyration of 150 mm . Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.

Solution. Given : $m=36 \mathrm{~kg} ; k=150 \mathrm{~mm}=0.15 \mathrm{~m} ; N=1800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega=2 \pi \times 1800 \mathrm{j} / \mathrm{al}$ $=188.52 \mathrm{rad} / \mathrm{s}$

Fig. 16.6
The turning moment diagram is shown in Fig. 16.6.

Sint the turing moment scale is $1 \mathrm{~mm}=\mathbf{5 N}$-m and anke sale is $1 \mathrm{~mm}=1^{\circ}=\pi / 180 \mathrm{rad}$, therefore.
$1 \mathrm{~mm}^{2}$ on turning moment diagram

Lel the total energy at $A=E$, then referring to 4it 16.

$$
=5 \times \frac{\pi}{180}=\frac{\pi}{36} \mathrm{~N}-\mathrm{m}
$$

Energy at $B=E+295$
... (Maximum energy)
Energy at $C=E+295-685=E-390$
Energy at $D=E-390+40=E-350$
Energy at $E=E-350-340=E-690$

Flywheel of an electric motor.

Energy at $F=E-690+960=E+270$
Energy at $G=E+270-270=E=$ Energy at A
We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Maximum energy }- \text { Minimum energy } \\
& =(E+295)-(E-690)=985 \mathrm{~mm}^{2} \\
& =985 \times \frac{\pi}{36}=86 \mathrm{~N}-\mathrm{m}=86 \mathrm{~J} \\
C_{\mathrm{S}} & =\text { Coefficient of fluctuation of speed. }
\end{aligned}
$$

Let
We know that maximum fluctuation of energy (ΔE),

$$
86=m \cdot k^{2} \omega^{2} \cdot C_{\mathrm{S}}=36 \times(0.15)^{2} \times(188.52)^{2} C_{\mathrm{S}}=28787 C_{\mathrm{S}}
$$

$$
\therefore \quad C_{\mathrm{S}}=86 / 28787=0.003 \text { or } 0.3 \% \quad \text { Ans. }
$$

Example 16.5. The turning moment diagram for a multicylinder engine has been drawn to wade $1 \mathrm{~mm}=600 \mathrm{~N}-\mathrm{m}$ vertically and $1 \mathrm{~mm}=3^{\circ}$ horizontally. The intercepted areas between the 4 whorgue curve and the mean resistance line, taken in order from one end, are as follows:
$+52,-124,+92,-140,+85,-72$ and $+107 \mathrm{~mm}^{2}$, when the engine is running at a speed 1001 r.p.m. If the total fluctuation of speed is not to exceed $\pm 1.5 \%$ of the mean, find the necessary Wrof the flywheel of radius 0.5 m .

Solution. Given : $N=600$ r.p.m. or $\omega=2 \pi \times 600 / 60=62.84 \mathrm{rad} / \mathrm{s} ; R=0.5 \mathrm{~m}$

Fig. 16.7
Since the total fluctuation of speed is not to exceed $\pm 1.5 \%$ of the mean speed, therefore

$$
\omega_{1}-\omega_{2}=3 \% \omega=0.03 \omega
$$

576 - Theory of Machines

and coverficient of fluctuation of speed.

$$
C_{s}=\frac{\left(0_{1}-(1)_{2}\right.}{0)}=0.03
$$

The turning moment dingram is shown in Fig. 16.7.
Since the turning monent scale is $1 \mathrm{~mm}=60 \mathrm{~N}-\mathrm{m}$ and crank angle scale is I mm ? $=3^{\circ} \times \pi / 180=\pi / 60$ rad. therefore
$1 \mathrm{~mm}^{2}$ on turuing moment diagram

$$
=6010 \times \pi / 60=31.42 \mathrm{~N}-\mathrm{m}
$$

Let the total energy at $A=E$, then referring to Fig. 16.7.
Encrgy al $B=E+52$
...(Maximum enerfil)
Energy at $C=E+52-124=E-72$
Energy at $D=E-72+92=E+20$
Energy al $E=E+20-140=E-120$
...(Minimum enery)
Energy at $F=E-120+85=E-35$
Energy at $G=E-35-72=E-107$
Energy at $H=E-107+107=E=$ Energy at A
We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Maximum energy }- \text { Minimum energy } \\
& =(E+52)-(E-120)=172=172 \times 31.42=5404 \mathrm{~N}-\mathrm{m} \\
m & =\text { Mass of the flywheel in } \mathrm{kg} .
\end{aligned}
$$

Let

Example 16.6. A shaft fitted with a flywheel rotates at 250 r.p.m. and drives a machine. The torque of machine varies in a cyclic manner over a period of 3 revolutions. The torque rises from $750 \mathrm{~N}-\mathrm{m}$ to $3000 \mathrm{~N}-\mathrm{m}$ uniformly during $1 / 2$ revolution and remains constant for the following revolution. It then falls uniformly to $750 \mathrm{~N}-\mathrm{m}$ during the next $1 / 2$ revolution and remains constant for one revolution, the cycle being repeated thereafier.

Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 500 kg with radius of gyration of 600 mm .

Solution. Given : $N=250$ r.p.m. or $\omega=2 \pi \times 250 / 60=26.2 \mathrm{rad} / \mathrm{s} ; m=500 \mathrm{~kg}$: $k=600 \mathrm{~mm}=0.6 \mathrm{~m}$

The turning moment diagram for the complete cycle is shown in Fig. 16.8.
We know that the torque required for one complete cycle

$$
\begin{aligned}
& =\text { Area of figure } O A B C D E F \\
& =\text { Area } O A E F+\text { Area } A B G+\text { Area } B C H G+\text { Area } C D H \\
& =O F \times O A+\frac{1}{2} \times A G \times B G+G H \times C H+\frac{1}{2} \times H D \times C H
\end{aligned}
$$

$$
\begin{align*}
& \text { Chapter } 16 \text { : Turning Moment Diagrams and Flywheel } \\
& \qquad \begin{aligned}
= & 6 \pi \times 750+\frac{1}{2} \times \pi(3000-750)+2 \pi(3000-750) \\
& +\frac{1}{2} \times \pi(3000-750) \\
= & 11250 \pi \mathrm{~N}-\mathrm{m}
\end{aligned}
\end{align*}
$$

If $T_{\text {man }}$ is the mean torque in $\mathrm{N}-\mathrm{m}$, then torque required for one complete cycle

$$
\begin{equation*}
=T_{\text {miean }} \times 6 \pi \mathrm{~N}-\mathrm{m} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii),

$$
T_{\text {mean }}=11250 \pi / 6 \pi=1875 \mathrm{~N}-\mathrm{m}
$$

Paver required to drive the machine
Wc know that power required to drive the machine,

$$
P=T_{\text {mean }} \times \omega=1875 \times 26.2=49125 \mathrm{~W}=49.125 \mathrm{~kW} \text { Ans. }
$$

Coefficient of fluctuation of speed

Let $C_{S}=$ Coefficient of fluctuation of speed.
First of all, let us find the values of $L M$ and $N P$. From similar triangles $A B G$ and $B L M$,

$$
\frac{L M}{A G}=\frac{B M}{B G} \quad \text { or } \quad \frac{L M}{\pi}=\frac{3000-1875}{3000-750}=0.5 \quad \text { or } \quad L M=0.5 \pi
$$

Now, from similar triangles $C H D$ and $C N P$,

$$
\frac{N P}{H D}=\frac{C N}{C H} \quad \text { or } \quad \frac{N P}{\pi}=\frac{3000-1875}{3000-750}=0.5 \quad \text { or } \quad N P=0.5 \pi
$$

From Fig. 16.8, we find that

$$
B M=C N=3000-1875=1125 \mathrm{~N}-\mathrm{m}
$$

Since the area above the mean torque line represents the maximum fluctuation of energy, therfore, maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Aren } L B C P=\text { Area } L B M+\text { Area } M B C N+\text { Arca } P N C \\
& =\frac{1}{2} \times L M \times B M+M N \times B M+\frac{1}{2} \times N P \times C N
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \times 0.9 n=1125+2 n \times 1129+\frac{1}{2} \times 0.5 \pi \times 1129 \\
& =8 \times 17 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

He homow that maximum flectuation of emeryy (A B).

Example 16.7. During foruand stroke of the piston of the double acting steam engine, the morning moment has the maimum value of $2000 \mathrm{~N}-\mathrm{m}$ when the crank makes an angle of 800° with the inner dedud centre. During the hackward stroke, the maximum turning moment is 1500 N when the crank makes an angle of 80 with the outer dead centre. The turning moment diagran for the engine may be assumed for simpliciny to be represented by two triangles.

If the crank makes $100 \mathrm{r.p} . \mathrm{m}$. and the radius of gyration of the flymheel is 1.75 m . find in mefficiens of fluctuation of energy and the mass of the flywheel to keep the speed within $\pm 0.75 \%$ od the mean speed. Also determine the crank angle at which the speed has its minimum and maximum values.

Solution. Given : $N=100 \mathrm{r}$. p.m. or $\omega=2 \pi \times 100 / 60=10.47 \mathrm{rad} / \mathrm{s}: k=1.75 \mathrm{~m}$
Since the fluctuation of speed is $\pm 0.75 \%$ of mean speed, therefore total fluctuation of spech

$$
\omega_{1}-\omega_{2}=1.5 \% \omega
$$ and coefficient of fluctuation of speed.

$$
c_{S}=\frac{\omega_{1}-\omega_{2}}{\omega}=1.5 \%=0.015
$$

Coefficient of fluctuation of energy

The turning moment diagram for the engine during forward and backward strokerin akwr in Fig. 16.9. The point O represents the inner dead centre (I.D.C.) and point G repreenns thi outer dead centre (O.D.C). We know that maximum turning moment when crank make ar angle of 80° (or $80 \times \pi / 180=4 \pi / 9 \mathrm{rad}$) with I.D.C.,

$$
\therefore \quad A B=2000 \mathrm{~N}-\mathrm{m}
$$

$$
\begin{aligned}
L M & =1500 \mathrm{~N}-\mathrm{m} \\
T_{\text {mean }} & =E B=Q M=\text { Mean resisting torque. }
\end{aligned}
$$

Let

We know that work done per cycle

$$
\begin{align*}
& =\text { Area of triangle } O A G+\text { Area of triangle } G L S \\
& =\frac{1}{2} \times O G \times A B+\frac{1}{2} \times G S \times L M \\
& =\frac{1}{2} \times \pi \times 2000+\frac{1}{2} \times \pi \times 1500=1750 \pi \mathrm{~N}-\mathrm{m} \tag{i}
\end{align*}
$$

We also know that work done per cycle

$$
\begin{equation*}
=T_{m e a n} \times 2 \pi \mathrm{~N}-\mathrm{m} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii),

$$
T_{\text {mean }}=1750 \pi / 2 \pi=875 \mathrm{~N}-\mathrm{m}
$$

From similar triangles $A C D$ and $A O G$,

$$
\begin{gathered}
\quad \frac{C D}{A E}=\frac{O G}{A B} \\
C D=\frac{O G}{A B} \times A E=\frac{O G}{A B}(A B-E B)=\frac{\pi}{2000}(2000-875)=1.764 \mathrm{rad}
\end{gathered}
$$

\therefore Maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Area of triangle } A C D=\frac{1}{2} \times C D \times A E \\
& =\frac{1}{2} \times C D(A B-E B)=\frac{1}{2} \times 1.764(2000-875)=992 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

We know that coefficient of fluctuation of energy,

$$
C_{E}=\frac{\text { Max.fluctuation of energy }}{\text { Work done per cycle }}=\frac{992}{1750 \pi}=0.18 \text { or } 18 \% \text { Ans. }
$$

Mans of the Arumand

Le $\quad m \neq$ Mass of ithe llywhed.
If Amow that maxinumi theyuation of energy (50.

Crand anglos for che minimum and merionnom port

We know that the speed of the trwher is nuinimum al point C and maximum at point D See Arr. 10.S. I.D.C. for the ninimum and maximum ymerts.

ABS.
From similar triangles $A C E$ and

$$
\text { I.N } A_{1} \text {, and } \theta_{1}=\text { Crank angles firm }
$$

W

$$
\begin{aligned}
\frac{C E}{C B}=\frac{A E}{A B} \\
C E=\frac{A E}{A B} \times O B=\frac{A B-E B}{A B} \times O B=\frac{2(000-875}{2000} \times \frac{4 \pi}{9}=\frac{\pi}{4} \mathrm{rad} \\
C_{C}=\frac{4 \pi}{9}-\frac{\pi}{4}=\frac{7 \pi}{36} \mathrm{rad}=\frac{7 \pi}{36} \times \frac{180}{\pi}=35^{\circ} \quad \text { Ans. }
\end{aligned}
$$

Again from similar triangles $A E D$ and $A B G$,
or

$$
\frac{E D}{B G}=\frac{A E}{A B}
$$

$$
E D=\frac{A E}{A B} \times B G=\frac{A B-E B}{A B}(O G-O B)
$$

$$
=\frac{2000-875}{2000}\left(\pi-\frac{4 \pi}{9}\right)=\frac{2.8 \pi}{9} \mathrm{rad}
$$

$$
\therefore \quad \theta_{\mathrm{D}}=\frac{4 \pi}{9}+\frac{2.8 \pi}{9}=\frac{6.8 \pi}{9} \mathrm{rad}=\frac{6.8 \pi}{9} \times \frac{180}{\pi}=136^{\circ} \mathrm{Ans}
$$

Example 16.8. A three cylimer single acting engine has its cranks set equally al 120 ind

 of energh and \& maximum angular acceleration of the flywivel.
 $m=12 \mathrm{~kg}: 1=80 \mathrm{~mm}=0.08 \mathrm{~m}$

$$
\begin{aligned}
& \therefore \quad m=042 / 5.0 .4=107.2 \mathrm{~kg} \mathrm{Ans} \\
& \text { W4: }=m . A^{2} . N^{2} \cdot C_{s}=m \times(1.75)^{2} \times(10.47)^{2} \times 0.015 \times 5.03_{m} \\
& m=042 / 5.07=107.2 \mathrm{~kg} \text { Ans. }
\end{aligned}
$$

Tnemurue-tank angle diagram for the indisidual cylinders in thrwn in Fig if in (a). and

(a)

(b)

Fig. 16.10

1. Power developed

We know that work done/cycle
dimean forque.

$$
=\text { Area of three triangles }=3 \times \frac{1}{2} \times \pi \times 90=424 \mathrm{~N}-\mathrm{m}
$$

$$
\text { Crank angle/cycle } 2 \pi
$$

\therefore Power developed $=T_{\text {mean }} \times \omega=67.5 \times 62.84=4240 \mathrm{~W}=4.24 \mathrm{~kW}$ Ans.

1 Coefficient of fluctuation of speed

$$
\text { Let } \quad C_{\mathrm{S}}=\text { Coefficient of fluctuation of speed. }
$$

First of all, let us find the maximum fluctuation of energy (ΔE).
From Fig. 16.10 (b), we find that

$$
\begin{aligned}
a_{1} & =\text { Area of triangle } A a B=\frac{1}{2} \times A B \times A a \\
& =\frac{1}{2} \times \frac{\pi}{6} \times(67.5-45)=5.89 \mathrm{~N}-\mathrm{m}=a_{7} \quad \ldots\left(\because A B=30^{\circ}=\pi / 6 \mathrm{rad}\right) \\
a_{2} & =\text { Area of triangle } B b C=\frac{1}{2} \times B C \times b b^{\prime} \\
& =\frac{1}{2} \times \frac{\pi}{3}(90-67.5)=11.78 \mathrm{~N}-\mathrm{m} \quad \ldots\left(\because B C=60^{\circ}=\pi / 3 \mathrm{rad}\right) \\
& =a_{3}=a_{4}=a_{5}=a_{6}
\end{aligned}
$$

Now, let the total energy at $A=E$, then referring to Fig. $16.10(b)$,
Energy at $B=E-5.89$
Energy at $C=E-5.89+11.78=E+5.89$
Energy at $D=E+5.89-11.78=E-5.89$
Energy at $E=E-5.89+11.78=E+5.89$
Energy at $C=E+5.89-11.78=E-5.89$
Energy at $H=E-5.89+11.78=E+5.89$
Energy at $J=E+5.89-5.89=E=$ Energy at A

From above we see thal maximum encrgy
and minmumenergy

$$
\begin{aligned}
& =E+5.89 \\
& =E-5.89
\end{aligned}
$$

\therefore Maximum fluctuation of energy,

$$
\begin{aligned}
& \text { uation of energy, } \\
& \Delta E=(E+5.89)-(E-5.89)=11.78 \mathrm{~N}-\mathrm{m} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { We know that maximum fuctuation of energy }(\Delta E) \text {. } \\
& 11.78=m . k^{2} \cdot \omega^{2} . C_{5}=12 \times(0.08)^{2} \times(62.84)^{2} \times C_{S}=303.3 C_{s} \\
& \therefore \quad C_{S}=11.78 / 303.3=0.04 \text { or } 4 \% \text { Ans. }
\end{aligned}
$$

3. Coefficient of fluctuation of energy

We know that coetficient of fluctuation of energy,

$$
\begin{aligned}
& \text { cient of fluctuation of energy, } \\
& C_{\mathrm{E}}=\frac{\text { Mux. fluctuation of energy }}{\text { Work done/cycle }}=\frac{11.78}{424}=0.0278=2.78 \% \mathrm{Am}_{\mathrm{m}_{\mathrm{h}}}
\end{aligned}
$$

4. Maximum angular acceleration of the flywheel

$$
\alpha=\text { Maximum angula }
$$

Let $\quad \alpha=$ Maximum angular acceleration of the flywheel.
We know that,

$$
\begin{aligned}
T_{m \mathrm{max}}-T_{\text {mean }} & =1 . \alpha=m . k^{2} . \alpha \\
90-67.5 & =12 \times(0.08)^{2} \times \alpha=0.077 \alpha \\
\therefore \quad \alpha & =\frac{90-67.5}{0.077}=292 \mathrm{rad} / \mathrm{s}^{2} \mathrm{Ans} .
\end{aligned}
$$

Example 16.9. A single cylinder, single acting, four stroke gas engine develops $20 \mathrm{~kW} \mathrm{a}_{4}$ 300 r.p.m. The work done by the gases during the expansion stroke is three times the work done on the gases during the compression stroke, the work done during the suction and exhaust strokes being negligible. If the total fluctuation of speed is not to exceed ± 2 per cent of the mean speed and the turning moment diagram during compression and expansion is assumed to be triangular in shape, find the moment of inertia of the flywheel.

Solution. Given : $P=20 \mathrm{~kW}=20 \times 10^{3} \mathrm{~W} ; N=300 \mathrm{r} . \mathrm{p} . \mathrm{m}$, or $\omega=2 \pi \times 300 / 60=31.42 \mathrm{rdds}$
Since the total fluctuation of speed $\left(\omega_{1}-\omega_{2}\right)$ is not to exceed ± 2 per cent of the mean speed (ω), therefore

$$
\omega_{1}-\omega_{2}=4 \% \omega
$$

and coefficient of fluctuation of speed,

$$
C_{\mathrm{s}}=\frac{\omega_{1}-\omega_{2}}{\omega}=4 \%=0.04
$$

The turning moment-crank angle diagram for a four stroke engine is shown in Fig. 16.11.11 is assumed to be triangular during compression and expansion strokes, neglecting the suction and exhaust strokes.

* Since the area above the mean torque line represents the maximum fluctuation of energy, therefore matimum flucluation of energy,

$$
\begin{aligned}
\Delta E & =\text { Area } B b c=\text { Area } D d E=\text { Area } G g h \\
& =\frac{1}{2} \times \frac{\pi}{3}(90-67.5)=11.78 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

We know that for a lour stroke engine, muluer of working strokex per cyele,
\therefore Work done/cycle $\left.=P \times 8(1) / 1 \pm 20 \times 10^{1} \times(0) / 1,50\right)$ M(O)OON $-m$

Pis. 16.II
Since the work done during suction and exhutust strokes is negligible, therefore net work dnaper cycle (during compression and expansion strokes)

$$
\begin{equation*}
=W_{\mathrm{E}}-W_{\mathrm{C}}=W_{\mathrm{E}}-\frac{W_{\mathrm{E}}}{3}=\frac{2}{3} W_{\mathrm{E}} \tag{L}
\end{equation*}
$$

Equating equations (i) and (ii), work done during expansion stroke,

$$
W_{E}=8000 \times 3 / 2=12000 \mathrm{~N}-\mathrm{m}
$$

We know that work done during expansion stroke $\left(W_{E}\right)$,

$$
\begin{aligned}
12000 & =\text { Area of triangle } A B C=\frac{1}{2} \times B C \times A G=\frac{1}{2} \times \pi \times A C \\
A G & =T_{m a x}=12000 \times 2 / \pi=7638 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

id mean turning moment,

$$
* T_{\text {mean }}=F G=\frac{\text { Work done/cycle }}{\text { Crank angle/cycle }}=\frac{8000}{4 \pi}=637 \mathrm{~N}-\mathrm{m}
$$

\therefore Excess turning moment,

$$
T_{\text {e.ress }}=A F=A G-F G=7638-637=7001 \mathrm{~N}-\mathrm{m}
$$

Now, from similar triangles $A D E$ and $A B C$,

$$
\frac{D E}{B C}=\frac{A F}{A G} \quad \text { or } \quad D E=\frac{A F}{A G} \times B C=\frac{7001}{7638} \times \pi=2.88 \mathrm{rad}
$$

Since the area above the mean curning moment line represents the maximum fluctuation of therefore maximum fluctuation of energy,

$$
\Delta E=\text { Area of } \triangle A D E=\frac{1}{2} \times D E \times A F=\frac{1}{2} \times 2.88 \times 7001=10081 \mathrm{~N}-\mathrm{m}
$$

The mean turning moment ($T_{\text {rean }}$) may also be oblained by using the following relation:

$$
\begin{aligned}
& \mathrm{nt}\left(T_{\text {neaa }}\right) \text { may also be oblaine } \\
& P=T_{\text {mean }} \times \omega \text { or } T_{\text {mean }}=P / \omega=20 \times 10^{3 / 31.42=637 \mathrm{~N}-\mathrm{m}}
\end{aligned}
$$

Let

$$
1=\text { Moment of inertig of the flywheet in } \mathrm{kg}-\mathrm{m}^{2} \text {. }
$$

We know that maximum fluctuation of energy $(\Delta E$).

$$
\begin{aligned}
& & 10081 & =1.05^{2} \cdot\left(, ~=I \times(31.42)^{2} \times 0.14=39.5 I\right. \\
\therefore & & I & =1(0) 81 / .39 .5=255.2 \mathrm{~kg} \cdot \mathrm{~m}^{2} \text { Ann. }
\end{aligned}
$$

Example 16.10. The turning mement diagram for a faur stroke gas engine men o for simplicity to be nepresentied by four triangles, the areds of which from the line of iere premers, are as follows:

Suction atroke $=0.45 \times 10^{-3} \mathrm{~m}^{2}$; Compression stroke $=1.7 \times 10^{-3} \mathrm{~m}^{2}$: Expantion wone 10 kcep the speed between 202 and 198 r.p.m. The mean radius of the rim is 1.2 m .
Solution. Given : $a_{1}=0.45 \times 10^{-3} \mathrm{~m}^{2} ; a_{2}=1.7 \times 10^{-3} \mathrm{~m}^{2} ; a_{3}=6.8 \times 10^{-1} \mathrm{~m}$.
$a_{4}=0.65 \times 10^{-3} \mathrm{~m}^{2} ; N_{1}=202 \mathrm{r} . \mathrm{p} . \mathrm{m} ; N_{2}=198 \mathrm{r} . \mathrm{p} . \mathrm{m} . ; R=1.2 \mathrm{~m}$
The turning moment-crank angle diagram for a four stroke engine is shown in Fig. 16.12 The areas below the zero line of pressure are taken as negative while the areas above the zeroline of pressure are taken as positive.
$\therefore \quad$ Net area $=a_{3}-\left(a_{1}+a_{2}+a_{4}\right)$

$$
=6.8 \times 10^{-3}-\left(0.45 \times 10^{-3}+1.7 \times 10^{-3}+0.65 \times 10^{-3}\right)=4 \times 10^{-3} \mathrm{~m}^{2}
$$

Since the energy scale is $1 \mathrm{~m}^{2}=3 \mathrm{MN}-\mathrm{m}=3 \times 10^{6} \mathrm{~N}-\mathrm{m}$, therefore,
Net work done per cycle $=4 \times 10^{-3} \times 3 \times 10^{6}=12 \times 10^{3} \mathrm{~N}-\mathrm{m}$
We also know that work done per cycle,

$$
\begin{equation*}
=T_{\text {mean }} \times 4 \pi \mathrm{~N}-\mathrm{m} \tag{i}
\end{equation*}
$$

From equations (i) and (ii),

$$
T_{\text {mean }}=F G=12 \times 10^{3} / 4 \pi=955 \mathrm{~N}-\mathrm{m}
$$

Fig. 16.12
Work done during expansion stroke

$$
=a_{3} \times \text { Energy scale }=6.8 \times 10^{-3} \times 3 \times 10^{6}=20.4 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m} \ldots \text {.iii }
$$

\therefore Exess torque,

$$
\begin{align*}
& =\text { Area of triangle } A B C \\
& =\frac{1}{2} \times B C \times A G=\frac{1}{2} \times \pi \times A G=1.571 \times A G \tag{iv}\\
& \text { (iv) }
\end{align*}
$$

ponn cquations (iii) and (iv),

$$
A G=20.4 \times 10^{3} / 1.57 \mathrm{l}=12985 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
& T_{\text {ewess }}=A F=A G-F G=12985-955=12030 \mathrm{~N}-\mathrm{m} \\
& \text { triangles } A D E \text { and } A B C \text {, }
\end{aligned}
$$

Now from similar triangles $A D E$ and $A B C$,

$$
\frac{D E}{B C}=\frac{A F}{A G} \quad \text { or } \quad D E=\frac{A F}{A G} \times B C=\frac{12030}{12985} \times \pi=2.9 \mathrm{rad}
$$

ne know that the maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Area of } \triangle A D E=\frac{1}{2} \times D E \times A F=\frac{1}{2} \times 2.9 \times 12030 \mathrm{~N}-\mathrm{m} \\
& =17444 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

withe rim of a flywheel
Let

$$
\begin{aligned}
m & =\text { Mass of the rim of a flywheel in } \mathrm{kg}, \text { and } \\
N & =\text { Mean speed of the flywheel } \\
& =\frac{N_{1}+N_{2}}{2}=\frac{202+198}{2}=200 \text { r.p.m. }
\end{aligned}
$$

We know that the maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
& \qquad \begin{aligned}
17444 & =\frac{\pi^{2}}{900} \times m \cdot R^{2} \cdot N\left(N_{1}-N_{2}\right)=\frac{\pi^{2}}{900} \times m(1.2)^{2} 200 \times(202-198) \\
& =12.63 \mathrm{~m} \\
\therefore \quad m & =17444 / 12.36=1381 \mathrm{~kg} \text { Ans. }
\end{aligned} \text { Example } 1611 \quad \mathrm{~m}
\end{aligned}
$$

Example 16.11. The turning moment curve for an engine is represented by the equation,
$=10000+9500 \sin 2 \theta-5700 \cos 2 \theta) N$-m, where θ is the angle moved by the crank from - iend centre. If the resisting torque is constant, find:
I. Power developed by the engine ; 2. Moment of inertia of flyweel in $\mathrm{kg}_{\mathrm{-m}} \mathrm{~m}^{2}$, if the total min of speed is not to exceed 1% of mean speed which is 180 r.p.m; and 3 . Angular acceleration * Amheet when the crank has turned through 45° from inner dead centre.

Solution. Given : $T=(20000+9500 \sin 2 \theta-5700 \cos 2 \theta) \mathrm{N}-\mathrm{m} ; N=180$ r.p.m. or Since the total fluctuation of speed $\left(\omega_{1}-\omega_{2}\right)$ is 1%

$$
C_{\mathrm{s}}=\frac{\omega_{1}-\omega_{2}}{\omega}=1 \%=0.01
$$

Weveloped by the engine
that work done per revolution

$$
=\int_{0}^{2 \pi} T d \theta=\int_{0}^{2 \pi}(20000+9500 \sin 2 \theta-5700 \cos 2 \theta) d \theta
$$

$$
\left.\begin{array}{l}
=\left[2000 \mu 0-\frac{4 \sin) \operatorname{con} 2 \theta}{2}-\frac{570}{2} 2 \sin 20\right. \\
2
\end{array}\right]_{0}^{2 \pi}
$$

and mean resisting torque of the engine.

We know that power developed by the engine

$$
=T_{\text {miean }}, \omega=20000 \times 18.85=377000 \mathrm{~W}=377 \mathrm{~kW} \mathrm{An}_{\mathrm{n}}
$$

2. Moment of inertia of the flywhel

Let

$I=$ Moment of inertia of the llywhed in $\mathrm{kg}-\mathrm{m}^{2}$.
The turning moment diagram for one stroke (i.e. half revolution of the crankshaft) in shown in Fig. 16.13. Since at points B and D, the torgue exerted on the crankshaft is equal to the mean resisting torque on the Dywheel, therefore,

$$
T=T_{\text {mean }}
$$

$$
20000+9500 \sin 2 \theta-5700 \cos 2 \theta=20000
$$

or $\quad 9500 \sin 2 \theta=5700 \cos 20$

$$
\tan 2 \theta=\sin 2 \theta / \cos 2 \theta=5700 / 9.500=0.6
$$

$$
\begin{array}{ll}
\therefore & 2 \theta=31^{\circ} \text { or } \theta=15.5^{\circ} \\
\therefore & \theta_{\mathrm{B}}=15.5^{\circ} \text { and } \theta_{\mathrm{D}}=90^{\circ}+15.5^{\circ}=105.5^{\circ}
\end{array}
$$

Fig. 16.13
Maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\int_{\theta_{\mathrm{B}}}^{\theta}\left(T-T_{\text {mean }}\right) d \theta \\
& =\int_{15.5^{\circ}}^{105.5^{\circ}}(20000+9500 \sin 2 \theta-5700 \cos 2 \theta-20000) d \theta \\
& =\left[-\frac{9500 \cos 2 \theta}{2}-\frac{5700 \sin 2 \theta}{2}\right]_{15.5}^{1055 \cdot}=11078 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

The angular acceleration in the flywheel is Fonluced by the excess torque over the mean torque.

$$
\begin{aligned}
& \tau_{\text {erress }}=T-T_{\text {mean }} \\
&=20000+9500 \sin 2 \theta-5700 \cos 2 \theta \\
&-20000
\end{aligned}
$$

$$
=9500 \sin 2 \theta-5700 \cos 2 \theta
$$

Nowadays steam turbines like this can be produced entirely by computercontrolied machine tools, directly from the angineer's computer.
Note: This picture is given as additional information.
\therefore Excess torque at 45°

$$
\begin{equation*}
=9500 \sin 90^{\circ}-5700 \cos 90^{\circ}=9500 \mathrm{~N}-\mathrm{m} \tag{i}
\end{equation*}
$$

We also know that excess torque

$$
\begin{equation*}
=1 . \alpha=3121 \times \alpha \tag{ii}
\end{equation*}
$$

From equations (i) and (ii),

$$
\alpha=9500 / 3121=3.044 \mathrm{rad} / \mathrm{s}^{2} \mathrm{Ans}
$$

Example 16.12. A certain machine requires a torque of $(5000+500 \sin \theta) \mathrm{N}-\mathrm{m}$ to drive it, there θ is the angle of rotation of shaft measured from certain datum. The machine is directly coupled to an engine which produces a forgue of $(5000+600 \sin 2 \theta) \mathrm{N}-\mathrm{m}$. The flywheel and the vier rotating parts attached to the engine has a mass of 500 kg at a radius of gyration of 0.4 m . If lismean speed is 150 r.p.m. find : 1. the fluchation of energy, 2. the total percentage flucruation of peed, and 3. the maximum and minimum ongular acceleration of the flywheel and the corresponding sinf position.

Solution. Given : $T_{1}=(5000+500 \sin \theta) \mathrm{N}-\mathrm{m} ; T_{2}=(5000+600 \sin 2 \theta) \mathrm{N}-\mathrm{m} ;$ $m=500 \mathrm{~kg} ; k=0.4 \mathrm{~m} ; N=150 \mathrm{r} . \mathrm{p} . \mathrm{mm}$. or $\omega=2 \pi \times 150 / 60=15.71 \mathrm{rad} / \mathrm{s}$

Fig. 16.14

1. Fiuctmation of energy

We know that change in torque

$$
\begin{aligned}
& =r_{2}-T_{1}=(5000+600 \sin 2 \theta)-(5000+500 \sin \theta) \\
& =600 \sin 2 \theta-500 \sin \theta
\end{aligned}
$$

This change is zero when

$$
\begin{aligned}
600 \sin 2 \theta & =500 \sin \theta \quad \text { or } \quad 1.2 \sin 2 \theta=\sin \theta \\
1.2 \times 2 \sin \theta \cos \theta & =\sin \theta \quad \text { or } \quad 2.4 \sin \theta \cos \theta=\sin \theta \quad \ldots\left(\because \sin 2 \theta=2 \sin \theta \operatorname{cin} \theta_{1}\right.
\end{aligned}
$$

\therefore Either

$$
\begin{aligned}
\sin \theta & =0 \text { or } \cos \theta=1 / 2.4=0.4167 \\
\sin \theta & =0, \theta=0^{\circ}, 180^{\circ} \text { and } 360^{\circ} \\
\theta_{A} & =0^{\circ}, \theta_{\mathrm{C}}=180^{\circ} \text { and } \theta_{\mathrm{E}}=360^{\circ} \\
\cos \theta & =0.4167, \theta=65.4^{\circ} \text { and } 294.6^{\circ} \\
\theta_{\mathrm{B}} & =65.4^{\circ} \text { and } \theta_{\mathrm{D}}=294.6^{\circ}
\end{aligned}
$$

when
i.e.
when
i.e.

The turning moment diagram is shown in Fig. 16.J4. The maximum fluctuation of energy lies between C and D (i.e. between 180° and 294.6°), as shown shaded in Fig. 16.14.
\therefore Maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\int_{180^{\circ}}^{294.6^{\circ}}\left(T_{2}-T_{1}\right) d \theta \\
& =\int_{180^{\circ}}^{294.6^{\circ}}[(5000+600 \sin 2 \theta)-(5000+500 \sin \theta)] d \theta \\
& =\left[-\frac{600 \cos 2 \theta}{2}+500 \cos \theta\right]_{180^{\circ}}^{294.6^{\circ}}=1204 \mathrm{~N}-\mathrm{m} \text { Ans. }
\end{aligned}
$$

2. Total percentage fluctuation of speed

Let

$$
C_{\mathrm{S}}=\text { Total percentage fluctuation of speed. }
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
& 1204 & =m \cdot k^{2} \cdot \omega^{2} \cdot C_{S}=500 \times(0.4)^{2} \times(15.71)^{2} \times C_{S}=19744 C_{S} \\
\therefore & C_{S} & =1204 / 19744=0.061 \text { or } 6.1 \% \text { Ans. }
\end{aligned}
$$

3. Maximum and minimum angular acceleration of the flywheel and the corresponding shaft positions

The change in torque must be maximum or minimum when acceleration is maximum or minimum. We know that

Change in torque, $\quad T=T_{2}-T_{1}=(5000+600 \sin 2 \theta)-(5000+500 \sin \theta)$

$$
\begin{equation*}
=600 \sin 2 \theta-500 \sin \theta \tag{i}
\end{equation*}
$$

Differentiating this expression with respect to θ and equating to zero for maximum or minimum values.

$$
\therefore \quad \frac{d}{d \theta}(600 \sin 2 \theta-500 \sin \theta)=0 \quad \text { or } \quad 1200 \cos 2 \theta-500 \cos \theta=0
$$

or

$$
12 \cos 2 \theta-5 \cos \theta=0
$$

$$
12\left(2 \cos ^{2}(\theta)-1\right)-5 \cos \theta=0
$$

$$
\begin{aligned}
& 24 \cos ^{2} 0-5 \cos \theta-12=0 \\
& \cos 0=\frac{5 \pm \sqrt{25+4 \times 12 \times 24}}{2 \times 24}=\frac{5 \pm 34.3}{4 k} \\
&=0.8187 \text { or }-0.6104 \\
& 0=35^{\circ} \text { or } 127.6^{\circ} \text { Allw. }
\end{aligned}
$$

\therefore

Subsuifuting $0=35^{\circ}$ in equalion (i), we have maximum torcjue,

$$
\begin{aligned}
& T_{\max }=6(k) \sin 70^{\circ}-5(K) \sin 35^{\circ}=277 \mathrm{~N} \cdot \mathrm{~m} \\
& .6^{\circ} \text { in equation }(\text { i }) \text { mar }
\end{aligned}
$$

Subsiluting $0=127.6^{\circ}$ in equation (i), we have minimum torque,

$$
\begin{aligned}
& T_{m i n}=f(0) \text { sin } 255.2^{\circ}-5(0) \text { sin } 127.6^{\circ}=-976 \mathrm{~N}-\mathrm{m} \\
& \text { num acceleration, }
\end{aligned}
$$

We know that maximum acceleration,

$$
\alpha_{\operatorname{mux}}=\frac{T_{\text {mar }}}{l}=\frac{277}{500 \times(0.4)^{2}}=3.46 \mathrm{rad} / \mathrm{s}^{2}
$$

dmaninum acceleration (or maximum relardation),

$$
\alpha_{m i n}=\frac{T_{m i n}}{l}=\frac{976}{5\left(00 \times(0.4)^{2}\right.}=12.2 \mathrm{rad} / \mathrm{s}^{2} \quad \text { Ans. }
$$

Example 16.13. The equation of the turning momen curve of a three crank engine is ($m+150(1) \sin 30) N \cdot m$, where θ is the crank cungle in radians. The mement of ineria of the ', ked is $1001 \mathrm{~kg}-\mathrm{m}^{2}$ und the mean speed is 300 r.p.m. Calculate: 1 . power of the engine. and 2. vaumumd (ii) the resisting torque is $(5000+600 \sin 0) \mathrm{N} \cdot \mathrm{m}$.

Solution. Given : $T=(50) 00+1500 \sin 30) \mathrm{N}-\mathrm{m} ; l=1000 \mathrm{~kg}-\mathrm{m}^{2} ; N=300$ r.p.m. or Pawer of the engine

We know that work done per revolution

$$
\begin{aligned}
& \left.=\int_{0}^{2 \pi}(5000)+1500 \sin 30\right) d \theta=\left[50000-\frac{1500 \cos 3 \theta}{3}\right]_{0}^{2 \pi} \\
& =10(000 \pi \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

\therefore Mean resisling torgue,

$$
r_{\text {mean }}=\frac{\text { Work done/rev }}{2 \pi}=\frac{10000 \pi}{2 \pi}=5000 \mathrm{~N}-\mathrm{m}
$$

We know that power of the engine,

$$
P=T_{\text {mean }},(0)=5000 \times 31.42=157100 \mathrm{~W}=157.1 \mathrm{~kW} \text { Ans. }
$$

imum flucluation of the speed of the flywheed La

$$
C_{S}=\text { Maximum or total fluctuation of speed of the Mywheel. }
$$

(1) When deviating morgue th constant

 therefore the cirque exerted on lie sian in cull to the mean resinating torque on the flywheel

Fig. 16.15

$$
\begin{array}{rlrl}
& & T & =T_{\text {mean }} \\
& 5000+1500 \sin 3 \theta & =5000 \\
1500 \sin 3 \theta & =0 \text { or } \sin 3 \theta=0 \\
\therefore \quad 3 \theta & =0^{\circ} \text { or } 180^{\circ} \\
\therefore & \theta & =0^{\circ} \text { or } 60^{\circ}
\end{array}
$$

\therefore Maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\int_{0}^{60^{\circ}}\left(T-T_{\text {mean }}\right) d \theta=\int_{0}^{60^{\circ}}(5000+1500 \sin 3 \theta-5000) d \theta \\
& =\int_{0}^{60^{\circ}} 1500 \sin 3 \theta d \theta=\left[-\frac{1500 \cos 3 \theta}{3}\right]_{0}^{60^{\circ}}=1000 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{array}{rlrl}
& & 1000 & =l . \omega^{2} . C_{\mathrm{S}}=1000 \times(31.42)^{2} \times C_{\mathrm{S}}=987216 C_{\mathrm{S}} \\
\therefore & C_{S} & =1000 / 987216=0.001 \text { or } 0.1 \% \text { Ans. }
\end{array}
$$

(ii) When resisting torque is $(5000+600 \sin \theta) N-m$

The turning moment diagram is shown in Fig. 16.16. Since at points B and C, the torque exerted on the shaft is equal to the mean resisting torque on the flywheel, therefore

Fig. 16.16

$$
\begin{array}{r}
\left.\sin -4 \sin ^{\prime} \theta\right)=\sin \theta \\
3-4 \sin ^{2} \theta=0.4
\end{array}
$$

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{3-0.4}{4}=0.65 \text { or } \sin \theta=0.8062 \\
\theta & =53.7^{\circ} \text { or } 126.3^{\circ} \text { i.e. } \theta=537^{\circ}
\end{aligned}
$$

$$
\therefore \text { Maximum fluctuation of energy. }
$$

$$
\begin{aligned}
\Delta E & =\int_{33 . \sigma^{\circ}}^{1263^{\circ}}[(5000+1500 \sin 3 \theta)-(5(000+6(x) \sin \theta)] d \theta \\
& =\int_{53.7}^{1263^{\circ}}(1500 \sin 3 \theta-600 \sin \theta) d \theta=\left[-\frac{1500 \cos 3 \theta}{3}+600 \cos \theta\right]_{3 y}^{12 \theta \cdot r} \\
& =-1656 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{array}{rlrl}
& & 1656 & =I . \omega^{2} . C_{\mathrm{S}}=1000 \times(31.42)^{2} \times C_{\mathrm{S}}=987216 C_{\mathrm{s}} \\
\therefore & C_{\mathrm{S}} & =1656 / 987216=0.00168 \text { or } 0.168 \% \text { Ans. }
\end{array}
$$

1..1. Dimensions of the Flywheel Rim

Consider a rim of the flywheel as shown in Fig. 16.17.
Let $D=$ Mean diameter of rim in metres,
$R=$ Mean radius of rim in metres,
$A=$ Cross-sectional area of rim in m^{2},
$\rho=$ Density of rim material in $\mathrm{kg} / \mathrm{m}^{3}$,
$N=$ Speed of the flywheel in r.p.m.,
$\omega=$ Angular velocity of the flywheel in rad/s,

Fig. 16.17. Rim of a flywheel.
$v=$ Linear velocity at the mean radius in m / s

$$
=\omega . R=\pi D . N / 60 \text {, and }
$$

$\sigma=$ Tensile stress or hoop stress in $\mathrm{N} / \mathrm{m}^{2}$ due to the centrifugal force.
Consider a small element of the rim as shown shaded in Fig. 16.17. Let it subiends an angle to a the centre of the flywheel.

Volume of the small element

$$
=A \times R . \delta \theta
$$

\therefore Mass of the small element

$$
d m=\text { Density } \times \text { volume }=\rho \cdot A \cdot R . \delta \theta
$$

adcentrifugal force on the element, acting radially outwards,

$$
d F=d m \cdot \omega^{2} \cdot R=\rho \cdot A \cdot R^{2} \cdot \omega^{2} \cdot \delta \theta
$$

[^0]Vertical component of $d F$

$$
=d F \cdot \sin \theta=\rho \cdot A \cdot R^{2} \cdot \omega^{2} \cdot \delta \theta \cdot \sin \theta
$$

\therefore Total verical upward force tending to burst the rim acrosh the diameter $X Y$.

$$
\begin{aligned}
& =\rho \cdot A \cdot R^{2} \cdot \omega^{2} \int_{0}^{\pi} \sin \theta \cdot d \theta=\rho \cdot A \cdot R^{2} \cdot \omega^{2}\left[-\left.\cos \theta\right|_{1,} ^{\pi}\right. \\
& =2 \rho \cdot A \cdot R^{2} \cdot \omega^{2}
\end{aligned}
$$ stress or circumferential stress), and it is resisted by $2 P$, such that

Equating equations (i) and (ii),

$$
\text { 2.p.A. } R^{2} \cdot \omega^{2}=2 \sigma \cdot A
$$

or

$$
\sigma=\rho \cdot R^{2} \cdot \omega^{2}=\rho \cdot v^{2}
$$

$$
\begin{equation*}
\therefore \quad v=\sqrt{\frac{\sigma}{\rho}} \tag{iii}
\end{equation*}
$$

We know that mass of the rim,

$$
\begin{align*}
m & =\text { Volume } \times \text { density }=\pi D . A \cdot \rho \\
\therefore \quad A & =\frac{m}{\pi \cdot D \cdot \rho}
\end{align*}
$$

From equations (iii) and (iv), we may find the value of the mean radius and cross-sectional area of the rim.

Note: If the cross-section of the rim is a rectangular, then
where

$$
\begin{aligned}
A & =b \times t \\
b & =\text { Width of the rim, and } \\
t & =\text { Thickness of the rim. }
\end{aligned}
$$

Example 16.14. The turning moment diagram for a multi-cylinder engine has been dromn to a scale of 1 mm to $500 \mathrm{~N}-\mathrm{m}$ torque and 1 mm to 6° of crank displacement. The intercepted areas between output torque curve and mean resistance line taken in order from one end, in sq. mm are
$-30,+410,-280,+320,-330,+250,-360,+280,-260$ sq: mm , when the engine is running at 800 r.p.m.

The engine has a stroke of 300 mm and the flucluation of speed is not to exceed $\pm 2 \%$ of the mean speed. Determine a suitable diameter and cross-section of the flywheel rim for a limittis value of the sufe centrifugal stress of 7 MPa . The material density may be assumed as $7200 \mathrm{~kg} / \mathrm{m}$. The width of the rim is to be 5 times the thickness.

Solution. Given : $N=800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega=2 \pi \times 800 / 60=83.8 \mathrm{rad} / \mathrm{s} ; *$ Stroke $=300 \mathrm{~mm}$: $\sigma=7 \mathrm{MPa}=7 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; \rho=7200 \mathrm{~kg} / \mathrm{m}^{3}$

Since the fluctuation of speed is $\pm 2 \%$ of mean speed, therefore total fluctuation d speed,

$$
\omega_{1}-\omega_{2}=4 \% \omega=0.04 \omega
$$

[^1]
- fient of flum thation of speced.

$$
C_{\mathrm{S}}=\frac{\omega_{1}-\omega_{2}}{\omega}=0.04
$$

He Anw that centrifugal stress (σ).

$$
7 \times 10^{6}=p \cdot v^{2}=7200 v^{2} \text { or } v^{2}=7 \times 10^{6} 77200=972.2
$$

$$
\begin{array}{ll}
\therefore & v=31.2 \mathrm{n} / \mathrm{s} \\
\text { He know that } & v=\pi D . N / 60 \\
& D=v \times 60 / \pi N=31.2 \times 60 / \pi \times 800=0.745 \mathrm{~m} \text { Ans. }
\end{array}
$$

woserion of the flywheel rim
Let $\quad t=$ Thickness of the flywheel rim in metres. and

$$
\begin{equation*}
b=\text { Width of the flywheel rim in merres }=5 t \tag{Given}
\end{equation*}
$$

\therefore Cross-sectional area of flywheel rim,

$$
A=b . t=5 t \times t=5 r^{2}
$$

Finst of all. let us find the mass (m) of the flywheel rim. The urning moment diagram is , won in Fig 16.18.

Fig. 16.18
Since the turning moment scale is $1 \mathrm{~mm}=500 \mathrm{~N}-\mathrm{m}$ and crank angle scale is $1 \mathrm{~mm}=6^{\circ}$ 130 rad , therefore
$1 \mathrm{~mm}^{2}$ on the turning moment diagram

$$
=500 \times \pi / 30=52.37 \mathrm{~N}-\mathrm{m}
$$

Let the energy at $A=E$, then referring to Fig. 16.18,
Energy at $B=E-30$
... (Minimum energy)
Energy at $C=E-30+410=E+380$
Energy at $D=E+380-280=E+100$
Energy at $E=E+100+320=E+420$
... (Maximum energy)
Energy at $F=E+420-330=E+90$
Energy at $G=E+90+250=E+340$
Energy at $H=E+340-360=E-20$

- Theory of Machines

Energy at $K=E-20+280=E+260$
Energy at $L=E+260-260=E=$ Energy at A
We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Maximum energy }- \text { Minimum energy } \\
& =(E+420)-(E-30)=450 \mathrm{~mm}^{2} \\
& =450 \times 52.37=23566 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

We also know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
23566 & =m \cdot v^{2} \cdot C_{5}=m \times(31.2)^{2} \times 0.04=39 \mathrm{~m} \\
m & =23566 / 39=604 \mathrm{~kg}
\end{aligned}
$$

We know that mass of the flywheel rim (m),

$$
\begin{aligned}
604 & =\text { Volume } \times \text { density }=\pi \text { D.A. } \rho \\
& =\pi \times 0.745 \times 5 t^{2} \times 7200=84268 t^{2} \\
\therefore \quad t^{2} & =604 / 84268=0.00717 \mathrm{~m}^{2} \text { or } t=0.085 \mathrm{~m}=85 \mathrm{~mm} \text { Ans. } \\
\therefore \quad b & =5 t=5 \times 85=425 \mathrm{~mm} \text { Ans. }
\end{aligned}
$$

and
Example 16.15. A single cylinder double acting steam engine develops 150 kW at a meen speed of 80 r.p.m. The coefficient of fluctuation of energy is 0.1 and the fluctuation of speed is $\pm 2 \%$ of mean speed. If the mean diameter of the flywheel rim is 2 metre and the hub and spokes provide 5% of the rotational inertia of the flywheel, find the mass and cross-sectional area of the flywhed rim. Assume the density of the flywheel material (which is cast iron) as $7200 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution. Given : $P=150 \mathrm{~kW}=150 \times 10^{3} \mathrm{~W} ; N=80 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega=2 \pi \times 80 / 60=8.4 \mathrm{rads}$, $C_{\mathrm{E}}=0.1 ; D=2 \mathrm{~m}$ or $R=1 \mathrm{~m} ; \rho=7200 \mathrm{~kg} / \mathrm{m}^{3}$

Since the fluctuation of speed is $\pm 2 \%$ of mean speed, therefore total fluctuation of speed.

$$
\omega_{1}-\omega_{2}=4 \% \omega=0.04 \omega
$$

and coefficient of fluctuation of speed,

$$
C_{\mathrm{s}}=\frac{\omega_{1}-\omega_{2}}{\omega}=0.04
$$

Mass of the flywheel rim

Let

$$
\begin{aligned}
m & =\text { Mass of the flywheel rim in } \mathrm{kg}, \text { and } \\
I & =\text { Mass moment of inertia of the flywheel in } \mathrm{kg}-\mathrm{m}^{2} .
\end{aligned}
$$

We know that work done per cycle

$$
=P \times 60 / \mathrm{N}=150 \times 10^{3} \times 60 / 80=112.5 \times 10^{3} \mathrm{~N}-\mathrm{m}
$$

and maximum fluctuation of energy,

$$
\Delta E=\text { Work done } / \text { cycle } \times C_{\mathrm{E}}=112.5 \times 10^{3} \times 0.1=11250 \mathrm{~N}-\mathrm{m}
$$

We also know that maximum fluctuation of energy (ΔE),

$$
\begin{array}{rlrl}
& & 11250 & =l . \omega^{2} \cdot C_{\mathrm{S}}=I \times(8.4)^{2} \times 0.04=2.8224 I \\
\therefore & I & =11250 / 2.8224=3986 \mathrm{~kg}-\mathrm{m}^{2}
\end{array}
$$

Since the hub and spokes provide 5% of the rotational inertia of the flywheel, thereffri. mass moment of inertia of the flywheel rim ($I_{\text {rim }}$) will be 95% of the flywheel, i.e.

$$
I_{r i m}=0.95 I=0.95 \times 3986=3787 \mathrm{~kg}-\mathrm{m}^{2}
$$

We haw that the mass of the flywhecelimal area of nywhesi rim in m^{2}.

$$
\begin{aligned}
3787 & =2 \pi R \times A \times \rho=2 \pi \times 1 \times A \times 72(x)=45245 A \\
A & =3787 / 45245=0.084 \mathrm{~m}^{2} A \times
\end{aligned}
$$

Faille 16.16. A multi- vilinder repine $=0.084 \mathrm{~m}^{2}$ Ans.

 The spectis to be kep e within $\pm 1 \%$ of the $1921 .+197,-162$
 tenth is nice its thickness. The density suitable dimensions of a rectangular flywheel rim Wp. Assume that the rim contributes 92% of the flywheel is $72.50 \mathrm{~kg} / \mathrm{m}^{\prime}$ and its hoop stress is Solution. Given : $N=600$ rpm. or $\omega=2 \pi$
$1=0 \mathrm{MPa}=6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad 2 \mathrm{rad} / \mathrm{s} ; \rho=7250 \mathrm{~kg} / \mathrm{m}^{3}$;

Fig. 16.19
Since the fluctuation of speed is $\pm 1 \%$ of mean speed, therefore, total fluctuation of speed,

$$
\omega_{1}-\omega_{2}=2 \% \omega=0.02 \omega
$$

odecofficient of fluctuation of speed,

$$
C_{s}=\frac{\omega_{1}-\omega_{2}}{\omega}=0.02
$$

lament of inertia of the flywheel
Let

$$
l=\text { Moment of inertia of the flywheel in } \mathrm{kg}-\mathrm{m}^{2} .
$$

Th. The turning moment diagram is shown in Fig. 16.19. The turning moment scale is $1 \mathrm{~mm}=$
$N \cdot m$ and crank angle scale is $1 \mathrm{~mm}=3^{\circ}=\pi / 60$ rad, therefore,
$1 \mathrm{~mm}^{2}$ of turning moment diagram

$$
=250 \times \pi / 60=13.1 \mathrm{~N}-\mathrm{m}
$$

$$
\begin{aligned}
\quad \Delta E_{\text {rim }} & =0.95(\Delta E)=0.95 \times 11250=10687.5 \mathrm{~N} \cdot \mathrm{~m} \\
\therefore \quad \Delta E_{\text {rim }} & =m \cdot k^{2} \cdot \omega^{2} \cdot C_{S}=m(1)^{2} \times(8.4)^{2} \times 0.04=2.8224 \mathrm{~m} \\
m & =(\Delta E)_{\text {rim }} / 2.8224=10687.5 / 2.8224=3787 \mathrm{~kg}
\end{aligned}
$$

596 - Theory of Machines

Let the total energy at $A=E$. Therefore from Fig. 16.19, we find that
Energy at $B=E+160$
Encrgy at $C=E+160-172=E-12$
Energy at $D=E-12+168=E+156$
Energy at $E=E+156-191=E-35$
Energy at $F=E-35+197=E+162$
Energy at $G=E+162-162=E=$ Energy at A
We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Maximum energy }- \text { Minimum energy } \\
& =(E+162)-(E-35)=197 \mathrm{~mm}^{2} \\
& =197 \times 13.1=258 \mathrm{I} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

We also know that maximum fluctuation of energy (ΔE),

$$
\begin{array}{rlrl}
& & 2581 & =I . \omega^{2} . C_{S}=I \times(62.84)^{2} \times 0.02=79 I \\
\therefore & I & =2581 / 79=32.7 \mathrm{~kg}-\mathrm{m}^{2} \text { Ans. }
\end{array}
$$

Dimensions of the flywheel rim

Let
$t=$ Thickness of the flywheel rim in metres,
$b=$ Breadth of the flywhee! rim in metres $=2 t$
... Given
$D=$ Mean diameter of the flywheel in metres, and
$v=$ Peripheral velocity of the flywheel in m / s.
We know that hoop stress (σ),

$$
\begin{array}{lrl}
& 6 \times 10^{5} & =p . v^{2}=7250 v^{2} \text { or } v^{2}=6 \times 10^{6} / 7250=827.6 \\
& \quad v & =28.8 \mathrm{~m} / \mathrm{s} \\
\text { We know that } & v & =\pi D N / 60,
\end{array} \quad \text { or } D=v \times 60 / \pi N=28.8 \times 60 / \pi \times 600=0.91 \mathrm{~m} .
$$

Now. let us find the mass (m) of the flywheel rim. Since the rim contributes 92% of the flywheel effect, therefore maximum fluctuation of energy of rim,

$$
\Delta E_{\text {rim }}=0.92 \times \Delta E=0.92 \times 258 \mathrm{I}=2375 \mathrm{~N}-\mathrm{m}
$$

We know that maximum fluctuation of energy of $\operatorname{rim}\left(\Delta E_{\text {rimu }}\right)$,

$$
\begin{array}{rlrl}
& & 2375 & =m \cdot r^{2} \cdot C_{\mathrm{S}}=m \times(28.8)^{2} \times 0.02=16.6 m \\
\therefore & m & =2375 / 16.6=143 \mathrm{~kg}
\end{array}
$$

or
and

$$
t=0.0584 \mathrm{~m}=58.4 \mathrm{~mm} \text { Ans. }
$$

$$
b=2 t=116.8 \mathrm{~mm} \text { Ans. }
$$

Example 16.17. The furning moment diagram of a four stroke engime may be assumed ${ }^{\prime \prime}$ the suke of simplicity to be represented by four triangles in each stroke. The areas of these trimstit are as follon's:

$$
\begin{aligned}
& \text { Also } \quad m=\text { Volume } \times \text { density }=\pi D . A . p=\pi D . b . t . \rho \\
& \therefore \quad 143=\pi \times 0.92 \times 2 t \times t \times 7250=41914 r^{2} \\
& t^{2}=143 / 41914=0.0034 \mathrm{~m}^{2}
\end{aligned}
$$ aride $=\$ \times 10^{\circ} \mathrm{m}^{c}$, qued hetwicen 9.8 r.p.m. and 102 r.p.m. Also material criterion. given that densifin of firw heel moternal is $\$$ an ands of the flumed material is 7.5 MPa . The rim ratis manes the length of the other.

Fig. 16.20
The turning moment-crank angle diagram for a four stroke engine is shown in Fig. 16.20. treas below the zero line of pressure are taken as negative while the areas above the zero line of masere are taken as positive.
\therefore Net area

$$
\begin{aligned}
& =a_{3}-\left(a_{1}+a_{2}+a_{4}\right) \\
& =85 \times 10^{5}-\left(5 \times 10^{5}+21 \times 10^{-5}+8 \times 10^{-5}\right)=51 \times 10^{-5} \mathrm{~m}^{2}
\end{aligned}
$$

Since $1 \mathrm{~m}^{2}=14 \mathrm{MN}-\mathrm{m}=14 \times 10^{6} \mathrm{~N}-\mathrm{m}$ of work, therefore
Net work done per cycle

$$
\begin{equation*}
=51 \times 10^{-5} \times 14 \times 10^{6}=7140 \mathrm{~N}-\mathrm{m} \tag{i}
\end{equation*}
$$

We also know that work done per cycle
Fromequations $=T_{\text {mean }} \times 4 \pi \mathrm{~N}-\mathrm{m}$
From equations (i) and (ii),

$$
\begin{equation*}
T_{\text {mean }}=F G=7140 / 4 \pi=568 \mathrm{~N}-\mathrm{m} \tag{ii}
\end{equation*}
$$

Work done during expansion stroke

$$
\begin{equation*}
=a_{3} \times \text { Work scale }=85 \times 10^{-5} \times 14 \times 10^{6}=119(x) \mathrm{N}-\mathrm{m} \tag{iii}
\end{equation*}
$$

598 - Thenry of Machines

Also, work done during expmaion atroke

$$
=\frac{1}{2} \times B C \times A G=\frac{1}{2} \times \pi \times A C=1.571 A C
$$

From equalions (iii) and (iv).

$$
\begin{aligned}
A G & =11900 / 1.571=7575 \mathrm{~N} \cdot \mathrm{~m} \\
& =A F=A G-F G=7575-568=7(\times) 7 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

\therefore Excess Iorque
Now from similar triangles $A D E$ and $A B C$,

$$
\frac{D E}{B C}=\frac{A F}{A G} \quad \text { or } \quad D E=\frac{A F}{A G} \times B C=\frac{7(1) 7}{7575} \times \pi=2.9 \mathrm{rad}
$$

We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E & =\text { Area of } \triangle A D E=\frac{1}{2} \times D E \times A F \\
& =\frac{1}{2} \times 2.9 \times 7007=10160 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Moment of Inertia of the flywheel

Let

$$
I=\text { Moment of inertia of the flywheel in } \mathrm{kg}-\mathrm{m}^{2} \text {. }
$$

We know that mean speed during the cycle

$$
N=\frac{N_{1}+N_{2}}{2}=\frac{102+98}{2}=100 \text { r.p.m. }
$$

\therefore Corresponding angular mean speed,

$$
\omega=2 \pi N / 60=2 \pi \times 100 / 60=10.47 \mathrm{rad} / \mathrm{s}
$$

Size of flywheel

Let

$$
t=\text { Thickness of the flywheel rim in metres, }
$$

$b=$ Width of the flywheel rim in metres $=4 t$
$D=$ Mean diameter of the flywheel in metres, and
$v=$ Peripheral velocity of the flywheel in m / s.
We know that hoop stress (σ),

$$
\begin{aligned}
& 7.5 \times 10^{6}=\rho \cdot v^{2}=8150 v^{2} \\
& \therefore \quad v^{2}
\end{aligned} \quad=\frac{7.5 \times 10^{6}}{8150}=920 \text { or } v=30.3 \mathrm{~m} / \mathrm{s} .
$$

Ni us find the mass (m) of the flywheel rim. We know thas maximum fux tuatum of

4100

$$
\begin{aligned}
101(00 & =m \cdot v^{2} C_{s}=m \times(20.3)^{2} \times 0.04=36.72 \mathrm{~m} \\
m & =10 \mathrm{I}(\mathrm{~V}, 36.72=276.7 \mathrm{~kg} \\
m & =\text { Volume } \times \text { densily }=\pi D \times A \times p=\pi D \times b \times 1 \times \rho
\end{aligned}
$$

$$
\therefore
$$

$$
\begin{aligned}
276.7 & =\pi \times 5.786 \times 4 t \times 1 \times 8150=592655 r^{2} \\
r^{2} & =276.7 / 592655=4.67 \times 10^{-6} \text { or } t=0.0216 \mathrm{~m}=21.6 \mathrm{~mm} \text { Ank. } \\
b & =4 t=4 \times 21.6=86.4 \mathrm{~mm} \text { Ans. }
\end{aligned}
$$

Eumple 16.18. An otto cycle engire develops 50 kW at 150 r.p.m. with 75 explosions per
The thenpe of speed from the commencument to the end of power stroke must not exceed of moth on either side. Find the mean diameter of the flywithel and a suitable rim crossmaing width four times the depth so that the hoop stress does not exceed 4 MPa. Assume - Anthet stores $16 / 15$ times the energy stored by the rim and the work done during power New is 1.40 times the work done during the cycle. Density of rim material is $7200 \mathrm{~kg} / \mathrm{mr}^{3}$.

Solution. Given : $P=50 \mathrm{~kW}=50 \times 10^{3} \mathrm{~W} ; N=150 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega=2 \pi \times 150 / 60=15.71 \mathrm{rad} / \mathrm{s}$; , $n: \sigma=4 \mathrm{MPa}=4 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; \rho=7200 \mathrm{~kg} / \mathrm{m}^{3}$

First of all. iet us find the mean torque ($T_{\text {mean }}$) transmitted by the engine or flywheel. We avt that the power transnitted (P),

$$
\begin{aligned}
50 \times 10^{3} & =T_{\text {mean }} \times \omega=T_{\text {neean }} \times 15.71 \\
T_{\text {mean }} & =50 \times 10^{3} / 15.71=3182.7 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Since the explosions per minute are equal to $N / 2$, therefore, the engine is a four stroke cycle sue. The tuming moment diagram of a four stroke engine is shown in Fig. 16.21.

Fig. 16.21
We know that *work done per cycle

The work done per cycle for a four stroke engine is also given by
Work done per cycle $=\frac{P \times 60}{\text { Number of explosions } / \mathrm{min}}=\frac{P \times 60}{n}=\frac{50 \times 10^{3} \times 60}{75}=40000 \mathrm{~N} \cdot \mathrm{~m}$

600 - Theory of Machines

\therefore Workdone during power or working stroke

$$
\begin{aligned}
& =1.4 \times \text { work done per cycle } \\
& =1.4 \times 40000=56000 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

The workdone during power stroke is shown by a triangle $A B C$ in Fig. 16.20, in which balk $A C=\pi$ radians and height $B F=T_{m a r}$.
\therefore Work done during working stroke

$$
\begin{equation*}
=\frac{1}{2} \times \pi \times T_{\max }=1.571 T_{\operatorname{tax}} \tag{i}
\end{equation*}
$$

From equations (i) and (ii), we have

$$
T_{\max }=56000 / 1.57 \mathrm{I}=35646 \mathrm{~N}-\mathrm{m}
$$

We know that the excess torque,

$$
T_{\text {excess }}=B G=B F-F G=T_{\text {max }}-T_{\text {mean }}=35646-3182.7=32463.3 \mathrm{~N}-m
$$

Now, from similar triangles $B D E$ and $A B C$,

$$
\frac{D E}{A C}=\frac{B G}{B F} \quad \text { or } \quad D E=\frac{B G}{B F} \times A C=\frac{32463.3}{35646} \times \pi=0.9107 \pi
$$

We know that maximum fluctuation of energy,

$$
\begin{aligned}
\Delta E= & \text { Area of triangle } B D E=\frac{1}{2} \times D E \times B G \\
& =\frac{1}{2} \times 0.9107 \pi \times 32463.3=46445 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Mean diameter of the flywheel

Let

$$
\begin{aligned}
D & =\text { Mean diameter of the flywheel in metres, and } \\
v & =\text { Peripheral velocity of the flywheel in } \mathrm{m} / \mathrm{s} .
\end{aligned}
$$

We know that hoop stress (σ),

$$
\begin{aligned}
& & 4 \times 10^{6} & =0.1^{2}=7200 v^{2}
\end{aligned} \text { or } v^{2}=4 \times 10^{6} 77200=556 .
$$

Cross-sectional dimensions of the rim

Let
$t=$ Thickness of the rim in metres, and
$b=$ Width of the rim in metres $=4 t$
\therefore Cross-sectional area of the rim,

$$
A=b \times t=4 t \times t=4 t^{2}
$$

First of all, let us find the mass of the flywheel rim.
Let

$$
\begin{aligned}
m & =\text { Mass of the flywheel rim in } \mathrm{kg}, \text { and } \\
E & =\text { Total enerov of }
\end{aligned}
$$

$E=$ Total energy of the flywheel in N-m.
Since the fluctuation of speed is 0.5% of the mean speed on either side, therefore total
ion of speed, $N_{2}-N_{1}=1 \%$ of mean speed $=0.01 \mathrm{~N}$ and coefficient of fluctuation of speed,

$$
C_{\mathrm{s}}=\frac{N_{1}-N_{2}}{N}=0.01
$$ We know that the maximum fluctuation of energy (ΔE).

$$
\begin{aligned}
46445 & =E \times 2 C_{\mathrm{s}}=E \times 2 \times 0.01=0.02 E \\
E & =46445 / 0.02=2322 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\therefore
$$

Since the energy stored by the flywheel is $\frac{16}{15}$ times the energy stored by the rim, therefore, ergy of the rim.
\qquad

$$
E_{\text {rim }}=\frac{15}{16} E=\frac{15}{16} \times 232 \times 10^{3}=2177 \times 10^{3} \mathrm{~N}-\mathrm{m}
$$

We know that energy of the rim $\left(E_{\text {rin }}\right)$,

$$
\begin{aligned}
2177 \times 10^{3} & =\frac{1}{2} \times m \times v^{2}=m(23.58)^{2}=278 \mathrm{~m} \\
m & =2177 \times 10^{3} / 278=7831 \mathrm{~kg}
\end{aligned}
$$

\therefore
We also know that mass of the flywheel tim (m),

$$
\therefore
$$

$$
\begin{aligned}
7831 & =\pi D \times A \times \rho=\pi \times 3 \times 4 t^{2} \times 7200=271469 t^{2} \\
t^{2} & =7831 / 271469=0.0288 \text { or } t=0.17 \mathrm{~m}=170 \mathrm{~mm} \text { Ans. } \\
b & =4 t=4 \times 170=680 \mathrm{~mm} \text { Ans. }
\end{aligned}
$$

sind

16.12. Flywheel in Punching Press

We have discussed in Art. 16.8 that the function of a flywheel in an engine is to reduce the flucuations of speed, when the load on the crankshaft is conslant and the input torque varies during the cycle. The flywheel can also be used to perform the same function when the torque is constant and the load varies during the cycle. Such an application is found in punching press or in a rivetting machine. A punching press is shown diagrammatically in Fig. 16.22. The crank is driven by a motor which supplies conslant torque and the punch is at the position of the slider in a slider-crank mechanism. From Fig. 16.22, we see that the load acts only during the rolation of the crank from $\theta=\theta_{1}$ to $\theta=\theta_{2}$, when the actual punching takes place and the load is zero for the rest of the cycle. Unless a flywheel is used, the speed of the crankshaft will increase too much during the rotation of crank from $\theta=\theta_{2}$ to $\theta=2 \pi$ or $\theta=0$ and again from $\theta=0$ to $\theta=\theta_{1}$, because there is no load while input energy continues to be supplied. On the other hand, the drop in speed of the crankshaft is very large during the rotation of crank from

Fig. 16.22. Operation of flywheel in a punching press.
$\theta=\theta_{1} m 8=\theta_{2}$ due ∞ much mwre fond than the energ! supplied Thus the flywheel has to atwont exiess energy avaialte ane onge and has to make up the deficient energy at the obter mage to keep the Noctuations of speed within permisolite limits. This in done by chowning the suitable mornent of inertia of the flywheel.

Let E_{1} be the energy required for punching a thole. This energy is determined by the size of the hole punched. the thichness of the material and the physical properties of the material.

Let $d_{1}=$ Diameter of the hole punched.

$$
t_{1}=\text { Thickness of the plate, and }
$$

$\tau_{\psi}=$ Ulimate shear stress for the plate

Punching press and tywtheel. material.
\therefore Maximum shear force required for punching,

$$
F_{\mathrm{s}}=\text { Area sheared } \times \text { Ultimate shear stress }=\pi d_{1}, f_{1} \tau_{u}
$$

It is assumed that as the hole is punched, the shear force decreases uniformly from maximum value to zero.
\therefore Work done or energy required for punching a hole.

$$
E_{1}=\frac{1}{2} \times F_{\mathrm{s}} \times 1
$$

Assuming one punching operation per revolution, the energy supplied to the shaft per revolution should also be equal to E_{1}. The energy supplied by the motor to the crankshaft during actual puncting operation,

$$
E_{2}=E_{1}\left(\frac{\theta_{2}-\theta_{1}}{2 \pi}\right)
$$

\therefore Balance energy required for punching

$$
=E_{1}-E_{2}=E_{1}-E_{1}\left(\frac{\theta_{2}-\theta_{1}}{2 \pi}\right)=E_{1}\left(1-\frac{\theta_{2}-\theta_{1}}{2 \pi}\right)
$$

This energy is to be supplied by the flywheel by the decrease in its kinetic energy when its speed falls from maximum to minimum. Thus maximum fluctuation of energy,

$$
\Delta E=E_{1}-E_{2}=E_{1}\left(1-\frac{\theta_{2}-\theta_{1}}{2 \pi}\right)
$$

The values of θ_{1} and θ_{2} may be determined only if the crank radius (r), length of connecting rod (I) and the relative position of the job with respect to the crankshaft axis are known. In the absence of relevant data, we assume that

$$
\frac{\theta_{2}-\theta_{1}}{2 \pi}=\frac{t}{2 s}=\frac{t}{4 r}
$$

$$
s=\text { Stroke of the punch }=2 \times \text { Crank radius }=2 r \text {. }
$$

$B y^{\text {using }}$ the suitable relation for the maximum fluctuation of energy (ΔE) as discussed in the gricles, we can find the mass and size of the flywheel.
Guniple 16.19. A punching press is driven by a constant torque electric motor. The press is Inifi f flyhheel that rotates at maximum speed of 225 r.p.m. The radius of gyration of the pris $i 5.5 \mathrm{~m}$. The press punches 720 holes per hour; each punching operation lakes 2 second , inquir $\mathrm{kN}-\mathrm{m}$ of energy. Find the power of the motor and the minimum mass of the flywheel
$6 \times 10^{\mathrm{N}} \mathrm{N} \mathrm{m} ; N_{2}=200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
priff The motor
We know that the total energy required per second

$$
\begin{aligned}
& =\text { Energy required } / \text { hole } \times \text { No. of holes } / \mathrm{s} \\
& =15 \times 10^{3} \times 720 / 3600=3000 \mathrm{~N}-\mathrm{m} / \mathrm{s} \\
& =3000 \mathrm{~W}=3 \mathrm{~kW} \text { Ans. }
\end{aligned}
$$

$$
\therefore \text { Power of the motor }=3000 \mathrm{~W}=3 \mathrm{~kW} \text { Ans. }
$$

wiminim mass of the flywheel
Let
$m=$ Minimum mass of the flywheel.
Since each punching operation takes 2 seconds, therefore energy supplied by the motor in 2

$$
E_{2}=3000 \times 2=6000 \mathrm{~N}-\mathrm{m}
$$

.. Energy to be supplied by the flywheel during punching or maximum fluctuation of energy,

$$
\Delta E=E_{1}-E_{2}=15 \times 10^{3}-6000=9000 \mathrm{~N}-\mathrm{m}
$$

Mean speed of the flywheel,

$$
N=\frac{N_{1}+N_{2}}{2}=\frac{225+200}{2}=212.5 \text { r.p. } \mathrm{m}
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
9000 & =\frac{\pi^{2}}{900} \times m \cdot k^{2} \cdot N\left(N_{1}-N_{2}\right) \\
& =\frac{\pi^{2}}{900} \times m \times(0.5)^{2} \times 212.5 \times(225-200)=14.565 \mathrm{~m} \\
\therefore \quad m & =9000 / 14.565=618 \mathrm{~kg} \text { Ans. }
\end{aligned}
$$

Example 16.20. A machine punching 38 mm holes in 32 mm thick plate requires $7 \mathrm{~N}-\mathrm{m}$ of netpoper sg. nun of sheared area, and punches one hole in every 10 seconds. Calculate the power the motor required. The mean speed of the flywheel is 25 metres per second. The punch has a 1 mate of 100 mm .
Find the mass of the flywheel required, if the total fluctuation of speed is not to exceed 3% mitan speed. Assume that the motor supplies energy to the machine at uniform rate.
Solution. Given : $d=38 \mathrm{~mm} ; t=32 \mathrm{~mm} ; E_{1}=7 \mathrm{~N}-\mathrm{m}^{2} / \mathrm{mm}^{2}$ of sheared area; $v=25 \mathrm{~m} / \mathrm{s}$;

Power of the motor required

We know that sheared area.

$$
A=\pi d . t=\pi \times 38 \times 32=3820 \mathrm{~mm}^{2}
$$

Since the energy required to punch a hole is $7 \mathrm{~N}-\mathrm{m} / \mathrm{mm}^{2}$ of sheared area, theref fore link

$$
E_{1}=7 \times 3820=26740 \mathrm{~N} \cdot \mathrm{~m}
$$

Also the time required to punch a hole is 10 second, therefore energy required for punctrmen work per second

$$
=26740 / 10=2674 \mathrm{~N}-\mathrm{m} / \mathrm{s}
$$

\therefore Power of the motor required

$=2674 \mathrm{~W}=2.674 \mathrm{~kW}$ Ans.

Mass of the fywheel required

Let

$$
m=\text { Mass of the flywheel in } \mathrm{kg} .
$$

Since the stroke of the punch is 100 mm and it punches one hole in every 10 seconds, there. fore the time required to punch a hole in a 32 mm thick plate

$$
=\frac{10}{2 \times 100} \times 32=1.6 \mathrm{~s}
$$

\therefore Energy supplied by the motor in 1.6 seconds,

$$
E_{2}=2674 \times 1.6=4278 \mathrm{~N}-\mathrm{m}
$$

Energy to be supplied by the flywheel during punching or the maximum fluctuation of energy.
Coefficient of fluctuation of speed,

$$
C_{\mathrm{S}}=\frac{v_{1}-v_{2}}{v}=0.03
$$

We know that maximum fluctuation of energy (ΔE),

$$
n=22462 / 18.75=1198 \mathrm{~kg} \text { Ans. }
$$

Note : The value of maximum fluctuation of energy (ΔE) may also be determined as discussed in Art. 16.12. Tte know that energy reguired for one punch,

$$
E_{1}=26740 \mathrm{~N}-\mathrm{m}
$$

and

$$
\begin{aligned}
\Delta E & =\left(1-\frac{\theta_{2}-\theta_{1}}{2 \pi}\right)=E_{1}\left(1-\frac{t}{2 s}\right) \quad \ldots . .\left(\because \frac{\theta_{2}-\theta_{1}}{2 \pi}=\frac{1}{2 s}\right) \\
& =26740\left[1-\frac{32}{2 \times 100}\right]=22482 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Example 16.21. A riveting machine is driven by a constant torque 3 kW motor. The moring parts inchuding the flywheel are equivalent to 150 kg at 0.6 m radius. One riveting operation takes 1 second and ahsorbs $10000 \mathrm{~N}-\mathrm{m}$ of energy. The speed of the flywheel is $300 \mathrm{rp.m}$. before riveting. Find the speed immediately after riveting. How many rivets can be closed per minute?

Solution. Given : $P=3 \mathrm{~kW} ; m=150 \mathrm{~kg} ; k=0.6 \mathrm{~m} ; N_{\mathrm{l}}=300$ r.p.m. or $\omega_{1}=2 \pi \times 300 / 60=31.42 \mathrm{rad} / \mathrm{s}$

Chater 16 : Turning Moment Diagrams and Flywheel - 605

dof fin flyhel immediately after riveting
$\omega_{2}=$ Angular speed of the flywhect immediately after riveting.
We know that energy supplied by the motor,

$$
E_{2}=3 \mathrm{~kW}=3000 \mathrm{~W}=3000 \mathrm{~N}-\mathrm{m} / \mathrm{s} \quad(\because 1 \mathrm{~W}=1 \mathrm{~N}-\mathrm{m} / \mathrm{a})
$$

But energy absorbed during one riveting operation which takes I second,

$$
E_{1}=10000 \mathrm{~N}-\mathrm{m}
$$

\therefore Energy to be supplied by the flywheel for each riveting operation per second or the aninulif fluctuation of energy.

$$
\Delta E=E_{1}-E_{2}=10000-3000=7000 \mathrm{~N}-\mathrm{m}
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
7000= & \frac{1}{2} \times m \cdot k^{2}\left[\left(\omega_{1}\right)^{2}-\left(\omega_{2}\right)^{2}\right]=\frac{1}{2} \times 150 \times(0.6)^{2} \times\left[(31.42)^{2}-\left(\omega_{2}\right)^{2}\right] \\
& =27\left[987.2-\left(\omega_{2}\right)^{2}\right] \\
\left(\omega_{2}\right)^{2} & =987.2-7000 / 27=728 \text { or } \omega_{2}=26.98 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Corresponding speed in r.p.m.,

$$
N_{2}=26.98 \times 60 / 2 \pi=257.6 \text { r.p.m. Ans. }
$$

Kumber of rivets that can be closed per minute

Since the energy absorbed by each riveting operation which takes 1 second is $10000 \mathrm{~N}-\mathrm{m}$, derefore, number of rivets that can be closed per minute,

$$
=\frac{E_{2}}{E_{1}} \times 60=\frac{3000}{10000} \times 60=18 \text { rivets Ans. }
$$

Example 16.22. A punching press is required to punch 40 mm diameter holes in a plate of 15 mam thickness at the rate of 30 holes per minute. It requires $6 \mathrm{~N}-\mathrm{m}$ of energy per mm^{2} of sheared area If the punching takes $1 / 10$ of a second and the r.p.m. of the flywheel varies from 160 to 140 , deprmine the mass of the flywheel having radius of gyration of I metre.

Solution. Given: $d=40 \mathrm{~mm} ; t=15 \mathrm{~mm}$; No. of holes $=30$ per min.; Energy required $=6 \mathrm{~N} \cdot \mathrm{~m}^{2} \mathrm{~mm}^{2} ;$ Time $=1 / 10 \mathrm{~s}=0.1 \mathrm{~s} ; N_{1}=160$ r.p.m.; $N_{2}=140$ r.p.m.; $k=1 \mathrm{~m}$

We know that sheared area per hole

$$
=\pi d . t=\pi \times 40 \times 15=1885 \mathrm{~mm}^{2}
$$

\therefore Energy required to punch a hole,

$$
E_{1}=6 \times 1885=11310 \mathrm{~N}-\mathrm{m}
$$

Ind energy required for punching work per second

$$
\begin{aligned}
& =\text { Energy required per hole } \times \text { No. of holes per second } \\
& =11310 \times 30 / 60=5655 \mathrm{~N}-\mathrm{m} / \mathrm{s}
\end{aligned}
$$

Since the punching takes $1 / 10$ of a second, therefore, energy supplied by the motor in $1 / 10$

$$
E_{2}=5655 \times 1 / 10=565.5 \mathrm{~N}-\mathrm{m}
$$

\therefore Energy to be supplied by the flywheel during punching a hole or maximum fluctuation of : of the flywheel,

$$
\Delta E=E_{1}-E_{2}=11310-565.5=10744.5 \mathrm{~N}-\mathrm{m}
$$

Mean speed of the Mywhect.

$$
N=\frac{N_{1}+N_{2}}{2}=\frac{160+140}{2}=150 \text { r.p.m. }
$$

We know that maximum fluctuation of energy (ΔE),

$$
\begin{aligned}
10744.5 & =\frac{\pi^{2}}{900} \times m . k^{2} N\left(N_{1}-N_{2}\right) \\
& =0.011 \times m \times 1^{2} \times 150(160-140)=33 m \\
\therefore \quad m & =10744.5 / 33=327 \mathrm{~kg} \text { Ans. }
\end{aligned}
$$

Example 16.23. A punching machine makes 25 working strokes per minute and is capable of punching 25 mm diameter holes in 18 mm thick steel plates having an ultimate shear strenyth 30 s MPa. The punching operation takes place during $/ / 10$ th of a revolution of the crankshaft.

Estimate the power needed for the driving motor, assuming a mechanical efficiency of gs percent. Determine suitable dimensions for the rim cross-section of the flywheel, having width equal to twice thickness. The flywheel is to revolve at 9 times the speed of the crankshaft. The permissible coefficient of fluctuation of speed is 0.1 .

The flywheel is to be made of cast iron having a working stress (tensile) of 6 MPa and densithy of $7250 \mathrm{~kg} / \mathrm{m}^{3}$. The diameter of the flywheel must not exceed 1.4 m owing to space restrictions. The hub and the spokes may be assumed to provide 5% of the rotational inertia of the wheel.

Solution. Given : $n=25 ; d_{I}=25 \mathrm{~mm}=0.025 \mathrm{~m} ; t_{l}=18 \mathrm{~mm}=0.018 \mathrm{~m} ; \tau_{u}=300 \mathrm{MR}$ $=300 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; \eta_{m}=95 \%=0.95 ; C_{\mathrm{S}}=0.1 ; \sigma=6 \mathrm{MPa}=6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; \rho=7250 \mathrm{~kg} \mathrm{~m}^{3} ;$ $D=1.4 \mathrm{~m}$ or $R=0.7 \mathrm{~m}$

Power needed for the driving motor

We know that the area of plate sheared;

$$
A_{\mathrm{S}}=\pi d_{1} \times t_{\mathrm{I}}=\pi \times 0.025 \times 0.018=1414 \times 10^{-6} \mathrm{~m}^{2}
$$

\therefore Maximum shearing force required for punching,

$$
F_{\mathrm{S}}=A_{S} \times \tau_{u}=1414 \times 10^{-6} \times 300 \times 10^{6}=424200 \mathrm{~N}
$$

and energy required per stroke

$$
\begin{aligned}
& =\text { Average shear force } \times \text { Thickness of plate } \\
& =\frac{1}{2} \times F_{\mathrm{S}} \times t_{1}=\frac{1}{2} \times 424200 \times 0.018=3817.8 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

\therefore Energy required per min

$$
\begin{aligned}
& =\text { Energy } / \text { stroke } \times \text { No. of working strokes } / \mathrm{min} \\
& =3817.8 \times 25=95450 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

-We know that the power needed for the driving motor

$$
=\frac{\text { Energy required per min }}{60 \times \eta_{m}}=\frac{95450}{60 \times 0.95}=1675 \mathrm{~W}=1.675 \mathrm{~kW} \text { ans. }
$$

Dimensions for the rim cross-section

Let

$$
\begin{aligned}
t & =\text { Thickness of rim in metres, and } \\
b & =\text { Width of rim in metres }=2 t
\end{aligned}
$$

\therefore Cross-sectional area of rim,

$$
A=b \times t=2 t \times t=2 t^{2}
$$

since the punching operation takes place (i.e. energy is consumed) during $/ 1 / 10$ h of a the crankshaft, therefore during $9 / 10$ th of the revolution of a crankstaft, the energy forlued in the flywieel.

$$
\begin{aligned}
\Delta E & =\frac{9}{10} \times \text { Energy/stroke }=\frac{9}{10} \times 3817.8=3436 \mathrm{~N}-\mathrm{m} \\
m & =\text { Mass of the flywheel in } \mathrm{kg} .
\end{aligned}
$$

Let
Since the lub and the spokes provide 5% of the rotational inertia of the wheel, therefore the mfluctuation of energy provided by the flywheel by the rim will be 95%
\therefore Maximum fluctuation of energy provided by the rim,

$$
\Delta E_{n i m}=0.95 \times \Delta E=0.95 \times 3436=3264 \mathrm{~N}-\mathrm{m}
$$

Since the flywheel is to revolve at 9 times the speed of the crankshaft and there are 25 worknos srokes per minute, thereforc, mean speed of the flywheel,

$$
N=9 \times 25=225 \text { r.p.m. }
$$

$$
\omega=2 \pi \times 225 / 60=23.56 \mathrm{rad} / \mathrm{s}
$$

We know that maximum fluctuation of energy ($\Delta E_{\text {rim }}$),

$$
\begin{aligned}
3264 & =m \cdot R^{2} \cdot \omega^{2} \cdot C_{\mathrm{S}}=m \times(0.7)^{2} \times(23.56)^{2} \times 0.1=27.2 m \\
m & =3264 / 27.2=120 \mathrm{~kg}
\end{aligned}
$$

We also know that mass of the flywheel (m),

$$
\begin{array}{rlrl}
120 & =\pi D \times A \times \rho & =\pi \times 1.4 \times 2 t^{2} \times 7250=63782 t^{2} \\
\therefore \quad t^{2} & =120 / 63782=0.00188 \text { or } t=0.044 \mathrm{~m}=44 \mathrm{~mm} \text { Ans. } \\
\quad b & =2 t=2 \times 44=88 \mathrm{~mm} \text { Ans. }
\end{array}
$$

1

EXERCISES

1. An engine flywheel has a mass of 6.5 tonnes and the radius of gyration'is 2 m . If the maximum and minimum speeds are 120 r. p. m. and 118 r. p. m. respectively, find maximurn fluctuation of energy.
[Ans. $67.875 \mathrm{kN}-\mathrm{m}$]
2. A verlical double acting steam engine develops 75 kW al 250 r.p.m. The maximum fluctuation of energy is 30 per cent of the work done per stroke. The maximum and minimum speeds are not to vary more than I per cent on either side of the mean speed. Find the mass of the flywheel required, if the radius of gyration is 0.6 m .
[Ans. 547 kg]
3. In a turning moment diagram, the areas above and below the mean torque line taken in order are 4400 , 1150, 1300 and $4550 \mathrm{~mm}^{2}$ respectively. The scales of the tuming moment diagram are:
Turning moment, $1 \mathrm{~mm}=100 \mathrm{~N}-\mathrm{m}$; Crank angle, $1 \mathrm{~mm}=1^{\circ}$
Find the mass of the flywheel required to keep the speed between 297 and 303 r.p.m., if the radius of gyration is 0.525 m .
[Ans. 417 kg]
4. The turning moment diagram for a multicylinder engine has been drawn to a scate of $1 \mathrm{~mm}=$ $4500 \mathrm{~N}-\mathrm{m}$ vertically and $1 \mathrm{~mm}=2.4^{\circ}$ horizontally. The intercepted areas between output torque curve and mean resistance line taken in order from one end are $342,23,245,303,115,232,227,164 \mathrm{~mm}^{2}$, when the engine is running at 150 r.p.m. If the mass of the flywheel is 1000 kg and the total fluctuation of speed does not exceed 3% of the mean speed, find the minimum value of the radius of gyration.
[Ans. 1.034 m]

5. Balancing of a Singie Rotating Mass By Two Masses Rotating in Differen Planes.
6. Balancing of Several Masses Rotating in the Same Plane.
7. Balancing of Several Masses Rotating in Different Planes.

Balancing of Rotating Masses

21.1. Introduction

The high speed of engines and other machines is a common phenomenon now-a-days. It is, therefore, very essential that all the rotating and reciprocating parts should be completely balanced as far as possible. If these parts are not properly balanced, the dynamic forces are set up. These forces not only increase the loads on bearings and stresses in the various members, but also produce unpleasant and even dangerous vibrations. In this chapter we shall discuss the balancing of unbalanced forces caused by rotating masses, in order to minimise pressure on the main bearings when an engine is running.

21.2. Balancing of Rotating Masses

We have already discussed, that whenever a certain mass is attached to a rotating shaft, it exerts some centrifugal force, whose effect is to bend the shaft and to produce vibrations in it. In order to prevent the effect of centrifugal force, another mass is attached to the opposite side of the shaft, at such a position so as to balance the effect of the centrifugal force of the first mass. This is done in such a
way that the centrifugal force of both the masses are made to be equal and opposite. The proce the councract the effect of the centrifugal force of the firy providing the second mass in order to counteract the chet one centifug is called balancing of rotating masses.

The following cases are important from the subject point of view:

1. Balancing of a single rotating mass by a single mass rotating in the same plane.
2. Balancing of a single rotating mass by two masses rotating in different planes.
3. Balancing of different masses rotating in the same plane.
4. Balancing of different masses rotating in different planes.

We shall now discuss these cases, in detail, in the following pages.

21.3. Balancing of a Single Rotating Mass By a Single Mass Rotating h
 the Same Plane
 Consider a disturbing mass m, attached to a shaft rotating at $\omega \mathrm{rad} / \mathrm{s}$ as shown in Fige 21:

 Let r_{1} be the radius of rotation of the mass m_{1} (i.e. distance between the axis of rotation of the she and the centre of gravity of the mass m_{1}).We know that the centrifugal force exerted by the mass m_{1} on the shaft,

$$
\begin{equation*}
F_{\mathrm{Cl}}=m_{1} \cdot \omega^{2} \cdot r_{1} \tag{i}
\end{equation*}
$$

This centrifugal force acts radially outwards and thus produces bending moment on one shaft. In order to counteract the effect of this force, a balancing mass $\left(m_{2}\right)$ may be attached in the same plane of rotation as that of disturbing mass $\left(m_{1}\right)$ such that the centrifugal forces due to dr two masses are equal and opposite.

Fig. 21.1. Balancing of a single rotating mass by a single mass rotating in the same plane. Let $\quad r_{2}=$ Radius of rotation of the balancing mass m_{2} (i.e. distance between the axis of rotation of the shaft and the centre of gravity of mass m_{2}).
\therefore Centrifugal force due to mass m_{2},

$$
F_{C 2}=m_{2} \cdot \omega^{2} \cdot r_{2}
$$

Equating equations (i) and (ii),

$$
m_{1} \cdot \omega^{2} \cdot r_{1}=m_{2} \cdot \omega^{2} \cdot r_{2} \quad \text { or } \quad m_{1} \cdot r_{1}=m_{2} \cdot r_{2}
$$

Notes: 1. The product m_{2}, r_{2} may be split up in any convenient way. But the radius of rotation of th balancing mass $\left(m_{2}\right)$ is generally made large in order to reduce the balancing mass m_{2}.
2. The centrifugal forces are proportional to the product of the mass and radius of futan respective masses, because ω^{2} is same for each mass.

21.4. Balancing of a Single Rotating Mass By Two Masses Rotating in Different Planes

We have discussed in the previous article that by introducing a single balancing mass in the same plane of rotation as that of disturbing mass, the centrifugal forces are balanced. In other words, the two forces are equal in magnitude and opposite in direction. But this type of arrangement for balancing gives rise to a couple which tends to rock the shaft in its bearings. Therefore in order to put the system in complete balance, two balancing masses are placed in two different planes, paraliel to the plane of rotation of the disturbing mass, in such a way that they satisfy the following two conditions of equilibrium.

1. The net dynamic force acting on the shaft is equal to zero. This requires that the line of action of three centrifugal forces must be the same. In other words, the centre of the masses of the system must lie on the axis of rotation. This is the condition for static balancing.
2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In other words, the algebraic sum of the moments about any point in the plane must be zero.
The conditions (1) and (2) together give dynamic balancing. The following two possibilities may arise while attaching the two balancing masses:
3. The plane of the disturbing mass may be in between the planes of the two balancing masses, and
4. The plane of the disturbing mass may lie on the left or right of the two planes containing the balancing masses.
We shall now discuss both the above cases one by one.

The picture shows a diesel engine. All diesel, petrol and steam engines have reciprocating and rotating masses inside them which need to be balanced.

1. When the plane of the disturbing mass lies in between the planes of the two balancing masses

Consider a disturbing mass m lying in a plane A to be balanced by two rotating masses m_{1} and m_{2} lying in two different planes L and M as shown in Fig. 21.2. Let r, r_{1} and r_{2} be the radii of rotation of the masses in planes A, L and M respectively.

836 - The wry of Machines Let $\quad \begin{aligned} & I_{1}=\text { Distance triween the planes } A \text { and } M \text {, and } \\ & I_{2}=\text { Distance between the }\end{aligned}$ $I_{2}=$ Distance between the planes L and M.
$1=$ Distance

Fig. 21.2 Balancing of a single rotating mass by two rotating masses in different planes when the plane of single rotating mass lies in the mass m in the A,
We know that the centrifugal force exerted by the mass m in the A,

Similarly, the centrifugal force exerted by the mass m_{1} in the plane L,

$$
F_{C 1}=m_{1} \cdot \omega^{2} \cdot r_{1}
$$

and. the centrifugal force exerted by the mass m_{2} in the plane M,

$$
F_{\mathrm{C} 2}=m_{2} \cdot \omega^{2} \cdot r_{2}
$$

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing masses, therefore

$$
\begin{equation*}
F_{\mathrm{C}}=F_{\mathrm{C} 1}+F_{\mathrm{C} 2} \quad \text { or } \quad m \cdot \omega^{2} \cdot r=m_{1} \cdot \omega^{2} \cdot r_{1}+m_{2} \cdot \omega^{2} \cdot r_{2} \tag{i}
\end{equation*}
$$

$\therefore \quad m_{1} \cdot r=m_{1} \cdot r_{1}+m_{2} \cdot r_{2}$
Now in order to find the magnitude of balancing force in the plane L (or the dynamic force at the bearing Q of a shaft), take moments about P which is the point of intersection of the plane M and the axis of rotation. Therefore

$$
\begin{align*}
& F_{\mathrm{Cl}} \times l=F_{\mathrm{C}} \times l_{2} \quad \text { or } \quad m_{1} \cdot \omega^{2} \cdot r_{1} \times l=m \cdot \omega^{2} \cdot r \times l_{2} \\
& m_{1} \cdot r_{1} \cdot l=m \cdot r \cdot l_{2} \quad \text { or } \quad m_{1} \cdot r_{1}=m \cdot r \times \frac{l}{l} \tag{}
\end{align*}
$$

Similarly, in order to find the balancing force in plane M (or the dynamic force at the bearing P of a shaft, take moments about Q which is the point of intersection of the plane L and the axis of rotation. Therefore

$$
\begin{aligned}
& F_{\mathrm{C} 2} \times l=F_{\mathrm{C}} \times l_{1} \quad \text { or } \quad m_{2} \cdot \omega^{2} \cdot r_{2} \times l=m \cdot \omega^{2} \cdot r \times l_{1} \\
\therefore \quad & m_{2} \cdot r_{2} \cdot l=m \cdot r \cdot l_{1} \quad \text { or } \quad m_{2} \cdot r_{2}=m \cdot r \times \frac{l_{1}}{l}
\end{aligned}
$$

it mily be nuled that equation (i) representa the condilion fort slatic halance. tout in order to dy ${ }^{\text {nitulich }}$ halance, equations (ii) or (iii) muat also he whtisfied
fihen the plante of the divturbing mass lies on one end of the planes of the balaming t parses

Fig. 21.3. Balancing of a single rotating mass by two rotating masses in different planes, when the *

In this case, the mass m lies in the plane A and the balancing masses lie in the planes L and M_{1} as shown in Fig. 21.3. As discussed above, the following conditions must be satisfied in order balance the system, i.e.

$$
\begin{align*}
& F_{C}+F_{\mathrm{C} 2}=F_{\mathrm{C} 1} \quad \text { or } \quad m \cdot \omega^{2} \cdot r+m_{2} \cdot \omega^{2} \cdot r_{2}=m_{1} \cdot \omega^{2} \cdot r_{1} \\
\therefore & m \cdot r+m_{2} \cdot r_{2}=m_{1} \cdot r_{1} \tag{iv}
\end{align*}
$$

Now, to find the balancing force in the plane L (or the dynamic force at the bearing Q of a shafi), take moments about P which is the point of intersection of the plane M and the axis of rolation. Therefore

$$
\begin{align*}
& F_{\mathrm{Cl}} \times l=F_{\mathrm{C}} \times l_{2} \text { or } \quad m_{1} \cdot \omega^{2} \cdot r_{1} \times l=m \cdot \omega^{2} \cdot r \times l_{2} \\
\therefore \quad & m_{1} \cdot r_{1} \cdot l=m \cdot r \cdot l_{2} \text { or } \quad m_{1} \cdot r_{1}=m \cdot r \times \frac{l_{2}}{l} \tag{v}
\end{align*}
$$

. . . [Same as equation (ï̈)]
Similarly, to find the balancing force in the plane M (or the dynamic force at the bearing P of a shaft), take moments about Q which is the point of intersection of the plane L and the axis of mataion. Therefore

$$
\begin{align*}
& F_{\mathrm{C} 2} \times l=F_{\mathrm{C}} \times l_{1} \text { or } m_{2} \cdot \omega^{2} \cdot r_{2} \times l=m \cdot \omega^{2} \cdot r \times l_{1} \\
& m_{2} \cdot r_{2} \cdot l=m \cdot r \cdot l_{1} \text { or } \quad m_{2} \cdot r_{2}=m \cdot r \times \frac{l_{1}}{l} \tag{vi}
\end{align*}
$$

... [Same as equation (iii)]

21.5. Balancing of Several Masses Rotating in the Same Plane

Consider any number of masses (say four) of magnitude m_{1}, m_{2}, m_{3} and m_{4} at distances of r_{1}, r_{2}, r_{3} and r_{4} from the axis of the rotating shaft. Let $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} be the angles of these masses with the horizontal line $O X$, as shown in Fig. 21.4 (a). Let these masses rotate about an axis through O and perpendicular to the plane of paper, with a constant angular velocity of $\omega \mathrm{rad} / \mathrm{s}$.

The magnalinte ami proitum of the halancing masa may be found cuut analylically, prophically an dimuaved trelow

Fig. 21.4. Balancing of several masses rotating in the same plane.

1. Analytical method

The magnitude and direction of the balancing mass may be obtained, analytically. an discussed below:

1. First of all. find out the centrifugal force* (or the product of the mass and its radius of rotation) exerted by each mass on the rotating shaft.

* Since ω^{2} is same for each mass, therefore the magnitude of the centrifugal force for each mass is propar-
tional to the product of the respective mass and its radius of rotation. tional to the product of the respective mass and its radius of rotation.

2. Restre the centrifugal forces hrriformally and verically and find theis mum, he IH and IV. We know that
sum of horizontal components of the centrifugal forces.

$$
\Sigma H=m_{1} \cdot r_{1} \cos \theta_{1}+m_{3} \cdot r_{2} \cos \theta_{2}+\ldots \ldots .
$$

damm of vertical compronents of the centrifugal forces.
3. Magnitude of the resultant centrifugal force

$$
F_{\mathrm{C}}=\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}}
$$

4. If θ is the angle, which the resultant force makes with the horizontal, then

$$
\tan \theta=\Sigma V / \Sigma H
$$

5. The balancing force is then equal to the resultant force, but in opposiff direction.
6. Now find out the magnitude of the balancing mass, such that

$$
\begin{aligned}
F_{\mathrm{C}} & =m \cdot r \\
m & =\text { Balancing mass, and } \\
r & =\text { Its radius of rotation. }
\end{aligned}
$$

where

2 Graphical method

The magnitude and position of the balancing mass may also be obtained graphically as discussed below :

1. First of all, draw the space diagram with the positions of the several masses, as shown in Fig. 21.4 (a).
2. Find out the centrifugal force (or product of the mass and radius of rotation) exerted by each mass on the rotating shaft.
3. Now draw the vector diagram with the obtained centrifugal forces (or the product of the masses and their radii of rotation), such that $a b$ represents the centrifugal force exerted by the mass m_{1} (or m_{1}, r_{1}) in magnitude and direction to some suitable scale. Similarly, draw $b c, c d$ and $d e$ to represent centrifugal forces of other masses m_{2}, m_{3} and m_{4} (or $m_{2} r_{2}$ $m_{3} \cdot r_{3}$ and $m_{4} \cdot r_{4}$).
4. Now, as per polygon law of forces, the closing side ae represents the resultant force in magnitude and direction, as shown in Fig. 21.4 (b).
5. The balancing force is, then, equal to the resultant force, but in opposite direction.
6. Now find out the magnitude of the balancing mass (m) at a given radius of rotation (r), such that

0

$$
\begin{aligned}
m \cdot \omega^{2} \cdot r & =\text { Resultant centrifugal force } \\
m \cdot r & =\text { Resultant of } m_{1}, r_{1}, m_{2}, r_{2}, m_{3} \cdot r_{3} \text { and } m_{4} \cdot r_{4}
\end{aligned}
$$

Example 21.1. Four masses m_{1}, m_{2}, m_{3} and m_{4} are $200 \mathrm{~kg} .300 \mathrm{~kg}, 240 \mathrm{~kg}$ and 260 ke respectively. The corresponding radii of rotation are $0.2 \mathrm{~m}, 0.15 \mathrm{~m}, 0.25 \mathrm{~m}$ and 0.3 m nespectively of the angles between successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Find the position and mugnimede of the balance matween successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Solution. Given : $m_{1}=200 \mathrm{~kg} ; m_{2}=300 \mathrm{~kg}: m_{3}=240 \mathrm{~kg} ; \mathrm{m}_{4}=260 \mathrm{~kg}: r_{1}=0.2 \mathrm{~m} ;$
${ }_{2}=0.15 \mathrm{~m}_{;} ; r_{3}=0.25 \mathrm{~m} ; r_{4}=0.3 \mathrm{~m} ; \theta_{1}=0^{\circ} ; \theta_{2}=45^{\circ} ; \theta_{3}=45^{\circ}+75^{\circ}=120^{\circ}: \theta_{4}=45^{\circ}+75^{\circ}$ $=255^{\circ} ; r=0.2 \mathrm{~m}$

Im $\quad m=$ Halainint mocs, and

Sime the nagmoule of iemortugal forces are prymutionial to the mialise of rach mass mind its radiox. theretive

$$
\begin{aligned}
& m \cdot q=. a x), 0.2=+11 y_{y} m \\
& m \cdot n=4(40) \times 0.15=4.545 \cdot m \\
& m \cdot n=2+10 \times 0.25=0 \times 1 \mathrm{ks}-\mathrm{m} \\
& m_{4} \cdot r_{4}=3(x) \times\left(1.3=7: h_{4}-m\right.
\end{aligned}
$$

The publem max. mow, te whet either amulytianly or graphicath. Aut we shall solve the problew by thith the methumes one by one.

Hys. 21.5

The space diagram is shown in Fig. 21.5.
Revoluing $m_{1}, r_{1}, m_{2}, r_{2}, m_{4} \cdot r_{3}$ and m_{4}, r_{4} horizontally.

$$
\begin{aligned}
\Sigma H & =m_{1} \cdot r_{1} \cos \theta_{1}+m_{2} \cdot r_{2} \cos \theta_{2}+m_{3} \cdot r_{1} \cos \theta_{1}+m_{4} \cdot r_{4} \cos \theta_{4} \\
& =40 \cos 0^{\circ}+45 \cos 45^{\circ}+(x) \cos 120^{\circ}+78 \cos 255^{\circ} \\
& =40+31.8-30-20.2=21.6 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

Now resolving verticaliy,

$$
\begin{aligned}
\Sigma V & =m_{1} \cdot r_{1} \sin \theta_{1}+m_{2} \cdot r_{2} \sin \theta_{2}+m_{3} \cdot r_{3} \sin \theta_{2}+m_{4} \cdot r_{4} \sin \theta_{4} \\
& =40 \sin 0^{\circ}+45 \sin +5^{\circ}+60 \sin 120^{\circ}+78 \sin 255^{\circ} \\
& =0+31.8+52-75.3=8.5 \mathrm{~kg} \cdot \mathrm{~m}
\end{aligned}
$$

\therefore Resultant. $R=\sqrt{(\Sigma H)^{2}+\left(\Sigma L^{\prime}\right)^{2}}=\sqrt{(21.6)^{2}+(8.5)^{2}}=23.2 \mathrm{k} 2-\mathrm{m}$
We know that
and

$$
\begin{aligned}
m \cdot r & =R=23.2 \text { or } m=23.2 / r=23.210 .2=110 \mathrm{~kg} \text { Aus. } \\
\operatorname{tun} \theta^{\prime} & =\Sigma V / \Sigma H=8.5 / 21.6=0.3935 \text { or } \theta^{\prime}=21.48^{\circ}
\end{aligned}
$$

Since θ^{*} is the angle of the resultant R from the horizontal mass of 200 kg , therefive to angle of the batancing mass from the horizontal mass of 200 kg ,

$$
\theta=180^{\circ}+21.48^{\circ}=201.48^{\circ} \text { Aus. }
$$

2. Graphical method

The magnitude and the position of the bulancing mass may also be found srapheill:" discussed below :

1. First of all, draw the space diagram showing the positions of all the gien ma"~" shown in Fig 21.6 (a).
2. Since the centrifugal force of each mass is proportional to the product of the nwe she radius, therefore

$$
\begin{gathered}
m_{1} \cdot r_{1}=200 \times 0.2=40 \mathrm{~kg}-\mathrm{m} \\
m_{2} \cdot r_{2}=300 \times 0.15=4.5 \mathrm{~kg}-\mathrm{m}
\end{gathered}
$$

$$
\begin{aligned}
& m_{3} \cdot r_{3}=240 \times 0.25=60 \mathrm{~kg} \cdot \mathrm{~m} \\
& m_{4} \cdot r_{4}=260 \times 0.3=78 \mathrm{~kg} \cdot \mathrm{~m}
\end{aligned}
$$ fure. 21.6 (b). The closing side of the polygon ae represent

(a) Space diagram.
(b) Vector diagram

Fig. 21.6
4. The balancing force is equal to the resultant force, but opposite in direction as shown in Fig. 21.6 (a). Since the balancing force is proportional to $m . r$, therefore

$$
m \times 0.2=\text { vector } e a=23 \mathrm{~kg}-\mathrm{m} \text { or } m=23 / 0.2=\mathbf{1 1 5} \mathbf{~ k g} \text { Ans. }
$$

By measurement we also find that the angle of inclination of the balancing mass (m) from the horizontal mass of 200 kg ,

$$
\theta=201^{\circ} \mathrm{Ans}
$$

21.6. Balancing of Several Masses Rotating in Different Planes

When several masses revolve in different planes, they may be transferred to a reference plane (briefly written as R.P.), which may be defined as the plane passing through a point on the axis of rotation and perpendicular to it. The effect of transferring a revolving mass (in one plane) to a reference plane is to cause a force of magnitude equal to the centrifugal force of the revolving mass to act in the reference plane, together with a couple of magnitude equal to the product of the force and the distance between the plane of rotation and the reference plane. In order to have a complete balance of the several revolving masses in different planes, the following two conditions must be satisfied :

1. The forces in the reference plane must balance, i.e. the resultant force must be zero.
2. The couples about the reference plane must balance, i.e. the resultant couple must be zero.

Let us now consider four masses m_{1}, m_{2}, m_{3} and m_{4} revolving in planes $1,2,3$ and 4 respectively as shown in
 (b)]. The magnitude of the balancing nuasses m_{L} and m_{M} in planes L and M may be oh lainec, $z_{\text {? }}$? discussed below : right as positive.
2. Tabulate the data as shown in Table 21.1. The planes are tabuiated in the same orden in which they occur, reading from left to right.

Table 21.1

Ptane (i)	Mass (m) (2)	Radius(r) (3)	$\begin{gathered} \text { Centforce }+\omega^{2} \\ (m . r) \\ (\downarrow) \end{gathered}$	Distance from plane L (t) (5)	$\begin{gathered} \text { Couple }+\mathrm{G}^{2} \\ (\mathrm{~m} . \mathrm{r} 1 \\ (6) \end{gathered}$
1			$m_{1} \cdot r_{1}$	$-t_{1}$	
L R.P. $^{\text {) }}$	m_{L}	$r_{\text {L }}$	$m_{\mathrm{L}} \cdot r_{\mathrm{L}}$	0	0
2	m_{2}	r_{2}	$m_{2} \cdot r_{2}$	l_{2}	$m_{2} \cdot r_{2} \cdot l_{2}$
3	m_{3}	r_{3}	$m_{3} \cdot r_{3}$	I_{3}	$m_{3} \cdot r_{3} \cdot{ }_{1}$
M	$m_{\text {M }}$	r_{M}	$m_{M} \cdot r_{M}$	t_{M}	$m_{M} \cdot r_{M} \cdot l_{M}$
4	m_{4}	r_{4}	$m_{4} \cdot r_{4}$	i_{4}	$m_{4} \cdot r_{4} l_{4}$

(a) Position of planes of the masses.

(b) Angular position of the masses.

(c) Couple vector

(d) Couple vectors turned counter clockwise through a right angle.

Fig. 21.7. Balancing of several masses rotating in different planes.
3. A couple may be represented by a vector drawn perpendicular to the plane of the couple The couple C_{1} introduced by transferring m_{1} to the reference plane through O is propor-
fional to $m_{1}, r_{1} \cdot I_{1}$ and acts in a plane through $O m_{1}$ and perpendicular to the paper. The as shown by $O C_{1}$ in Fig. 21.7 (c) ine plane of the paper and perpendicular to drawn perpendicular to $\mathrm{Om}_{2}, \mathrm{Om}_{3}$ and $O_{m 4}$ respe the vectors $O C_{2}, O C_{3}$ and $O C_{1}$ are The couple vectors as discussed above, are lumed counter clocikwise thro of the paper. for convenience of drawing as shown in Fig. 21.7 (d). We see that their rela a right angle for unuffected. Now the vector $O C$ rem.ris $O n_{2} \quad O m_{3}$ and $O n_{1}$ while $O C_{2}, O C_{3}$ and $O C_{4}$ are paraliel in the sume direct. Hence the couple vectors are vector $O C_{1}$ is parallel to $O m_{1}$ but in "opposite direction. Hence the couple vectors are drawn radially outwards for the masses on one side of the reference plane and radially inward for the masses on the other side of the reference plane.
5. Now draw the couple polygon as shown in Fig. 21.7 (e). The vector $d^{\prime} o^{\prime}$ represents the balanced couple. Since the balanced couple C_{M} is proportional to $\pi_{M} \cdot r_{M} \cdot l_{M}$ therefore

$$
C_{\mathrm{M}}=m_{\mathrm{M}} \cdot r_{\mathrm{M}} \cdot l_{\mathrm{M}}=\text { vector } d^{\prime} o^{\prime} \quad \text { or } \quad m_{\mathrm{M}}=\frac{\text { vector } d^{\prime} o^{\prime}}{r_{\mathrm{M}} \cdot l_{\mathrm{M}}}
$$

From this expression, the value of the balancing mass m_{M} in the plane M may be obtained. and the angle of inclination ϕ of this mass may be measured from Fig. 21.7 (b).
6. Now draw the force polygon as shown in Fig. 21.7 (f). The vector eo (in the direction from e to o) represents the balanced force. Since the balanced force is proportional to $m_{\mathrm{L}}, r_{\mathrm{L}}$, therefore,

$$
m_{\mathrm{L}} \cdot r_{\mathrm{L}}=\text { vector eo or } \quad m_{\mathrm{L}}=\frac{\text { vector } e o}{r_{\mathrm{L}}}
$$

From this expression, the value of the balancing mass m_{L} in the plane L may be obtained and the angle of inclination α of this mass with the horizontal may be measured from Fig. 21.7 (b).

Example 21.2. A shaft carries four masses A, B, C and D of magnitude $200 \mathrm{~kg}, 300 \mathrm{~kg}$, 400 kg and 200 kg respectively and revolving at radii $80 \mathrm{~mm}, 70 \mathrm{~mm}, 60 \mathrm{~mm}$ and 80 mm in planes measured from A at $300 \mathrm{~mm}, 400 \mathrm{~mm}$ and 700 mm . The angles between the cranks measured anticlockwise are A to $B 45^{\circ}, B$ to $C 70^{\circ}$ and C to $D 120^{\circ}$. The balancing masses are to be placed in planes X and Y. The distance between the planes A and X is 100 mm , between X and Y is 400 mm and between Y and D is 200 mm . If the balancing masses revolve at a radius of 100 mm , find their magnitudes and angular positions.

Solution. Given : $m_{\mathrm{A}}=200 \mathrm{~kg} ; m_{\mathrm{B}}=300 \mathrm{~kg} ; m_{\mathrm{C}}=400 \mathrm{~kg} ; m_{\mathrm{D}}=200 \mathrm{~kg} ; r_{\mathrm{A}}=80 \mathrm{~mm}$ $=0.08 \mathrm{~m} ; r_{\mathrm{B}}=70 \mathrm{~mm}=0.07 \mathrm{~m} ; r_{\mathrm{C}}=60 \mathrm{~mm}=0.06 \mathrm{~m} ; r_{\mathrm{D}}=80 \mathrm{~mm}=0.08 \mathrm{~m} ; r_{X}=r_{\mathrm{Y}}=100 \mathrm{~mm}$ $=0.1 \mathrm{~m}$

Let

$$
\begin{aligned}
& m_{X}=\text { Balancing mass placed in plane } X, \text { and } \\
& m_{Y}=\text { Balancing mass placed in plane } Y .
\end{aligned}
$$

The position of planes and angular position of the masses (assuming the mass A as horizontal) are shown in Fig. 21.8 (a) and (b) respectively.

Assume the plane X as the reference plane ($R . P$.). The distances of the planes to the right of Plane X are taken as + ve while the distances of the planes to the left of plane X are taken as - ve. The data may be tabulated as shown in Table 21.2.

[^2]Table 21.2

Plane (1)	$\begin{gathered} M(m s) \\ L_{R} \\ (2) \end{gathered}$	Rartive (r) (1)	$\begin{aligned} & \text { (end furce }+\omega^{2} \\ & \text { (m.r) } k g \cdot m \\ & \text { (4) } \end{aligned}$	Distance from Plane $x(l) m$ (5)	Couple (m.r.i) tr. (if)
$\begin{gathered} A \\ X(R . P) \\ B \\ C \\ Y \\ D \end{gathered}$	$\begin{aligned} & 200 \\ & m_{x} \\ & 300 \\ & 400 \\ & m_{y} \\ & 200 \end{aligned}$	$\begin{gathered} 0.08 \\ 0.1 \\ 0.07 \\ 0.06 \\ 0.1 \\ 0.08 \end{gathered}$	$\begin{gathered} 16 \\ 0.1 m_{\mathrm{X}} \\ 21 \\ 24 \\ 0.1 \mathrm{~m}_{\mathrm{Y}} \\ 16 \end{gathered}$	$\begin{gathered} -0.1 \\ 0 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.6 \end{gathered}$	$\begin{array}{c\|} -1.6 \\ 0 \\ 4.2 \\ 7.2 \\ 0.04 \mathrm{~m}_{\mathrm{r}} \\ 9.6 \end{array}$

The balancing masses m_{X} and m_{Y} and their angular positions may be determined graph cally as discussed below :

1. First of all. draw the couple polygon from the data given in Table 21.2 (column 6) 4 shown in Fig. 21.8 (c) to some suitable scale. The vector $d^{\prime} o^{\prime}$ represents the balanow couple. Since the balanced couple is proportional to $0.04 m_{Y}$, therefore by measuremem $0.04 m_{Y}=$ vector $d^{\prime} o^{\prime}=7.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ or $m_{Y}=182.5 \mathrm{~kg} \mathrm{Ans}$.

All dimensions in mm.
(a) Position of planes.
(b) Angular position of masses.

(c) Couple polygon.

(d) Force polygon.

Fig. 21.8 The angular position of the mass m_{Y} is obtained by trawing $O_{m_{Y}}$ in Fig. 21.8 (b), parallel to vector $d^{\prime} 0^{\prime}$. By measurement, the angular position of m_{Y} is $\theta_{Y}=12^{\circ}$ in the clockwise direction from mass m_{A} (i.e. 200 kg). Ans.
2. Now draw the force polygon from the data given in Table 21.2 (column 4) as shown in Fig. $21.8(d)$. The vector eo represents the balanced force. Since the balanced force is proportional to $0.1 \mathrm{~m}_{\mathrm{X}}$, therefore by measurement,

$$
0.1 m_{\mathrm{X}}=\text { vector } e 0=35.5 \mathrm{~kg}-\mathrm{m} \quad \text { or } \quad m_{\mathrm{X}}=355 \mathrm{~kg} \text { Ans. }
$$

The angular position of the mass m_{x} is obtained by drawing $O m_{\mathrm{x}}$ in Fig. 21.8 (b), parallel to vector eo. By measurement, the angular position of m_{X} is $\theta_{X}=145^{\circ}$ in the clockwise direction from mass m_{A} (i.e. 200 kg). Ans.
Example 21.3. Four masses A, B, C and D as shown below are to be completely balanced.

	A	B	C	D
Mass (kg)	-	30	50	40
Radius (mm)	180	240	120	150

The planes containing masses B and C are 300 mm apart. The angle between planes containing B and C is $90^{\circ} . B$ and C make angles of 210° and 120° respectively with D in the same sense. Find:

1. The magnitude and the angular position of mass A; and
2. The position of planes A and D.

Solution. Given : $r_{\mathrm{A}}=180 \mathrm{~mm}=0.18 \mathrm{~m} ; m_{\mathrm{B}}=30 \mathrm{~kg} ; r_{\mathrm{B}}=240 \mathrm{~mm}=0.24 \mathrm{~m}$; $m_{\mathrm{C}}=50 \mathrm{~kg} ; r_{\mathrm{C}}=120 \mathrm{~mm}=0.12 \mathrm{~m} ; m_{\mathrm{D}}=40 \mathrm{~kg} ; r_{\mathrm{D}}=150 \mathrm{~mm}=0.15 \mathrm{~m} ; \angle B O C=90^{\circ}$; $\angle B O D=210^{\circ} ; \angle C O D=120^{\circ}$

1. The magnitude and the angular position of mass A

Let

$$
\begin{aligned}
m_{\mathrm{A}} & =\text { Magnitude of Mass } A, \\
x & =\text { Distance between the planes } B \text { and } D, \text { and } \\
y & =\text { Distance between the planes } A \text { and } B .
\end{aligned}
$$

The position of the planes and the angular position of the masses is shown in Fig. 21.9 (a) and (b) respectively.

Assuming the plane B as the reference plane (R.P.) and the mass $B\left(m_{B}\right)$ along the horizontal line as shown in Fig. 21.9 (b), the data may be tabulated as below :

Table 21.3

Plane (1)	Mass (m) kg (2)	Radius (r) m (3)	$\begin{aligned} & \text { Cent.force } \div \omega^{2} \\ & \text { (m.r) } \mathrm{kg}-\mathrm{m} \\ & \text { (4) } \end{aligned}$	Distance from plane B(l) m (5)	$\begin{aligned} & \text { Couple } \div \omega^{2} \\ & \text { (m.r.l) } \mathrm{kg}-\mathrm{m}^{2} \\ & \text { (6) } \end{aligned}$
A		0.18	$0.08 \mathrm{~m}_{\mathrm{A}}$	- y	$-0.18 m_{A} y$
$B($ R.P)	30	0.24	7.2	0	0
C	50	0.12	6	0.3	1.8
D	40	0.15	6	x	$6 x$

The magnitude and angular position of mass A may be determined by drawing the force polygon from the data given in Table 21.3 (Column 4), as shown in Fig. 21.9 (c), to some suitable
scale. Since the masses are to be compietely balanced. therefore the force polygon muss be a ch_{h},
figure. The closing side (i.e. vector $d \sigma$) is proportional to $0.18 \mathrm{~m}_{\mathrm{A}^{\prime}}$ By measurement.
$0.18 \mathrm{~m}_{\mathrm{A}}=$ Vector $d o=3.6 \mathrm{~kg}-\mathrm{m}$ or $m_{\mathrm{A}}=20 \mathrm{~kg}$ Ans.
In order to find the angular position of mass A, draw $O A$ in Fig. $21.9(b)$ parallel lo vectur do. By measurement, we find that the angular position of mass A from mass B in the anticlock whre $^{\text {w }}$ direction is $\angle A O B=236^{\circ}$ Ans.

All dimensions in mm.
(a) Position of planes.
(b) Angular position of masses.

(c) Force polygon.

(d) Couple polygon.

Fig. 21.9.

2. Position of planes A and D

The position of planes A and D may be obtained by drawing the couple polygon, as shown in Fig. 21.9 (d), from the data given in Table 21.3 (column 6). The couple polygon is drawn as discussed below :

1. Draw vector $o^{\prime} c^{\prime}$ parallel to $O C$ and equal to $1.8 \mathrm{~kg}-\mathrm{m}^{2}$, to some suitable scale.
2. From points c^{\prime} and o^{\prime}, draw lines parallel to $O D$ and $O A$ respectively, such that they intersect at point d^{\prime}. By measurement, we find that

$$
6 x=\text { vector } c^{\prime} d^{\prime}=2.3 \mathrm{~kg}-\mathrm{m}^{2} \text { or } x=0.383 \mathrm{~m}
$$

We see from the couple polygon that the direction of vector $c^{\prime} d^{\prime}$ is opposite to the direction of mass D. Therefore the plane of mass D is 0.383 m or 383 mm towards left of plane B and not towards right of plane B as already assumed. Ans.

Apain ly incosuremem from couple polygen.

$$
\begin{aligned}
& -0.18 m_{A^{\prime}} y=\text { vector } o^{\prime} d^{\prime}=3.6 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& -0.18 \times 20 y=3.0 \text { or } y=-1 \mathrm{~m}
\end{aligned}
$$

The negative sign indicates that the plane A is not lowards left of B as asamed hot it in $1 \mathrm{~m}^{\text {of }}$ (0)(N) min lowards right of plane B. Ans.

Finmple 21.4. A. B, C and D) are folur marses carried by a motiting shafi at rudit (CN).
 apint ind the mass of B, C and D are $10 \mathrm{~kg}, 5 \mathrm{~kg}$, and 4 kg resplectively.

Find the required mass A and the relative angular sentings of the four masses so that the dheff shall he in complete balance.

Solution. Given : $r_{A}=1(X) \mathrm{mm}=0.1 \mathrm{~m} ; r_{\mathrm{B}}=125 \mathrm{~mm}=0.125 \mathrm{~m} ; \mathrm{r}_{\mathrm{C}}=2(X) \mathrm{mm}=0.2 \mathrm{~m} ;$ $r_{0}=150 \mathrm{~mm}=0.15 \mathrm{~m} ; m_{\mathrm{B}}=10 \mathrm{~kg} ; m_{\mathrm{C}}=5 \mathrm{~kg} ; m_{\mathrm{D}}=4 \mathrm{~kg}$

The position of planes is shown in Fig. 21.10 (a). Assuming the plane of mass A as the reference plane (R.P.), the data may be tabulated as below:

Table 21.4

Plane (I)	Mass (m) $k g$ (2)	Radius (r) m (3)	$\begin{gathered} \text { Cent. Force }+\omega^{2} \\ (\text { m.r) kg-m } \end{gathered}$ (4)	Distance from plane A (l)m (5)	Couple $+\omega^{2}$ (m.r.l) kg-m (6)
$\begin{gathered} A(R . P .) \\ B \\ C \\ D \end{gathered}$	$\begin{gathered} m_{\hat{A}} \\ 10 \\ 5 \\ 4 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.125 \\ 0.2 \\ 0.15 \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~m}_{\mathrm{A}} \\ 1.25 \\ 1 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0.6 \\ 1.2 \\ 1.8 \end{gathered}$	$\begin{gathered} 0 \\ 0.75 \\ 1.2 \\ 1.08 \end{gathered}$

First of all, the angular setting of masses C and D is obtained by drawing the couple polygon from the data given in Table 21.4 (column 6). Assume the position of mass B in the horizontal direction $O B$ as shown in Fig. 21.10 (b). Now the couple polygon as shown in Fig. 21.10 (c) is drawn as discussed below :

1. Draw vector $o^{\prime} b^{\prime}$ in the horizontal direction (i.e. parallel to $O B$) and equal to $0.75 \mathrm{~kg}-\mathrm{m}^{2}$, to some suitable scale.
2. From points o^{\prime} and b^{\prime}, draw vectors $o^{\prime} c^{\prime}$ and $b^{\prime} c^{\prime}$ equal to $1.2 \mathrm{~kg}-\mathrm{m}^{2}$ and $1.08 \mathrm{~kg}-\mathrm{m}^{2}$ respectively. These vectors intersect at c^{\prime}.
3. Now in Fig. $21.10(b)$, draw $O C$ parallel to vector $o^{\prime} c^{\prime}$ and $O D$ parallel to vector $b^{\prime} c^{\prime}$. By measurement, we find that the angular setting of mass C from mass B in the anticlockwise
direction, i.e.
and angular setting of mass D from mass B in the anticlockwise direction, i.e.

$$
\angle B O D=100^{\circ} \text { Ans. }
$$

In order to find the required mass $A\left(m_{A}\right)$ and its angular setting, draw the force polygon to some suitable scale, as shown in Fig. $21.10(\mathrm{~d})$, from the data given in Table 21.4 (column 4).

Since the closing side of the force polygon (vector $d o$) is proportional to $0.1 \mathrm{~m}_{\mathrm{A}}$, therefore by measurement,

$$
0.1 m_{\mathrm{A}}=0.7 \mathrm{~kg}-\mathrm{m}^{2} \text { or } m_{\mathrm{A}}=7 \mathrm{~kg} \text { Ans. }
$$

848 - Theory of Machines

Now draw OA in Fig. 21.10(b). paraliel to vector do. By ineasurement, we find than a angular setting of mass A from muss B in the unticheckwise direction, i.e.

All dimensions in mm
(a) Position of planes.

(c) Couple polygon.
(b) Angular position of masses.

(d) Force polygon.

Fig. 21.10
Example 21.5. A shaft carries four masses in parallel planes A, B, C and D in this ontrn along its length. The masses at B and C are 18 kg and 12.5 kg respectively, and each hes an eccentricity of 60 mm . The masses at A and D have an eccentricity of 80 mm . The angle bemea the masses at B and C is 100° and that between the masses at B and A is 190°, both being measured in the same direction. The axial distance between the planes A and B is 100 mm an that between B and C is 200 mm . If the shaft is in complete dynamic balance, determine :

1. The magnitude of the masses at A and $D ; 2$, the distance between planes A and D :ad 3. the angular position of the mass at D.

Solution. Given : $m_{\mathrm{B}}=18 \mathrm{~kg} ; m_{\mathrm{C}}=12.5 \mathrm{~kg} ; r_{\mathrm{B}}=r_{\mathrm{C}}=60 \mathrm{~mm}=0.06 \mathrm{~m} ; r_{\mathrm{A}}=r_{\mathrm{D}}=80 \mathrm{~mm}$ $=0.08 \mathrm{~m} ; \angle B O C=100^{\circ} ; \angle B O A=190^{\circ}$

1. Magnitude of the masses at A and D

Let

$M_{\mathrm{A}}=$ Mass at A,
$M_{\mathrm{D}}=$ Mass at D, and
$x=$ Distance between planes A and D.

The position of the planes and angular position of the masses is shown in Fig. 21.11 (a)
(b) respectively. The position of mass B is assumed in the horizontal direction. h.e. along (oB. Taking the plane of mass A as the reference plane, the data may be tabuluted as below :

Table 21.5

plane (l)	Mass (m) kg (2)	Eccemtricily (r) m (3)	$\begin{aligned} & \text { Cemf. force }+v^{2} \\ & \text { (m.r) } k g-m \\ & \text { (t) } \end{aligned}$	Distance from plane $\mathrm{A}(\mathrm{l}) \mathrm{m}$ (5)	$\begin{aligned} & \text { Cmuple }+\mathrm{ol}^{2} \\ & \text { (m.r.l) } \mathrm{kK}-\mathrm{m}^{2} \\ & \text { (6) } \end{aligned}$
$A(R . P$.	$\mathrm{mA}^{\text {A }}$	0.08	0.08 mm	0	0
B	18	0.06	$1.08{ }^{\text {A }}$	0.1	0.108
C	12.5	0.06	0.75	0.3	0.225
D	$m_{\text {D }}$	0.08	0.08 mb	r	$0.08 \mathrm{~m}_{\mathrm{D}} \cdot x$

12.5 kg

All dimensions in mm.
(a) Position of planes.
(b) Angular position of masses.

(c) Couple polygon.

(d) Force polygon.

Fig. 21.11
First of all, the direction of mass D is fixed by drawing the couple polygon to some suit-
able sc scale, as shown in Fig. 21.11 (c), from the data given in Table 21.5 (column 6). The closing

850
 - Theory of Mathines

side of the couple polygon (vector $c^{\prime} o^{\prime}$) is propmrtional to $0.08 m_{0}$. By mearure ment. we fink

$$
0.08 m_{\mathrm{D}} \mathrm{D}^{t}=\text { vectur } c^{\prime} o^{\prime}=0.235 \mathrm{~kg}-\mathrm{m}^{2}
$$

In Fig. 21.11 (b), draw $O D$ parallel to vector $\mathcal{C}^{\prime} O^{\prime}$ to fix the direction of musk D
Now draw the force polygon, to some suitable scale, as shown in Fig. 21. II (d), from data given in Table 21.5 (column 4), as discussed below :

1. Draw vector ob parallel to $O B$ and equal to $1.08 \mathrm{~kg}-\mathrm{m}$.
2. From point b, draw vector $b c$ parallel to $O C$ and equal to $0.75 \mathrm{~kg}-\mathrm{m}$.
3. For the shaft to be in complete dynamic balance, the force polygon must be a chaced figure. Therefore from point c, draw vector $c d$ parallel to $O A$ and from point $o d_{d_{4}}$ vector od parallel to $O D$. The vectors $c d$ and od intersect at d. Since the vector $(d, d s$ proportional to $0.08 \mathrm{~m}_{\mathrm{A}}$, therefore by measurement
$0.08 m_{\mathrm{A}}=$ vector $c d=0.77 \mathrm{~kg}-\mathrm{m}$ or $m_{\mathrm{A}}=9.625 \mathrm{~kg}$ Ans. and vector $d o$ is proportional to $0.08 m_{\mathrm{D}}$, therefore by measurement,

$$
0.08 m_{\mathrm{D}}=\text { vector } d o=0.65 \mathrm{~kg}-\mathrm{m} \text { or } m_{\mathrm{D}}=8.125 \mathrm{~kg} \text { Ans. }
$$

2. Distance between planes A and D

From equation (i),

$$
\left.\begin{array}{rl}
& 0.08 m_{\mathrm{D}} x=0.235 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& 0.08 \times 8.125 \times x=0.235 \mathrm{~kg}-\mathrm{m}^{2}
\end{array} \text { or } 0.65 x=0.235\right\}
$$

3. Angular position of mass at D

By measurement from Fig. 21.11 (b), we find that the angular position of mass at D frow mass B in the anticlockwise direction, i.e. $\angle B O D=251^{\circ}$ Ans.

Features

1. Introduction.
2. Primary and Secondary Unbatanced Forces of Reciprocating Masses.
3. Partial Balancing of Unbalunced Primary Force in a Reciprocating Engine.
4. Partial Balancing of Lucomotives.
5. Effect of Partial Balancing of Reciprocating Parts of Two Cylinder Locomotives.
6. Variation of Tractive Force.
7. Swaying Couple.
8. Hummer Blow:
9. Balancing of Coupled Locomotives.
10. Buluncing of Primary Forces of Mulli-cylinder In-line Engines.
11. Balancing of Secondary Forces of Multi-cylinder Inline Engines.
12. Balancing of Radial Engines (Direct and Reverse Crank Method).
13. Balancing of V-engines.

Balancing of Reciprocating Masses

22.1. Introduction

We have discussed in Chapter 15 (Art, 15.10), the various forces acting on the reciprocating parts of an engine. The resultant of all the forces acting on the body of tix engine due to inertia forces only is known as unbalanced force or shaking force. Thus if the resultant of all the forces due to inertia effects is zero, then there will be no unbalanced force, but even then an unbalanced couple or shaking couple will be present.

Consider a horizontal reciprocating engine mechanism as shown in Fig. 22.1.

Fig. 22.1. Reciprocating engine mechanistr.
Let $\quad F_{\mathrm{R}}=$ Force required to accelerate the reciprocaling parts,

Chapter 22 : Balancing of Reciprocating Masscs - 859

 $F_{1}=$ Ineria force due to reciprocaling pars.$F_{\mathrm{N}}=$ Force on the sides of the cylinder walls or normal force acting on the cross-head guides, and
$F_{\mathrm{B}}=$ Force acting on the crankshaft bearing or main bearing. her. The horizontal component of F_{B} (i.e, $F_{B H}$) acting along the line of reciprocation is also and and
and
apposite
to
F_{1}. Therly balanced.

The force on the sides of the cylinder walls (F_{N}) and the vertical component of F_{B} (il. F_{BV}) are equal and opposite and thus form a shaking couple of magnitude $F_{\mathrm{N}} \times x$ or $F_{\mathrm{BV}} \times x$.

From above we see that the effect of the reciprocating parts is to produce a shaking force and a shaking couple. Since the shaking force and a shaking couple vary in magaitude and direcion during the engine cycle, therefore they cause very objectionable vibrations.

Thus the purpose of balancing the reciprocating masses is to eliminate the shaking force nid a shaking couple. In most of the mechanisms, we can reduce the shaking force and a shaking couple by adding appropriate balancing mass, but it is usually not practical to eliminate them completely. In other words, the reciprocating masses are only partially balanced.

22.2. Primary and Secondary Unbalanced Forces of Reciprocating Masses

Consider a reciprocating engine mechanism as shown in Fig. 22.1.
Let

$$
m=\text { Mass of the reciprocating parts, }
$$

$l=$ Length of the connecting rod $P C$,
$r=$ Radius of the crank,$O C$,
$\theta=$ Angle of inclination of the crank with the line of stroke $P O$,
$\omega=$ Angular speed of the crank,
$n=$ Ratio of length of the connecting rod to the crank radius $=/ / \mathrm{r}$.
We have already discussed in Art. 15.8 that the acceleration of the reciprocating parss is approximately given by the expression,

$$
a_{\mathrm{R}}=\omega^{2} \cdot r\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)
$$

\therefore Inertia force due to reciprocating pars or force required to accelerate the reciprocating pars.

$$
F_{1}=F_{\mathrm{R}}=\text { Mass } \times \text { acceleration }=m \cdot \omega^{2} \cdot r\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)
$$

We have discussed in the previous article that the horizontal component of the force exerted on the crank shaft bearing (i.e. $F_{\text {BH }}$) is equal and opposite to ineria force (F_{1}). This force is an whalanced one and is denoted by F_{U}.
$\therefore \quad$ Unbalanced force.

$$
F_{\mathrm{U}}=m \cdot \omega^{2} \cdot r\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)=m \cdot \omega^{2} \cdot r \cos \theta+m \cdot \omega^{2} \cdot r \times \frac{\cos 2 \theta}{n}=F_{\mathrm{P}}+F_{\mathrm{S}}
$$

The expression $\left(m \cdot \omega^{2} \cdot r \cos \theta\right.$) is known as primary unbalanced force and $\left(m \cdot \omega^{2} \cdot r \times \frac{\cos 2 \theta}{n}\right)$ is called secondary unbalanced force.
\therefore Primary unhalanced force. $F_{\mathrm{P}}=m \cdot \omega^{2} \cdot \cos \theta$
and secondary unhalamed force. $\quad F_{5}=m \cdot \omega^{2} \cdot r \times \frac{\cos 2 \theta}{n}$
Votes: 1 . The primary unbalanced furie is matimum. when $\theta=0^{\circ}$ or 180°. Thus, the primary force n maximum twice in one revolution of the crank. The maximum primary unbalanced force is given by

$$
\dot{F}_{\mathrm{P}(\text { mat })}=m \cdot \omega^{2} \cdot r
$$

2 The secondary unbalaneed force is maximum. when $\theta=0^{\circ} .90^{\circ} .180^{\circ}$ and 360°. Thus. the second ary force is maximum four times in one revolution of the crank. The maximum secondary unbalanced force is given by

$$
F_{S(\text { max })}=m \cdot \omega^{2} \times \frac{r}{n}
$$

3. From above we see that maximum secondary unbalanced force is $1 / n$ times the maximum primany unbalanced force.
4. In case of moderate speeds, the secondary unbalanced force is so small that it may be neglected as compared to primary unbalanced force.
5. The unbalanced force due to reciprocating masses varies in magnitude but constant in direction while due to the revolving masses, the unbalanced force is constant in magnitude but varies in direction.

22.3. Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine

The primary unbalanced force $\left(m \cdot \omega^{2} \cdot r \cos \theta\right)$ may be considered as the component of the centrifugal force produced by a rotating mass m placed at the crank radius r, as shown in Fig. 22.2

Fig. 22.2. Partial balancing of unbalanced primary force in a reciprocating engine.
The primary force acts from O to P along the line of stroke. Hence, balancing of primary force is considered as cquivalent to the balancing of mass m rotating at the crank radius r. This is balanced by having a mass B at a radius b, placed diametrically opposite to the crank pin C.

We know that centrifugal force due to mass B,

$$
=B \cdot \omega^{2} \cdot b
$$

and horizontal component of this force acting in opposite direction of primary force

$$
=B \cdot \omega^{2} \cdot b \cos \theta
$$

The primary force is balanced, if

$$
B \cdot \omega^{2} \cdot b \cos \theta=m \cdot \omega^{2} \cdot r \cos \theta \quad \text { or } \quad B . b=m \cdot r
$$

Cyclone cleaner.
\therefore Unbalanced force along the line of stoke

$$
\begin{aligned}
& =m \cdot \omega^{2} \cdot r \cos \theta-B \cdot \omega^{2} \cdot b \cos \theta \\
& =m \cdot \omega^{2} \cdot r \cos \theta-c \cdot m \cdot \omega^{2} \cdot r \cos \theta \\
& =(1-c) m \cdot \omega^{2} \cdot r \cos \theta
\end{aligned} \quad \ldots(\because B . b=c \cdot m \cdot r)
$$

and unbalanced force along the perpendicular to the line of stroke

$$
=B \cdot \omega^{2} \cdot b \sin \theta=c \cdot m \cdot \omega^{2} \cdot r \sin \theta
$$

\therefore Resultant unbalanced force at any instant

$$
=\sqrt{\left[(1-c) m \cdot \omega^{2} \cdot r \cos \theta\right]^{2}+\left[c \cdot m \cdot \omega^{2} \cdot r \sin \theta\right]^{2}}
$$

Wele: iff the balancing $=m \cdot \omega^{2} \cdot r \sqrt{(1-c)^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta}$

Her

$$
B \cdot b=m_{1} \cdot r+c \cdot m \cdot r=\left(m_{1}+c \cdot m\right) r
$$

$m_{1}=$ Magnitude of the revolving masses, and
$m=$ magnitude of the reciprocating masses.

 noulted oxi from innet derod ipnire.

Shulion. (ivern : $N=240$; pm. © $\omega=2 \pi \times 241 / 60=25.14 \mathrm{rad} / \mathrm{s} ;$ Strike $=3\left(\mathrm{rl}_{\mathrm{mm}}\right.$ $=0.4 \mathrm{~m} . \mathrm{m}=51 \mathrm{~kg} ; m_{1}=37 \mathrm{~kg} ; r=1.01 \mathrm{~mm}=0.15 \mathrm{~m}: c=2 / 3$

1. Ralonce mavis raquired

> let mas: raquired
> $\quad \begin{aligned} B & =\text { Balance mass required. and } \\ b & =\text { Radius of roxation of the balance mass }=400 \mathrm{~mm}=0.4 \mathrm{~m}\end{aligned}$
$\cdots \mathrm{Given}_{1}$
We know that

$$
\begin{aligned}
B . h & =\left(m_{1}+c . m\right) r \\
B \times 0.4 & =\left(37+\frac{2}{3} \times 50\right) 0.15=10.55 \quad \text { or } B=26.38 \mathrm{~kg} \mathrm{Ans.}
\end{aligned}
$$

2. Residual unhalanced force

Let $\quad \theta=$ Crank angle from inner dead centre $=60^{\circ}$... (Grea)
We know that residual unhalanced force

$$
\begin{aligned}
& =m \cdot \omega^{2} \cdot r \sqrt{(1-c)^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta} \\
& =50(25.14)^{2} 0.15 \sqrt{\left(1-\frac{2}{3}\right)^{2} \cos ^{2} 60^{\circ}+\left(\frac{2}{3}\right)^{2} \sin ^{2} 60^{\circ}} \mathrm{N} \\
& =4740 \times 0.601=2849 \mathrm{~N} \text { Ans. }
\end{aligned}
$$

22.4. Partial Balancing of Locomotives

The locomotives, usually, have two cylinders with cranks placed at right angles to each other in order to have uniformity in turning moment diagram. The two cylinder locomotives may be classified as:

1. Inside cylinder locomotives; and 2. Outside cylinder locomotives.

In the inside cylinder locomotives, the two cylinders are placed in between the planes of two driving wheels as shown in Fig. 22.3 (a) ; whereas in the outside cylinder locomotives, the two cylinders are placed outside the driving wheels, one on each side of the driving wheel, as shown in Fig. 22.3 (b). The locomotives may be
(a) Single or uncoupled locomotives; and (b) Coupled locomotives.

(a) Inside cylinder locomotives.

(b) Outside cylinder locomotives.

Fig. 22.3
phave diccusced in the previosus anticte that the reciprixating parts are only partiolly one to this partial balascing of the recipricating parts. there to an unhalazk ed primary ano the live of stroke and alco an unhelamed primary force permencla ular to the line of
 f. Variation in tractive force along the line of stroke: and 2 . Swaying coniple.

The effect of an unbalanced primury force perperaticular to the line of alnike is to priduce in presure on the rails, which results in hammering acloon on the rais. The maximum ande of the unhalanced force along the perpendicular to the line of stroke is known an a ary blow. We shall now discuss the effects of an unbalanced primury force in the fonlowint
24.6. Variation of Tractlve Force

The resultant unbalanced force due to the two cylinders. along the line of stone. in known sporive force. Let the crank for the first cylinder be inclined at an angle θ with the line of nane shown in Fig. 22.4. Since the crank for the second cylinder is af right angle to the first Let

$$
m=\text { Mass of the reciprocating parts per cylinder, and }
$$

$c=$ Fraction of the reciprocating parts to be balanced.
We know that unbalanced force along the line of stroke for cylinder I

$$
=(1-c) m \cdot \omega^{2} \cdot r \cos \theta
$$

Similarly, unbalanced force along the line of stroke for cylinder 2 ,

$$
=(1-c) m \cdot \omega^{2} \cdot r \cos \left(90^{\circ}+\theta\right)
$$

\therefore As per definition, the tractive force,

$$
\begin{aligned}
& F_{\mathrm{T}}=\text { Resultant unbalanced force } \\
& \text { along the line of stroke } \\
& =(1-c) m \cdot \omega^{2} \cdot r \cos \theta \\
& \quad+(1-c) m \cdot \omega^{2} \cdot r \cos \left(90^{\circ}+\theta\right) \\
& = \\
& (1-c) m \cdot \omega^{2} \cdot r(\cos \theta-\sin \theta)
\end{aligned}
$$

Fig. 22.4. Variation of tractive force.

The tractive force is maximum or mininum when $(\cos \theta-\sin \theta)$ is maximum or minitoum For $(\cos \theta-\sin \theta)$ to be maximum or mininum,

$$
\begin{aligned}
& \quad \frac{d}{d \theta}(\cos \theta-\sin \theta)=0 \quad \text { or } \quad-\sin \theta-\cos \theta=0 \text { or }-\sin \theta=\cos \theta \\
& \therefore \quad \tan \theta=-1 \text { or } \theta=135^{\circ} \text { or } 315^{\circ} \\
& \text { Thus, the tractive force is maximum or minimum when } \theta=135^{\circ} \text { or } 315^{\circ} .
\end{aligned}
$$

\therefore Maximum and minimum value of the tractive force or the variation in tractive forte

$$
\begin{aligned}
& \text { ninimum value of the tractive lorce } \\
& = \pm(1-c) m \cdot \omega^{2} \cdot r\left(\cos 135^{\circ}-\sin 135^{\circ}\right)= \pm \sqrt{2}\left(1-c^{\circ}\right) m .0^{2} \cdot r
\end{aligned}
$$

22.7. Swaying Couple

The unthatanced foreses atong the line of stroke for the two cylinders constitute a cumph ahout the eemre line $\gamma \gamma$ between the cylinders as shown in Fig. 22.5.

This comple har swaying effect ahour a verical axis. and tends to sway the engine alternater, in clockwise and anticlockwise directions. Hence the couple is known as swaying couple.

Let $a=$ Distance hetween the centre lines of the two cylinders.
\therefore Swaying couple

$$
\begin{aligned}
= & (1-c) m \cdot \omega^{2} \cdot r \cos \theta \times \frac{a}{2} \\
& \quad-(1-c) m \cdot \omega^{2} \cdot r \cos \left(90^{\circ}+\theta\right) \frac{a}{2} \\
= & (1-c) m \cdot \omega^{2} \cdot r \times \frac{a}{2}(\cos \theta+\sin \theta)
\end{aligned}
$$

Fig. 22.5. Swaying couple. $(\cos \theta+\sin \theta)$ is maximum or minimum. For $(\cos \theta+\sin \theta)$ to be maximum or minimum,

$$
\begin{array}{ll}
& \frac{d}{d \theta}(\cos \theta+\sin \theta)=0 \\
\therefore \quad \text { or } & -\sin \theta+\cos \theta=0 \text { or }-\sin \theta=-\cos \theta \\
\therefore \quad \tan \theta=1 & \text { or } \theta=45^{\circ} \text { or } 225^{\circ}
\end{array}
$$

Thus, the swaying couple is maximum or minimum when $\theta=45^{\circ}$ or 225°.
\therefore Maximum and minimum value of the swaying couple

$$
= \pm(1-c) m \cdot \omega^{2} \cdot r \times \frac{a}{2}\left(\cos 45^{\circ}+\sin 45^{\circ}\right)= \pm \frac{a}{\sqrt{2}}(1-c) m \cdot \omega^{2} \cdot r
$$

Note: In order to reduce the magnitude of the swaying couple, revolving balancing masses are introduced. But, as discussed in the previous article, the revolving balancing masses cause unbalanced forces to act right angles to the line of stroke. These forces vary the downward pressure of the wheels on the rails and cause oscillation of the locomotive in a vertical plane about a horizontal axis. Since a swaying couple is mure harmful than an oscillating couple, therefore a value of ' c ' from $2 / 3$ to $3 / 4$, in two-cylinder locomotives with two pairs of coupled wheels, is usually used. But in large four cylinder locomotives with three or more pair of coupled wheels, the value of ' c ' is taken as $2 / 5$.

22.8. Hammer Blow

We have already discussed that the maximum magnitude of the unbalanced force along the perpendicular to the line of stroke is known as hammer blow.

We know that the unbalanced force along the perpendicular to the line of stroke due to the balancing mass B, at a radius b, in order to balance reciprocating parts only is $B \cdot \omega^{2} \cdot b \sin \theta$. This force will be maximum when $\sin \theta$ is unity, i.e. when $\theta=90^{\circ}$ or 270°.

$$
\therefore \quad \text { Hammer blow }=B \cdot \omega^{2} \cdot b
$$

(Substituiting $\sin \theta=11$
The effect of hammer blow is to cause the variation in pressure between the wheel and the rail. This variation is shown in Fig. 22.6, for one revolution of the wheel.

Let P be the downward pressure on the rails (or static wheel load). \therefore Net pressure becween the wheel und the mi!

$$
=P \pm B \cdot \omega^{2} \cdot b
$$

Fig. 22.6. Hatmmer blow.

* If $\left(P-B .0^{2} . b\right)$ is negative, then the wheel will be lifted from the rails. Thercfore the limiting andition in order that the wheel does not lift from the rails is given by

$$
P=B \cdot \omega^{2} b
$$

and the permissible value of the angular speed,

$$
\omega=\sqrt{\frac{P}{B b}}
$$

Example 22.2. An inside cylinder locomotive has its cylinder centre lines 0.7 m apart and ms a sroke of 0.6 m . The rotating masses per cyinder are equivalent to 150 kg at the crank pin. and the reciprocating masses per cylinder to 180 kg . The wheel centre lines are 1.5 m apart. The cranks are at right angles.

The whole of the rotating and $2 / 3$ of the reciproming nursses are to be balanced by masses placed at a rudins of 0.6 m . Find the magnitude and direction of the belancing masses.

Find the fluctuation in rail pressure inder one whed, variation of tractive effort and the magnitude of suaimg couple at a crank speed of 300 r.p.m.

Solution. Given : $a=0.7 \mathrm{~m} ; l_{\mathrm{B}}=l_{\mathrm{C}}=0.6 \mathrm{~m}$ or $r_{\mathrm{B}}=\mathrm{r}_{\mathrm{c}}=0.3 \mathrm{~m} ; m_{1}=150 \mathrm{~kg} ; m_{2}=180 \mathrm{~kg}$; $t=2 / 3 ; r_{\mathrm{A}}=r_{\mathrm{D}}=0.6 \mathrm{~m} ; N=300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $0=2 \pi \times 300 / 60=31.42 \mathrm{rad} / \mathrm{s}$

We know that the equivalent mass of the rotating pats to be balanced per cylinder at the crank pin,

$$
m=m_{\mathrm{B}}=m_{\mathrm{C}}=m_{1}+c m_{2}=150+\frac{2}{3} \times 180=270 \mathrm{~kg}
$$

Hagnitude and direction of the balancing masses
Let $\quad m_{A}$ and $m_{D}=$ Magnitude of the balancing
masses
θ_{A} and $\theta_{D}=$ Angular position of the balancing masses m_{A} and m_{D} from the first crank B.

This Brinel hardness testing machine is used to test the hardness of the metal.
Note : This picture is given as additional information.

The nagnitude and direction of the kulameing masses may te determinet graphicaily a discussed below:

1. Fins of all. draw the space diagrom to show the prositions of the planes of the wheek and the cylinden. as shown in Fig. 22.7 (a). Since the eramhs of the eylinders are al neghe angles, therefore assuming the powition of eramh of the eytinder A in the horionotal dires. tion, draw $O C$ and $O B$ at right angles to eath oher as shown in lige. 22.7 (m).
2. Tabulate the data as given in the following table. Assume the phate of wheel A os the reference plane.

Table 22.1

Plane (1)	mass. (m) kg (2)	Radius (r)m (3)	$\begin{aligned} & \text { Cem. forre }+0^{2} \\ & (m . r) \mathrm{kr}-\mathrm{m} \\ & (4) \end{aligned}$	Distance flomm plane A (i)m (5)	$\begin{gathered} \text { Couple }+\infty^{3} \\ (m . r .1) h_{k-m^{\prime}} \\ 16) \end{gathered}$
A (R.P.)	$m_{\text {A }}$	0.6	0.6 ma	0	0
B	270	0.3	81	0.4	32.4
C	270	0.3	81	1.1	89.1
D	m_{D}	0.6	$0.6 m_{0}$	1.5	0.9 mm

3. Now, draw the couple polygon trom the data given in Tabte 22.1 (column (6). to sume suitable scale, as shown in Fig 22.7 (c). The closing side $c^{\prime} 0^{\prime}$ represents the bulaming couple and it is proportional to $0.9 \mathrm{mo}_{\mathrm{o}}$. Therefore, by mensurement,

$$
0.9 m_{D}=\text { vector } c^{\prime} o^{\prime}=94.5 \mathrm{~kg}-\mathrm{m}^{2} \text { or } m_{\mathrm{D}}=105 \mathrm{~kg} \text { Ans. }
$$

(a) Position of planes.

(c) Couple polygon.

(b) Angular pusition of masscs.

(d) Furce polygon.

Fig. 227 prilel to vector $c^{\prime \prime} \sigma^{\prime}$. By meauremera.

$$
\theta_{\mathrm{D}}=25 \mathrm{Cr}_{\mathrm{A}} \mathrm{ma}
$$

afo onder to find the balancing mass A. draw the force pationem from the dara grven on
 mapesents the balancing force and it is pripimikmal wish m_{A}. Thezefire thy memaremem.

 pradiel to vector do. By measuremem.

$$
\theta_{A}=200^{\circ} \mathrm{Ans}
$$

in rail pressure
We know that each balancing mass

$$
=105 \mathrm{~kg}
$$

- Balancing mass for rotating masses,

$$
=\frac{m_{1}}{m} \times 105=\frac{150}{270} \times 105=58.3 \mathrm{~kg}
$$

al beancing mass for reciprocating masses,

$$
B=\frac{c m_{2}}{m} \times 105=\frac{2}{3} \times \frac{180}{270} \times 105=46.6 \mathrm{~kg}
$$

This balancing mass of 46.6 kg for reciprocating masser gives rise to the centrifugal force.
\therefore Fluctuation in rail pressure or hammer blow

$$
=B . \omega^{2} b=46.6(31.42)^{2} 0.6=27602 \mathrm{~N} \text { Ans. } \quad-\left(\because b=r_{A}=r_{D}\right)
$$

Tintion of tractive effort
We know that maximum variation of tractive effort

$$
\begin{aligned}
& = \pm \sqrt{2}(1-c) m_{2} \cdot\left(\omega^{2} s= \pm \sqrt{2}\left(1-\frac{2}{3}\right) 180(31.42)^{2} 0.3 \mathrm{~N}\right. \\
& = \pm 25127 \mathrm{~N} \text { Ans. } \quad-\left(\because r=r_{2}=r_{c}\right)
\end{aligned}
$$

Sorying couple
We know that maximum swaying couple

$$
\begin{aligned}
& =\frac{a(1-c)}{\sqrt{2}} \times m_{2} \cdot\left(0^{2} \cdot r=\frac{0.7\left(1-\frac{2}{3}\right)}{\sqrt{2}} \times 180 \times 31.42\right)^{2} 0.3 \mathrm{~N}-\mathrm{m} \\
& =8797 \mathrm{~N}-\mathrm{m} \text { Ans. }
\end{aligned}
$$

Example 22.3 The three cranks of a three cyinder locomorive are all on the same axde met at 120°. The pitch of the cylinders is 1 metre and the stmke of each piston is 0.6 m . The rener ofing masses are 300 kg for inside cylinder and 260 kg for each outside cylinder and the of rotation of the balance masses are 0.8 m from the inside crank
1540% of the reciprocating parts are to be balanced. find:

- L. the magnitude and the position of the balancing masses required at a radius of 0.6 m :

2. the hammer blow per wheel when the axle makes 6 r.p.s.

868 - Thewy of Maximines

 $=6 \times 2 \pi=37.7 \mathrm{rad} / \mathrm{s}$

Since 41 Th of the reciproxating masces are to be halanced, therefore mass of the reciperina ing parts to he halanced for each outside cylinder.

$$
\begin{aligned}
& d \text { for each outside cylinet. } \\
& m_{A}=m_{C}=c \times m_{O}=0.4 \times 260=104 \mathrm{~kg}
\end{aligned}
$$

and mass of the reciprocating parts to be balanced for inside cylinder,

$$
m_{0}=c \times m_{1}=0.4 \times 300=120 \mathrm{~kg}
$$

1. Magnitude and position of the balancing masses

Let $\quad B_{1}$ and $B_{2}=$ Magnitude of the balancing masses in kg ,
θ_{1} and $\theta_{2}=$ Angular position of the balancing masses B_{1} and B_{2} from crank A. The magnitude and position of the balancing masses may be determined graphically x discussed below :

1. First of all, draw the position of planes and cranks as shown in Fig. 22.8 (a) and (b) respectively. The position of crank A is assumed in the horizontal direction.
2. Tabulate the data as given in the following table. Assume the plane of balancing mass B_{1} (i.e. plane 1) as the reference plane.

Table 22.2

Plane (1)	$\begin{aligned} & \text { Mass } \\ & (m) k g \end{aligned}$ (2)	Radius (r) m (3)	$\begin{aligned} & \text { Cent. force }+\omega^{2} \\ & \text { (m.r) } \mathrm{kg}-\mathrm{m} \\ & \text { (4) } \end{aligned}$	Distunce from planel (l)m (5)	$\begin{aligned} & \text { Couple }+\omega^{2} \\ & \text { (m.r.L) } \mathrm{kg} \cdot \mathrm{~m}^{2} \\ & \text { (6) } \end{aligned}$
A	104	0.3	31.2	-0.2	
1 (R.P.)	B_{1}	0.6	$0.6 B_{1}$	0.8	28.8
B	120	0.3	36	0.8	28
2	B_{2}	0.6	$0.6 B_{2}$	18	$0.96 \mathrm{~B}_{2}$ 56.16
C	104	0.3	31.2		

3. Now draw the couple polygon with the data given in Table 22.2 (column 6), to some suitable scale, as shown in Fig. 22.8 (c). The closing side $c^{\prime} o^{\prime}$ represents the balancing couple and it is proportional to $0.96 B_{2}$. Therefore, by measurement,

$$
0.96 B_{2}=\text { vector } c^{\prime} o^{\prime}=55.2 \mathrm{~kg}-\mathrm{m}^{2} \text { or } B_{2}=57.5 \mathrm{~kg} \text { Ans. }
$$

4. To determine the angular position of the balancing mass B_{2}, draw $O B_{2}$ parallel to vector $c^{\prime} O^{\prime}$ as shown in Fig. 22.8 (b). By measurement,

$$
\theta_{2}=24^{\circ} \text { Ans. }
$$

5. In order to find the balance mass B_{1}, draw the force polygon with the data given in Table 22.2 (column 4), to some suitable scale, as shown in Fig. 22.8 (d). The closing side co represents the balancing force and it is proportional to $0.6 B_{1}$. Therefore, by measurement

$$
0.6 B_{1}=\text { vector } c o=34.5 \mathrm{~kg}-\mathrm{m} \text { or } B_{1}=57.5 \mathrm{~kg} \text { Ans. }
$$

6. To determine the angular position of the balancing mass B_{1}, draw $O B_{1}$ parallel to vector co, as shown in Fig. 22.8 (b). By measurement,

$$
\theta_{1}=215^{\circ} \text { Ans. }
$$

(a) Position of planes.

(c) Couple polygon.

(b) Poxtion of ctanks.

(d) Force polygon.

Fig. 22.8

Hammer blow per wheel
We know that hammer blow per wheel

This chamber is used to test the acoustics of a vehicie so that the noise it produces can be reduced The panels in the wals and which of the room abonitored (above)
is monilored (abicture is given as additional intormaton
22.4. The following data refer to two cyinder locomotive win rumbs at wher wher
$=0.3 \mathrm{~m}$: Drive wher Reciprocating mass per cylinder $=300 \mathrm{~kg} ; \mathrm{Crank}$ ram ; Distunce le tovern the dra ims
 wheel central planes $=1.55 \mathrm{~m}$.
 4 nol to exceed 46 kN at 96.5 km . p.h. ;
maving couple.
hlow $=46 \mathrm{hN}=4\left(1.2 x_{2} 10^{9} \mathrm{~N} ; v=40.5 \mathrm{~km} / \mathrm{h}=20.8 \mathrm{~m} / \mathrm{s}\right.$

1. Fraction of the reciprocating masses to be halanced

Let $\quad c=$ Fraction of the reciprocating masses to be batanced, and $B=$ Magnitude of balancing mass placed at each of the driving wheels al ridius b.
We know that the mass of the reciprocating parts to be balanced

$$
=c \cdot m=300 c \mathrm{~kg}
$$

(b) Position of cranks.
(a) Position of planes.

Fig. 22.9
The position of planes of the wheels and cylinders is shown in Fig. 22.9 (a), and the position of cranks is shown in Fig 22.9 (b). Assuming the plane of wheel A as the reference plane, the data may be tabulated as below:

Table 22.3

Plane (I)	Mass (m) kg (2)	Radius (r) m (3)	Cent. force $\div \omega^{2}$ (m, r) $\mathrm{kg}-\mathrm{m}$ (4)	Distance from plane A (l)m (5)	$\begin{aligned} & \text { Couple } \div \omega^{2} \\ & \text { (m.r.l.) } \mathrm{kg}-\mathrm{m}^{2} \\ & \text { (6) } \end{aligned}$
$\begin{gathered} A(R . P .) \\ B \\ C \\ D \end{gathered}$	$\begin{gathered} B \\ 300 c \\ 300 c \\ B \end{gathered}$	$\begin{gathered} b \\ 0.3 \\ 0.3 \\ b \end{gathered}$	$\begin{gathered} B . b \\ 90 c \\ 90 c \\ B . b \end{gathered}$	$\begin{gathered} 0 \\ 0.45 \\ 1.1 \\ 1.55 \end{gathered}$	$\begin{gathered} 0 \\ 40.5 c \\ 99 c \\ 1.55 B b \\ \hline \end{gathered}$

Now the couple polygon, to some suitable scale, may be drawn with the data given in Table 22.3 (column 6), as shown in Fig. 22.10. The closing side of the polygon (vector c'o') represents the balancing couple and is proportional to 1.55 B.b.

From the couple polygon,

$$
\begin{array}{rlrl}
& 1.55 B b & =\sqrt{(40.5 c)^{2}+(99 c)^{2}}=107 c \\
& \therefore & B . b & =107 c / 1.55=69 c
\end{array}
$$

We know that angular speed,

$$
\omega=v / R=26.8 / 0.9=29.8 \mathrm{rad} / \mathrm{s}
$$

\therefore Hammer blow,

$$
\begin{array}{rlrl}
& & 46 \times 10^{3} & =B . \omega^{2} \cdot b \\
& =69 c(29.8)^{2}=61275 c \\
\therefore \quad & c & =46 \times 10^{3} / 61275=0.751 \text { Ans. }
\end{array}
$$

Fig. 22.10
midifit in mactive effort
We $\mathrm{know}^{\mathrm{w}}$ that variation in tractive effort

$$
\begin{aligned}
& = \pm \sqrt{2}(1-c) m \cdot \omega^{2}, r= \pm \sqrt{2}(1-0.751) 300(29.8)^{2} 0.3 \\
& =28140 \mathrm{~N}=28.14 \mathrm{kN} \text { Ans. }
\end{aligned}
$$

mant swaing couple
We know the maximum swaying couple

$$
\begin{aligned}
& =\frac{a(1-c)}{\sqrt{2}} \times m \cdot \omega^{2^{\prime \prime}} \cdot r=\frac{0.65(1-0.75!)}{\sqrt{2}} \times 300(29.8)^{2} 0.3=9148 \mathrm{~N}-\mathrm{m} \\
& =9.148 \mathrm{kN}-\mathrm{m} \text { Ans. }
\end{aligned}
$$

Example 22.5. The following data apply to an outside cylinder uncoupled loconotive:
Mass of rotating parts per cylinder $=360 \mathrm{~kg}$; Mass of reciprocating parts per cylinder $=300 \mathrm{~kg}$: Angle between cranks $=90^{\circ}$; Crank radius $=0.3 \mathrm{~m} ;$ Cyinder centres $=1.75 \mathrm{~m}$; Padilus of balance masses $=0.75 \mathrm{~m}$; Wheel centres $=1.45 \mathrm{~m}$.

If whole of the rotating and wo-thirds of reciprocating paris'are to be balanced in planes of the driving wheels, find:
I. Magnitude and angular positions of balance masses,
2. Speed in kilometres per hour at which the wheel will lifi off the rails when the loud on rath driving wheel is 30 kN and the diameter of troud of driving wheels is 1.8 m , and
3. Swaying couple at speed arrived at in (2) above.

Solution : Given : $m_{1}=360 \mathrm{~kg} ; m_{2}=300 \mathrm{~kg} ; \angle A O D=90^{\circ} ; r_{\mathrm{A}}=r_{\mathrm{D}}=0.3 \mathrm{~m}$; $\theta=1.75 \mathrm{~m} ; r_{\mathrm{B}}=r_{\mathrm{C}}=0.75 \mathrm{~m} ; c=2 / 3$.

We know that the equivalent mass of the rotating parts to be balanced per cylinder,

$$
m=m_{\mathrm{A}}=m_{\mathrm{D}}=m_{1}+c \cdot m_{2}=360+\frac{2}{3} \times 300=560 \mathrm{~kg}
$$

1. Magnitude and angular position of balance masses

‥ Let m_{B} and $m_{\mathrm{C}}=$ Magnitude of the balance masses, and
θ_{B} and $\theta_{C}=$ angular position of the balance masses m_{B} and m_{C} from the crank A.
The magnitude and direction of the balance masses may be determined. graphically, as discussed below :

1. First of all, draw the positions of the planes of the wheels and the cylinders as shown in Fig. 22.11 (a). Since the cranks of the two cylinders are at right angles. therefore assuming the position of the cylinder A in the horizontal direction, draw $O A$ and $O D$ at right angles to each other as shown in Fig. 22.11 (b).
2. Assuming the plane of wheel \dot{B} as the reference plane. the data may be tabulated as below:

Table 22.4

Plane (1)	Mans (m) AR (1)	Radiur (r) m (3)	fens. forie $+\left(0^{2}\right.$ (4)	Pistance from plane $B(t) m$ (5)	Couple + cn^{2} (m,r.) $\mathrm{K}_{\mathrm{B}} \mathrm{m} \mathrm{m}^{\prime}$ (8)
A	S00	0.1	108	-0.15	
$B(R . P)$	m_{H}	0.75	$0.75 \mathrm{~m}_{11}$	0	0
C	m_{c}.	0.79	$0.76 \mathrm{~m}_{\mathrm{c}}$.	1.45	1.08
D	\$60	0.3	168	1.6	26H.4

3. Now draw the couple polygon with the data given in 'Table 22.4 column (6), 10 snone suitable scule as shown in Fig. $22.11\left({ }^{\prime}\right)$. The clowing side $d^{\prime} o^{\prime}$ represents the bulaneing couple and it is proponional to $1.08 \mathrm{~m}_{\mathrm{C}}$. Therefore, by mensurement,
$1.08 m_{\mathrm{C}}=269.6 \mathrm{~kg}-\mathrm{m}^{2} \quad$ or $m_{\mathrm{C}}=249 \mathrm{~kg}$ Ans.

Fig. 22.11
4. To determine the angular position of the balancing mass C, draw $O C$ parallel to vector $d^{\prime} o^{\prime}$ as shown in Fig. 22.11 (b). By measurement,

$$
\theta_{C}=275^{\circ} \text { Ans. }
$$

5. In order to find the balancing mass B. draw the force polygon with the data given in Table 22.4 column (4), to some suitable scale, as shown in Fig. 22.11 (d). The vector co represents
me balancing force and it is proportional to 0.75 m . Therefore. by measurerneon.

$$
0.75 m_{\mathrm{B}}=186.75 \mathrm{~kg} \cdot \mathrm{~m} \text { or } m_{\mathrm{B}}=249 \mathrm{~kg} \text { A } \mathrm{m} \text {. }
$$

6. To determine the angular position of the balancing mass B. draw $O B$ perallei io vector ac as shown Fig. 22.11 (b). By measurement.

$$
\theta_{\mathbf{B}}=174.5^{\circ} \mathrm{Ans} .
$$

: Sed or which

$$
P=30 \mathrm{kN}=30 \times 10^{3} \mathrm{~N}: D=1.8 \mathrm{~m}
$$

$\omega=$ Angular speed at which the wheels will lift off the rails in rad/s, and $v=$ Corresponding linear speed in km / h.
We know that each balancing mass,

$$
m_{\mathrm{B}}=m_{\mathrm{C}}=249 \mathrm{~kg}
$$

Balancing mass for reciprocating parts,
\therefore

$$
B=\frac{c m_{2}}{m} \times 249=\frac{2}{3} \times \frac{300}{560} \times 249=89 \mathrm{~kg}
$$

We know that

$$
\omega=\sqrt{\frac{P}{B . b}}=\sqrt{\frac{30 \times 10^{3}}{89 \times 0.75}}=21.2 \mathrm{rad} / \mathrm{s} \quad \ldots\left(\because b=r_{\mathrm{B}}=r_{\mathrm{c}}\right)
$$

w

$$
\begin{aligned}
v & =\omega \times D / 2=21.2 \times 1.8 / 2=19.08 \mathrm{~m} / \mathrm{s} \\
& =19.08 \times 3600 / 1000=68.7 \mathrm{~km} / \mathrm{h} \text { Ans. }
\end{aligned}
$$

13 waying couple at speed $\omega=21.1 \mathrm{rad} / \mathrm{s}$
We know that the swaying couple

$$
\begin{aligned}
& =\frac{a(1-c)}{\sqrt{2}} \times m_{2} \cdot \omega^{2} \cdot r=\frac{1.75\left[1-\frac{2}{3}\right]}{\sqrt{2}} \times 300(21.2)^{2} 0.3 \mathrm{~N}-\mathrm{m} \\
& =16687 \mathrm{~N}-\mathrm{m}=16.687 \mathrm{kN}-\mathrm{m} \text { Ans. }
\end{aligned}
$$

29. Balancing of Coupled locomotives

The uncoupled locomotives as disoussed in the previous article, are orsotele now-a-days. In a coupled heomotive, the driving wheels are cancected to the leading and trailing thels by an outside coupling rod. By whan arrangement, a greater portion dithe engine mass is utilised by tractive mposes. In coupled locomotives, the toupling rod cranks are placed metrically opposite to the adjacent ${ }^{m}$ cranks (i.e. driving cranks). The mopling rods together with cranks and Whay be treated as rotating masses

A dynamo converts mechanical energy inlo electrical energy.
Note : This picture is given as additional information.

Governs. 1 a device used to maintaining a const mean sexed iv rotator of the crank-shaft over long periods during which the boil on the engine may vary. When the load on the engine Muses, the. spend of the engine will decrease.

The garennor will act in such a way that if will increase the suppo'y of Nivilung fluted. Stmilarly when tine load on the argive decreases. the spaced of the eng ur inoredies. Then the governor will act ir i suite is way that the supply of working skuld decreclec. Tires in e mesic specie of rotation of the englue well be maenraturci corritant as closely as possible over a long period.

The function do a furwinees is to kent the fluctuation of speed during each cycle which arises from the fluctuations of turning moment on the crank-shaft. The' flywinee does not control the speed vartattens caned by a varus hoad.

The function to governor is to control the mean speed of rotation over a long period due to the variates of load. The governor has no influence over cyclic speed fluctuations.

Types of Goverwaris,
(i) Centretugai governors and
(ii) senertie goverwase.

In centeffugal governess, the two or more wares lewours as govenwor balls are cameo to meroive abrivt the axis do sumgait, which is dover by the engine crankshaft through bevel years. when gevenno: balls are revolving at a uniform speed, tine. centrifugal force on the balls is equal to the inward controlling
force. The inwards controlling force, is provided by a dead weight a spring or a combination of the two.

In cure of inertia governors, the governor bails ard ix arrouged that the inertia forms cawed by an ougriar accelerates or retardation of the governor shake, tend to alder their positions. Centrifugal Governors

Fig shows the line diagram of a centrifugal governor, which consists of two balls of equal wares (governor balls) attacked to the two arms. The upper ends of the arms are peroted to a spindle, which is dituren by the engtue through bevel gears. The lower arms (inks) are connected to a sleeve which is keyed to the spindle. The sleeve revolves with the spludle, but can slide up and down. The two stops s_{1} and S_{2} on the speudle prevents the upwards and downward motion of the sleave. The sleave is connected by a bell crank lever to a throttle valve, which controls the supply of the working fluted. when sleeve ruses, the supply of the working flute decreases and when sleeve. falls, the supply of thee worleng fluid increases.

When the load on the engine decreases, the speed of the engine increases. Ar the spindle of the governor is dixies by dive. engine, hemic the speed of the spindle also increases. This wet t increase the centrifugal force on the governor walls and the balls. well move outwards. Dice to the movement if balls outwards the sleeve wall the upwards. The movement if balls outwards the operate a throttle valve upward movement of the sleeve wi!! reduce the supply at the cinereind if the bell cranic lever to valve opening.

Similarly when inc load on the eugene increases, the speed of the engine decreases. Lino she speed of the spludle of the governor decreases. Hence the centrifugal force on the governor balls well alto decrease. The balls of the governor ustll move inwards and hence the sleeve will more downwards. The downward movement do. the sleeve well increase the supply do the worleing shed by tncreasew the opening dy the throttle valve and thus the engine speed is
increased.
Types of centrifugal Governors

Watt Governor

Fig shows the simplest form of a centrifugal governor, which is known as 'watt governor'. It is the original form of governor weal by watt on some of his carly steam engines. It commits \therefore a patio of tue balls which are attached to the sptwale with the help of lenis or arms. The upperlinkes (arms) are petrine. as prase 0 whereas the lower links are fixed to stu e sloe which is tres to move on the vertical spsudle. The sptwatle is drin by the withe. As the spondee rotates, the bolls) twice up a posseton depending woo the speed of the spempili.

Let $m=$ mass of cash ball

$$
w=\text { wit do each ball }=m \cdot g
$$

$$
T=\text { Tension in the whim }
$$

$$
\omega=\text { Angular velocity st the balls, arms and ice stave }
$$

$$
r=\text { Redial dutance t Ho ball centre from spendle-axs? }
$$ le rodin of the patty of rotation of the ball.

$h=$ Height of the governor ic the vertical distance from the centre of the ball to the point of intersection of sis. riper aims along two axis of the spindle..
with the increase of the speed, the height of govemer (te in) decreases, wikis as with the decrease of the speed., the heglut h increases.
frsurming the wit, of the wrists, ethics and. the sleeve to be negitgible as compared. to the wit of ball, each ball wall be in equilibrium under the aether of frilowing forces.
(i) the centretugal force, f_{c} active t on the ball wine $f_{c}=m \times w^{2} \times r$
(ii) the $w+d y$ ball, $w=m \times g$
(III) the tension T in the upper arm.

There well be no tension in the lower link if sleeve is assumed to be massless and also friction ts neglected.

Revolving the forces acting on the ball in leoreontal direction,

$$
T \operatorname{sen} \theta=f_{c}=m \times \omega^{2} \times r-\longrightarrow(1)
$$

Revolving forces in vertical devectern

$$
\begin{equation*}
T \cos \theta=w=m \times g \quad \rightarrow \tag{2}
\end{equation*}
$$

Durdeng if u (2) we get

$$
\frac{t \operatorname{sen} \theta}{t \cos \theta}=\frac{m \omega^{2} \times x}{\sin g}
$$

$$
\tan \theta=\frac{\omega^{2} \times r}{g}
$$

But from fey we have

$$
\begin{aligned}
& \tan \theta=\frac{r}{h} \\
& \therefore \quad \frac{\omega^{2} k r}{g}=\frac{r}{h} \\
& h=\frac{x^{2} \times 9}{\omega^{2} \times y}=\frac{9}{\omega^{2}}
\end{aligned}
$$

If g is taken in $\mathrm{m} / \mathrm{s}^{2}$ and ω in $\mathrm{rad} / \mathrm{s}$, then h well be in mots. If N is the speed in r.p.m, then $\omega=\frac{2 \pi N}{60}$

$$
\begin{aligned}
\therefore \quad h & =\frac{9.81}{\left(\frac{2 \pi N}{60}\right)^{2}}=9.81 \times\left(\frac{60}{2 \pi}\right)^{2} \times \frac{1}{N^{2}} \\
h & =\frac{895}{N^{2}}
\end{aligned}
$$

from san it is clear that height of a watt governor is inversely propertenal to the square of the speed. Therefore at high speeds, she value of h is very small. for ' $2 x$ if $N=50 \mathrm{r} . \mathrm{m}$ then $h=\frac{895}{50^{2}}=0.358 \mathrm{~m}=35.8 \mathrm{~cm}$. But if $\mathrm{N}=300$ then $h=\left(\frac{898^{\prime}}{300^{2}}\right)$ $=0.0099 \mathrm{~m}=0.99 \mathrm{~cm}$. Hence this governor works sates factorely at low speeds te from 50 to $85 \mathrm{r} . \mathrm{p} . \mathrm{m}$.

Determine (II) war speed (iI) min speed (III) range of speed of a watt governor do open-arm, type shown in fig (c) (in which bough
 from to to 30°.
lough $A C=200 \mathrm{~mm}, \quad E F=30 \mathrm{~min}$,

$$
\begin{aligned}
\therefore \quad E G_{1} & =\frac{E F}{2}=\frac{30}{2}=15 \mathrm{~mm} \\
\theta & =40^{\circ} \text { \& } 30^{\circ} \\
\therefore \quad \theta_{1} & =40^{\circ} \text { ह } \theta_{2}=30^{\circ}
\end{aligned}
$$

(1) max speed.

$$
\begin{aligned}
& \text { height a speed of governor is } h=\frac{895}{N^{2}} \\
& h=B G+G O \\
& \text { inst } B G=E L=A E \cos \theta=200 \cos \theta \\
& \text { and } O G \text { fem tranglo } O E G \text {, } \tan \theta=\frac{E G}{O G} \\
& O G=\frac{E G}{\tan \theta}=\frac{15}{\tan \theta} \\
& \therefore h=B G+\operatorname{CiO}=200 \cos \theta+\frac{15}{\tan \theta} \\
& h_{1}=\frac{895}{N_{1}{ }^{2}} \\
& N_{1}{ }^{2}=\frac{895}{h_{1}} \text {, when } \theta=40^{\circ} \\
& h_{1}=200 \cos 40^{\circ}+\frac{18}{\tan 40^{\circ}}=171.07 \mathrm{~mm}=0.17+107 \mathrm{r} \\
& \therefore N_{1}{ }^{2}=\frac{895}{0.17107}=5231.776 \\
& N_{1}=\sqrt{5231.776}=72.33 \mathrm{r.p.m}
\end{aligned}
$$

Men) speed $\left(\mathrm{N}_{2}\right)$

$$
\begin{aligned}
& h_{2}=200 \cos 30^{\circ}+\frac{15}{\tan 30^{\circ}}=199.18 \mathrm{~mm}=0.19918 \mathrm{~m} \\
& N_{2}^{2}=\frac{895}{h_{2}}=\frac{895}{0.19918}=4493.42 \\
& N_{2}=\sqrt{4443.42}=67.03 \mathrm{rPm}
\end{aligned}
$$

Range of speed

$$
\begin{aligned}
& =\text { Max speed -min spaced } \\
& =N_{1}-N_{2} \\
& =72.33-67.03=5.3 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{~m}
\end{aligned}
$$

Sig y shows the diagram of a parker governor. In cist of pork governor, a central heavy wad in attackeck to the sleeve. The central load and sleeve moves up and down the spindle.
let $M=$ mass of Cental wash
$W_{i}=$ weight of central least $=M \times g$
$w=w^{\text {t }}$ of each ball $=m \times g$
m = Mass of each ball
$h=$ Height of governor
$r=$ Ruder of rotation
$f_{c}=$ Centoctugal force on the ball $=m \cdots w^{2} \times r$
$\omega=$ Angular speech of ball $=\frac{2 \pi N}{60} \mathrm{rad} / \mathrm{s}$

$N=$ speed of ball in r.p.rsi
$T_{1}=$ Ternion in upper worm
$T_{2}=$ Tension in lower link
$x=$ Angle of incluation of the upper arm to the vertical
$\beta=$ sugle of incluatton of the lower link to the vertical $F_{f}=$ force do frection b/w sleeve and spindle.
The force of frectern obvays acts in a direction opp to that of the motion. When sleeve mover up the force of frectein acts in the downward evection. Then the total force acting on the sleeve. in the downward direction well be $\left(w+f_{f}\right)$. Similarly. When the sleeve moves down, the total force. on the sleeve well be $\left(w-f_{f}\right)$. In several, the total force acting on the sleeve will be $\left(W \pm f_{f}\right)$

$\frac{W \pm F_{f}}{2}$ depending upon whether the ster
the sleeve moves upwards or downwards. The relation bow the heeglat of governor and angular speed of ball feg(b)shows the forces actugig on lebt-houd half of the governor re. on the sleeve and on each ball.

$$
\begin{align*}
T_{2} \cos \beta & =\frac{w+t_{1}}{2} \\
\text { or } & =\frac{\omega+t_{f}}{2 \cos \beta}
\end{align*}
$$

Now, considerang the equelistiom, of left ball, Reiclve the forees vertically

$$
T_{1} \cos x=\omega+T_{2} \cos \beta \rightarrow(2)
$$

Resolve the fores horizantally,

$$
T_{1} \sin \alpha+T_{2} \sin \beta=f_{c} \longrightarrow \text { (3) }
$$

or $\quad T_{i} \sin \alpha+\left(\frac{\omega \pm f_{f}}{2 \cos \beta}\right) \operatorname{sen} \beta=f_{c}$

$$
T_{1} \operatorname{sen} \alpha=f_{c}-\left(\frac{w \pm f_{i}}{2}\right) \tan \beta \rightarrow \text { (4) }
$$

The tension T_{1} can be elemntuated from sams (2) 4 (4)
Dindeng (4) by (2)

$$
\begin{gathered}
\frac{X_{1} \sin \alpha}{X_{1} \cos x}=\frac{f_{c}-\left(\frac{w \pm f_{f}}{2}\right) \tan \beta}{w+T_{2} \cos \beta} \\
\operatorname{Tan} x=\frac{f_{c}-\left(\frac{w \pm f_{f}}{2}\right) \tan \beta}{w+\left(\frac{w \pm f_{f}}{2 \cos \beta}\right) \cos \beta} \\
\left(w+\frac{w \pm f_{f}}{2}\right) \tan \alpha=f_{c}-\left(\frac{w \pm f_{f}}{2}\right) \tan \beta \\
\left(w+\frac{w \pm f_{f}}{2}\right)=\frac{f_{c}}{\tan \alpha}-\left(\frac{w \pm f_{f}}{2}\right) \frac{\tan \beta}{\tan \alpha} \\
\cot \frac{\tan \beta}{\tan \alpha}=k \\
\left(w+\frac{w \pm f_{f}}{2}\right)=\frac{f_{c}}{\tan \alpha}-\left(\frac{w \pm f_{f}}{2}\right) \times k
\end{gathered}
$$

or
or

But from frg (b), $\tan \alpha=\frac{r}{h}$

$$
\begin{aligned}
& \left(w+\frac{w \pm f_{f}}{2}\right)=\frac{f_{c} \times h}{r}-\left(\frac{w \pm f_{f}}{2}\right) \times k \\
& =\frac{m \times \omega^{2} \times r \times h}{x}-\left(\frac{w \pm F_{f}}{2}\right) \times k \\
& \left(m \times g+\frac{M \times g \pm F_{f}}{2}\right)=m+w^{2} \times h-\left(\frac{M \times g \pm f_{f}}{2}\right) \times k \\
& m \times g+\frac{M \times 9 \pm f_{f}}{2}+\left(\frac{M \times g \pm f_{f}}{2}\right) \times k=m \times \omega^{2} \times h \\
& m \times g+\frac{M \times g \pm f_{i}}{2}(1+k)=m \times w^{2} \times h \\
& \omega^{2}=\frac{m \times g+\left(\frac{M \times g \pm f_{f}}{2}\right)(1+k)}{m h} \\
& \omega^{2}=\frac{w+\left(\frac{w \pm f_{f}}{2}\right)(1+k)}{w} \times \frac{g}{h} \\
& \text { deveding by } g^{\sum} \text {, }
\end{aligned}
$$

Instantamesus Centre Method
In this method, the equilibrium of the lowed arm $A C$ is consdelered. The forcion acting on the lower sam $A C$ are
(i) Centrifugal force ic through A
(ii) The wt of ball (mrg) through A, and
(iii) Halt of the wit of the sleeve ie $\frac{w}{2}$

First, the instantaneous centre of the lower corm $A C$ is obtatwed. As the pout A mover along a cercubor arc which has O as cenitice and $A O$ is radars and point c moves parallel to she.
 axis of she governor, the intantanceves centre I lies at the potent of intersection of $O A$ produced and a line drown through C perpendicular to the governor axis.

Taking. moments of forces (is fe, ing and $\frac{w}{2}$) acting on lower arm AC, about the pout I.

$$
\begin{aligned}
F_{c} \times A D & =(m \times g) \times I D+\frac{w}{2} \times I C \\
F_{c} & =(m \times g) \times \frac{I D}{A D}+\frac{w}{2} \times \frac{I C}{A D} \\
& =m \times g \times \tan \alpha+\frac{w}{2} \times\left(\frac{I D+C D}{A D}\right) \\
& =m \times g \times \tan \alpha+\frac{w}{2} \times\left(\frac{I D}{A D}+\frac{C D}{A D}\right) \\
& =m \times g \times \tan \alpha+\frac{M \times g}{2}(\tan \alpha+\tan \beta) \\
& =m \times g \times \tan x+\frac{M \times g}{2} \tan x\left(1+\frac{\tan \beta}{\tan \alpha}\right) \\
& =m \times g \times \tan \alpha+\frac{M \times g}{2} \tan \alpha(1+k) \\
& =\tan \times\left[\times \times 9+\frac{M \times g}{2}(1+k)\right]
\end{aligned}
$$

But from triangle $O A B$, tawix $=\frac{r}{h}$ and $f_{c}=m \times \omega^{2} \times r$

$$
\begin{aligned}
m \times \omega^{2} \times r & =\frac{x}{h}\left[m \times g+\frac{M \times g}{2}(1+k)\right] \\
\omega^{2} & =\frac{m \times g+\frac{M \times g}{2}(1+k)}{m \times h}
\end{aligned}
$$

If $k=1$ whech is true when $\tan x=\tan \beta$

$$
\begin{aligned}
\omega^{2} & =\frac{m \times g+M \times g}{m \times h} \\
& =\frac{(m+M) g}{m \times h}
\end{aligned}
$$

$$
\text { But } \omega=\frac{2 \pi N}{60}
$$

$$
\left(\frac{2 \pi N}{60}\right)^{2}=\frac{(m+M) g}{m \times h}
$$

$$
h=\frac{(m+M) 9}{m \times\left(\frac{2 \pi N}{60}\right)^{2}}
$$

$$
=\frac{(m+M) \times 9 \times 3600}{m \times 4 \pi^{2} \times N^{2}}
$$

$$
h=\frac{m+M}{m} \times \frac{9.81 \times 3600}{4 \pi^{2} \times N^{2}}
$$

$$
h=\frac{m+N}{m} \times \frac{894.56}{N^{2}}
$$

h is in meter.
If drectenal fores at the sleeve is taken into corxederation, when total force in general acting on C when steeve mover upwards or downwards is equal to $y_{2}(M \times 9 \pm F)$. Then

$$
\left.w^{2}=\frac{m \times g+\frac{(m \cdots g \pm f)}{2}(i+k)}{m \times h}\right]
$$

$$
\therefore \quad F_{C_{2}}=\frac{107791.7}{320.56}=336.26
$$

But

$$
F_{C_{2}}=m \times \omega_{2}^{2} \times r_{2}=3.75 \times \omega_{2}^{2} \times 0.2642
$$

$$
\therefore \quad 336.26=3.75 \times \omega_{2}^{2} \times 0.2642
$$

$$
\left(\because r_{2}=264.2 \mathrm{~mm}=0.2542_{\mathrm{E}}\right.
$$

or

$$
\omega_{2}=\sqrt{\frac{336.26}{3.75 \times 0.2642}}=18.42 \mathrm{rad} / \mathrm{s}
$$

and

$$
N_{2}=\frac{60 \times \omega_{2}}{2 \pi}=\frac{60 \times 18.42}{2 \pi}=175.92 \text { r.p.m. Ans. }
$$

15.7. Hartnell Governor

Fig. 15.12 shows a Hartnell governor, which is a spring loaded governor. Two bell-crank levers, tech carrying a ball at one end and a roller at the other, are pivoted at points O and O^{\prime} to the frame. The rollenfin into a groove in the sleeve. The frame is attached to the governor spindle and hence rotates with it. A belicel spring in compression provides equal downward forces on the two rollers through a collar on the sleeve.

Fig. 15.12
When the speed increases the radius of rotation of balls increases and the balls move away from the spindle axis. The bells are connected to the bell-crank levers which are pivoted at points O and O^{\prime}. As the bull move away from the spindle axis, the rollers (connected at the other end of the bell-crank lever) lift the sleert against the spring force. If the speed decreases, the sleeve moves downwards. The movement of the sleeve ${ }^{\text {b }}$ transferred to the throttle of the engine to control the amount of energy supplied to the engine.

Let $\quad r_{1}=$ Minimum radius of rotation of ball centre from spindle axis,
$r_{2}=$ Maximum radius of rotation of ball centre from spindle axis,
$S_{1}=$ Spring force exerted on sleeve at minimum radius,
$S_{2}=$ Spring force exerted on sleeve at maximum radius,
$m=$ Mass of each ball,
$M=$ Mass of sleeve,
$N_{1}=$ Minimum speed of governor at minimum radius,
$N_{2}=$ Maximum speed of governor at maximum radius,
(a) ${ }^{\text {and }} \mathrm{O}_{2}=$ Corresponding minimum and maximum angular velocitics
$\left(F_{\mathrm{C}}\right)_{1}=$ Centrifugal force corresponding to minimum speed $=m \times\left(\omega_{1}{ }^{2} \times r_{1}\right.$
$\left(F_{C}\right):=$ Centrifugal force corresponding to maximum speed $=m \times\left(\omega_{2}{ }^{2} \times r_{2}\right.$
$s=$ Stiffness of spring or the foree required to compress the spring by one mm,
$r=$ Distance of fulemm O from the governor axis or radius of rotation when the governor is in mid-position,
$a=$ Length of ball arm of bell-crank lever i.e. distance $O A$
$b=$ Length of sleeve arm of bell-crank lever i.e. distance $O C$.
Figs. 15.13 (a) and $15.13(b)$ shows the forces acting on the bell-crank lever in two positions i.e. at minimum radius position and at maximum radius position.

Fig. 15.13
Let $h=$ compression of the spring when radius of rotation changes from r_{1} to r_{2}. This is also known as lift of the sleeve.
(i) Position of minimum radius (Refer to Fig. 15.13 (a)).

The position of bell-crank lever at the minimum radius is shown by $A O C$ whereas the position of bell-crank lever when governor is in mid-position is shown by dotted line $A_{1} O C_{1}$.

Let $h_{1}=$ lift of sleeve i.e. vertical distance $C C_{1}$.
The angle turned by bell-crank lever between mid-position and minimum radius position is θ_{1}. This means the angle between $O A$ and $O A_{1}$ is same as between $O C$ and $O C_{1}$

$$
\frac{C C_{1}}{O C}=\frac{A A_{1}}{O A}
$$

$$
\frac{h_{1}}{b}=\frac{\left(r-r_{1}\right)}{a}
$$

$\left(\because \theta_{1}=\frac{\text { Arc }}{\text { Radius }}\right.$. For $O C C_{1}$, radius is $O C$ and arc is $\left.C C_{1}\right)$.

$$
\left(\because \quad A A_{1}=r-r_{1} ; O A=a \text { and } O C=b\right)
$$

$$
\begin{equation*}
h_{1}=\frac{b}{a}\left(r-r_{1}\right) \tag{i}
\end{equation*}
$$

(ii) Position of maximum radius (Refer to Fig. 15.13 (b))

The position of the bell-crank lever at the maximum radius is shown by $A O C$ whereas the position of bell-crank when governor is in mid-position is shown by dotted line $\mathrm{A}_{2} \mathrm{OC}_{2}$.

Let $h_{2}=$ lift of sleeve from mid-position i.e. vertical distance $C_{2} C$.
The angle turned by bell-crank lever between mid-position and maximum radius position is θ_{2}, ie. $\angle C_{2} O C=\angle A_{2} O A=0_{2}$.

$$
\begin{array}{ll}
\therefore & \theta_{2}=\frac{h_{2}}{O C}=\frac{A A_{2}}{O A} \\
& \\
& \frac{h_{2}}{b}=\frac{\left(r_{2}-r\right)}{a} \\
& \\
& l_{2}=\frac{b}{a}\left(r_{2}-r\right)
\end{array}
$$

$$
\left(\because A A_{2}=r_{2}-r_{1}\right)
$$

Adding equations (i) and (ii), we get

$$
\frac{\left(M \times g+S_{1}\right)}{2} \times b_{1}=\left(F_{C}\right)_{1} \times a_{1}-m \times g \times A A_{1}
$$

$$
\left(M \times g+S_{1}\right)=\frac{2}{b_{1}}\left[\left(F_{C}\right)_{1} \times a_{1}-m \times g \times A A_{1}\right]
$$

$$
\begin{equation*}
=\frac{2}{b_{1}}\left[\left(F_{C}\right)_{1} \times a_{1}-m g\left(r-r_{1}\right)\right] \quad\left(\because A A_{1}=r-r_{1}\right) \tag{i}
\end{equation*}
$$

(iv) Position of maximum radius (Refer to Fig. 15.13 (b))

Taking moments of all forces about the fulcrum, we get

$$
\begin{align*}
\frac{\left(M \times g+S_{2}\right)}{2} \times b_{2} & =\left(F_{C}\right)_{2} \times a_{2}+m g \times A A_{2} \\
& =\left(F_{C}\right)_{2} \times a_{2}+m g\left(r_{2}-r\right) \tag{i}\\
\left(M \times g+S_{2}\right) & =\frac{2}{b_{2}}\left[\left(F_{C}\right)_{2} \times a_{2}+m g\left(r_{2}-r\right)\right] \tag{1}
\end{align*}
$$

$$
\begin{align*}
h_{1}+h_{2}= & \frac{b}{a}\left(r-r_{1}\right)+\frac{b}{a}\left(r_{2}-r\right) \\
= & \frac{b}{a} r-\frac{b}{a} r_{1}+\frac{b}{a} r_{2}-\frac{b}{a} r=\frac{b}{a}\left(r_{2}-r_{1}\right) \\
& h=\frac{b}{a}\left(r_{2}-r_{1}\right) \quad\left(\because h=h_{1}+h_{2}=\text { total lift }\right) \tag{iii}
\end{align*}
$$

(iii) Position of minimum radius (Refer to Fig. 15.13 (a))

Taking moments of all forces about fulcrum O, we get

$$
\begin{equation*}
\frac{\left(M \times g+S_{1}\right)}{2} \times b_{1}+m \times g \times A A_{1}=\left(F_{C}\right)_{1} \times a_{1} \tag{A}
\end{equation*}
$$

Substracting equation (iv) from equation (v), we get

$$
S_{2}-S_{1}=\frac{2}{b_{2}}\left[\left(F_{C}\right)_{2} \times a_{2}+m g\left(r_{2}-r\right)\right]-\frac{2}{b_{1}}\left[\left(F_{C}\right)_{1} \times a_{1}-m g\left(r-r_{1}\right)\right]
$$

But spring stiffness(s) is given by

$$
s=\frac{S_{2}-S_{1}}{\text { Total lift }}=\frac{S_{2}-S_{1}}{h_{h}}
$$

But from equation (15.10), $h=\frac{b}{a}\left(r_{2}-r_{1}\right)$

$$
\begin{equation*}
\therefore \quad s=\frac{S_{2}-S_{1}}{\frac{b}{a}\left(r_{2}-r_{1}\right)}=\frac{a}{b}\left[\frac{S_{2}-S_{1}}{r_{2}-r_{1}}\right] \tag{15.1t}
\end{equation*}
$$

Value of spring stiffness if obliquity of the arms of bell-crank lever is neglected and also the moment due to the weight of the balls is neglected.
(i) If obliquity of the arms is neglected, then $b_{1}=b_{2}=b$ and $a_{1}=a_{2}=a$.
(ii) If the moment due to weight of the ball is neglected, then $m g \times A A_{1}=0$ and $m \times g \times A A_{2}=0$.

Substituting these values (i.e. $b_{1}=b_{2}=b ; a_{1}=a_{2}=a$ and $m \times g \times A A_{1}=m \times g \times A A_{2}=0$) in above equations (A) and (B), we get

$$
\left(\frac{M \times g+S_{1}}{2}\right) \times b+0=\left(F_{C}\right)_{1} \times a
$$

and

$$
\frac{M \times g+S_{2}}{2} \times b+0=\left(F_{C}\right)_{2} \times a
$$

$$
\begin{equation*}
M \times g+S_{1}=\frac{2 a}{b} \times\left(F_{C}\right)_{1} \tag{vi}
\end{equation*}
$$

$$
\begin{equation*}
M \times g+S_{2}=\frac{2 a}{b}\left(F_{C}\right)_{2} \tag{vii}
\end{equation*}
$$

and

$$
S_{2}-S_{1}=\frac{2 a}{b}\left[\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}\right]
$$

But spring stiffness s is given by,

$$
\begin{align*}
s & =\frac{S_{2}-S_{1}}{h} \text { where } h=\frac{b}{a}\left(r_{2}-r_{1}\right) \\
& =\frac{\left(\frac{2 a}{b}\right)\left[\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}\right]}{\frac{b}{a}\left(r_{2}-r_{1}\right)} \\
& =2\left(\frac{a}{b}\right)^{2}\left[\frac{\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}}{\left(r_{2}-r_{1}\right)}\right] \tag{C}
\end{align*}
$$

$$
\left(\because S_{2}-S_{1}=\frac{2 a}{b}\left[\left(F_{c}\right)_{2}-\left(F_{c}\right)_{1}\right]\right)
$$

The stiffness of the given spring is constant for all positions. Hence stiffiness of the spring for minimum The stiffness of the given spe obtained from equation (C) by substituting $\left(F_{C}\right)_{2}=F_{C}$ and $r_{2}=r$ as for intermediate position, the centrifugal force is F_{C} and radius is r.

$$
\begin{equation*}
\therefore \quad s=2\left(\frac{a}{b}\right)^{2}\left[\frac{F_{C}-\left(F_{C}\right)_{1}}{r-r_{1}}\right] \tag{D}
\end{equation*}
$$

Similarly the spring stiffness for intermediate and maximum position is obtained from equation (C) by
substituting $\left(F_{C}\right)_{1}=F_{C}$ and $r_{1}=r$.

$$
\begin{align*}
& \text { ating }\left(F_{C}\right)_{1}=F_{C} \text { and } r_{1}=r \tag{E}\\
& \therefore \quad s=2\left(\frac{a}{b}\right)^{2}\left[\frac{\left(F_{C}\right)_{2}-F_{C}}{r_{2}-r}\right]
\end{align*}
$$

The threc values of s given by equation (C), (D) and (E) can be equated as

$$
\begin{aligned}
2\left(\frac{a}{b}\right)^{2}\left[\frac{\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}}{r_{2}-r_{1}}\right] & =2\left(\frac{a}{b}\right)^{2}\left[\frac{F_{C}-\left(F_{C}\right)_{1}}{r-r_{1}}\right]=2\left(\frac{a}{b}\right)^{2}\left[\frac{\left(F_{C}\right)_{2}-F_{C}}{r_{2}-r}\right] \\
{\left[\frac{\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}}{r_{2}-r_{1}}\right] } & =\frac{F_{C}-\left(F_{C}\right)_{1}}{r-r_{1}}=\frac{\left(F_{C}\right)_{2}-F_{C}}{r_{2}-r}
\end{aligned}
$$

From first two equations, we have

$$
\begin{aligned}
F_{C}-\left(F_{C}\right)_{1} & \left.=\mid\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}\right]\left[\frac{r-r_{1}}{r_{2}-r_{1}}\right] \\
F_{C} & \left.=\left(F_{C}\right)_{1}+\mid\left(F_{C}\right)_{2}-\left(F_{C}\right)_{1}\right]\left[\frac{r-r_{1}}{r_{2}-r_{1}}\right]
\end{aligned}
$$

Similarly from 1st and last part of equation (F), we have

$$
F_{C}=\left(F_{C}\right)_{2}-\left[\left(F_{C}\right)_{2}-\left(F_{C}\right)\left[\frac{r_{2}-r}{r_{2}-r_{1}}\right]\right.
$$

Note. 1. The weight of slecve $M \times g$ is replaced by $(M \times g \pm F)$ when friction is taken into account.
2. The obliquity effect of the arms and moment due to the weight of the balls is neglected, unless otherwisestaded

Problem 15.10. A Hartnell governor having a central sleeve spring and two right-angled bell crank levers operates between 290 r.p.m. and 310 r.p.m. for a sleeve lift of 15 mm . The sleeve arms and the ballarms are 80 mm and 120 mm respectively. The levers are pivoted at 120 mm from the governor axis and massof each ball is 2.5 kg . The ball arms are parallel to the governor axis at the lowest equilibrium speed. Determine: (i) loads on the spring at the lowest and the highest equilibrium speeds and (ii) stiffness of the spring.

Sol. Given :
(AMIE, S 1978)
$N_{1}=290$ r.p.m. ; $N_{2}=310$ r.p.m. $\quad \therefore \quad \omega_{1}=\frac{2 \pi N_{1}}{60}=\frac{2 \pi \times 290}{60}=30.4 \mathrm{rad} / \mathrm{s}$ and $\omega_{2}=\frac{2 \pi \times 310}{60}=32 \mathrm{~s}$ $\mathrm{rad} / \mathrm{s}, h=15 \mathrm{~mm}$; sleeve arm of bell crank lever, $b=80 \mathrm{~mm}$; ball $\mathrm{arm}, a=120 \mathrm{~mm}$; distance of pivot oflere from governor axis, $r=120 \mathrm{~mm}, m=2.5 \mathrm{~kg}$.

Find : (i) Load on springs i.e. S_{1} and S_{2} and (ii) Stiffness of spring(s).

(a) Minimum radius

Fig. 15.14 \quad (b) Maximum radius

GOVERNORS
The ball arms are parallel to the eovermot axis
in Fig. $15.14(a)$, hence $r_{1}=r=120 \mathrm{~mm}=0.12 \mathrm{~m}$.
(i) Loads on the spring at the lowest athl highest equilibrimem yond

Let $S_{1}=$ Spring load at the lowest equilibitum sped, allil
$S_{2}=$ Spring load at the highest equilibilim speed.
The centrifugal force at the lowest equilibrimm speed,

$$
\begin{aligned}
& \left(F_{\mathrm{C}}\right)_{1}=m \times 0_{1}^{2} \times r_{1}=2.5 \times(30,-4)^{2} \times 11,12=277 \mathrm{~N} \\
& \text { force at the highest comilibrin. }
\end{aligned}
$$

The centrifugal force at the highest equilibrium speed,

$$
\left(F_{C}\right)_{2}=m \times 0_{2}^{2} \times r_{2}=2.5 \times 32.5^{2} \times r_{2}
$$

In the above equation, the value of r_{2} is unknown. This value is obtained by considering the position of ball arm and sleeve arm at the highest equilibrium speed as shown in Fig. 15.14 (b). is same)

In Fig. $15.14(b)$, the triangles $O C C_{1}$ and $O A A_{1}$ are similar (the angle lurned by bell-crank lever i.e. 0

$$
\therefore \quad \frac{C C_{1}}{{ }^{i} C}=\frac{A A_{1}}{O A} \text { or } \frac{h}{b}=\frac{\left(r_{2}-r_{1}\right)}{a}
$$

"

$$
\begin{aligned}
& h=\left(r_{2}-r_{1}\right) \times \frac{b}{a} \\
& r_{2}=\frac{a}{b} \times h+r_{1}=\frac{120}{80} \times 15+120=142.5 \mathrm{~mm} \text { or } 0.1425 \mathrm{~m} .
\end{aligned}
$$

Salstituting the value of r_{2} in equation (i), we get

$$
\left(F_{C}\right)_{2}=2.5 \times 32.5^{2} \times 0.1425=376 \mathrm{~N}
$$

Case I. Taking moments about O for the lowest equilibrium speed, (Refer to Fig. 15.14 (a)), we have
or

$$
\begin{align*}
\left(F_{C}\right)_{1} \times a+m g \times 0 & =\left(\frac{M \times g+S_{1}}{2}\right) \times b \\
\left(F_{C}\right)_{1} \times a & =\frac{S_{1}}{2} \times b
\end{align*}
$$

or

$$
\begin{aligned}
S_{1} & =2 \times\left(F_{c}\right)_{1} \times \frac{a}{b} \\
& =2 \times 277 \times \frac{120}{80}=831 \mathrm{~N} . \text { Ans. } \quad\left(\because\left(F_{c}\right)_{1}=277\right)
\end{aligned}
$$

Case II. Taking moments about O for the highest equilibrium speed, (Refer to Fig. $15.14(b)$), we have

$$
\begin{aligned}
& \left(F_{c}\right)_{2} \times a+m g \times A A_{1}=\frac{\left(M \times g+S_{2}\right)}{2} \times b \\
& 376 \times 0.12+(2.5 \times 9.81) \times 0.0225=\frac{S_{2}}{2} \times 0.08
\end{aligned}
$$

$$
\begin{aligned}
\left(\because A A_{1}\right. & =r_{2}-r_{1}=142.5-120=22.5 \mathrm{~mm}=0.0225 \mathrm{~m} ; \\
a & =120 \mathrm{~mm}=0.12 \mathrm{~m} \text { and } b=80 \mathrm{~mm}=0.08 \mathrm{~m})
\end{aligned}
$$

Or

Or

$$
\begin{aligned}
45.12+0.552^{*} & =S_{2} \times 0.04 \\
45.672 & =0.04 \times S_{2} \\
S_{2} & =\frac{45.672}{0.04}=1141.8 \mathrm{~N} . \text { Ans. }
\end{aligned}
$$

${ }^{\text {dee }}$ The moment due to the weight of ball is $m \times g \times A \Lambda_{1}=0.552 \mathrm{~N}$. This is very small in comparison to the moment

Scanned by CamScanner

(ii) Stiffness of the spring(s)

The stiffness of the spring is given by,

$$
s=\frac{S_{2}-S_{1}}{\text { Sleeve lift }}=\frac{S_{2}-S_{1}}{h}=\frac{1141.8-831}{15}=20.72 \mathrm{~N} / \mathrm{mm} . \text { Ais. }
$$

Problem 15.11. In a spring loaded Hartnell type of governor, the mass of each ball is 4 kg and the lift of the sleeve is 50 mm . The governor begins to float at 240 r.p.m., when radius of the ball path is 110 mm . The mean working speed of the governor is 20 times the range of the speed when friction is neglected. The lenghs of the ball and roller arms of the bell-crank lever are 120 mm and 100 mm respectively. The pivot centre and the axis of the governor are 140 mm apart. Determine the initial compression of the spring, taking into accoum the obliquity of arms.

If the friction is equivalent to a force of 20 N at the sleeve, find the total alteration in speed before the sleeve begins to move from mid-position.

Sol. Given :
$m=4 \mathrm{~kg} ; h=50 \mathrm{~mm}=0.05 \mathrm{~m} ; N_{1}=240 \mathrm{r} . \mathrm{p} . \mathrm{m} . \quad$ or $\quad \omega_{1}=\frac{2 \pi N_{1}}{60}=\frac{2 \pi \times 240}{60}=8 \pi \mathrm{rad} / \mathrm{s} ;$
$r_{1}=110 \mathrm{~mm}=0.11 \mathrm{~m}$; mean speed $=20 \times$ range of speed ; $a=120 \mathrm{~mm}=0.12 \mathrm{~m} ; b=100 \mathrm{~mm}=0.1 \mathrm{~m}$; $r=140 \mathrm{~mm}=0.14 \mathrm{~m} ; F=20 \mathrm{~N}$.

Fig. 15.15
Let $\quad N_{1}=$ Minimum speed at minimum radius, r_{1}

$$
N_{2}=\text { Maximum speed at maximum radius, } r_{2}
$$

We know that mean speed, $N=\frac{N_{1}+N_{2}}{2}$ and range of speed $=N_{2}-N_{1}$
But mean speed $=20 \times$ range of speed (given)
or
or
or
or

$$
\begin{aligned}
N & =20 \times\left(N_{2}-N_{1}\right) \\
\frac{N_{1}+N_{2}}{2} & =20 \times\left(N_{2}-N_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
N_{1}+N_{2} & =40\left(N_{2}-N_{1}\right)=40 N_{2}-40 N_{1} \\
41 N_{1} & =39 N_{2}
\end{aligned}
$$

$$
N_{2}=\frac{41 \times N_{1}}{39}=\frac{41 \times 240}{39}=252.3 \mathrm{r} . \mathrm{p} . \mathrm{m} .
$$

Now taking the moments about fulcrum for maximum radius position,
of

$$
\begin{aligned}
& \text { [For maximum radius, sleeve moves upwards and frictional force acts downwards] } \\
& \qquad\left(F_{C}\right)_{2}=\frac{M \times g+S_{2}+F}{2}
\end{aligned}
$$

$$
\left(F_{C}\right)_{2} \times a=\left(\frac{M \times g+S_{2}+F}{2}\right) \times b
$$

[For maximum radius, sleeve moves upwards and frictional force acts downwards]
$\left(F_{C}\right)_{2}=\frac{M \times g+S_{2}+F}{2}$
r

$$
1179.87=\frac{5 \times 9.81+S_{2}+35}{} \quad(\because a=b)
$$

$$
\begin{aligned}
& S_{2}=2 \times 1179.87-5 \times 9.81-35=2359.74-49.05-35 \quad\left[\because\left(F_{C}\right)_{2}=1179.87\right] \\
& 2275.69 \mathrm{~N}
\end{aligned}
$$

\therefore Stiffness, $s=\frac{S_{2}-S_{1}}{h}=\frac{2275.69-1222.65}{30}=35.1 \mathrm{~N} / \mathrm{mm}$. Ans.
(iii) Initial compression of the spring

Intial compression of the spring is $=\frac{S_{1}}{s}=\frac{1222.65}{35.1}=\mathbf{3 4 . 8 3} \mathbf{~ m m}$. Ans.

15.8. Wilson-Hartnell Governor

Fig. 15.17 shows a Wilson-Hartnell governor which is a spring loaded type of governor. In this govemor, the balls are connected by two springs which are known as main springs. The main springs are arranged symmetrically on either side of the sleeve. The balls are attached to the vertical arms of the two bell-crank levers. The horizontal arms of the bell-crank levers carry two rollers at their ends. The rollers at the horizontal arm press against the sleeve. The bell-cranks rotate with the spindle. When speed ncreases, the ball-radius increases, the springs exert an inward pull P on the balls and the rollers press against the sleeve which is raised.

Fig. 15.17
fulcrum A_{n}. Odjustable auxiliary spring (S) is attached to the sleeve through a lever. The lever is pivoted at a the $\mathrm{groon}^{2} \mathrm{One}$ end of the lever is connected to the auxiliary spring whereas the other end of the lever fits into Let the sleeve. The auxiliary spring tends to keep the sleeve down.
$m=$ Mass of each ball
$M=$ Mass of sleeve
$W=$ Weight of sleeve $=M \times g$
$P=$ Tension (or Pull) in the main spring
$S=$ Tension in the auxiliary spring
$F_{C}=$ Centrilugal force of each ball
$r=$ Radius of mation of balls
$s=$ Stillacss of cach ball spring
$s^{*}=$ Stiffocss of auxiliary spring.
The total downward force on the sleeve
$=$ Weight of sleeve + force at lever end A due to tension S in auxiliary spring (i.e. at point C)

$$
=\mathrm{W}+\frac{S \times y}{x}=\left(M \times g+\frac{S \times y}{x}\right)
$$

Taking the moments about the pivol O of the bell-crank lever and neglecting the effect of the pallof gravily on the balk, we have

$$
\begin{equation*}
\left(F_{C}-P\right) \times a=\left(\frac{W+\frac{S \times y}{x}}{2}\right) \times b \tag{t}
\end{equation*}
$$

Let corresponding to minimum speed, $F_{C_{1}}=$ Centrilugal force $=m \times()_{1}{ }^{2} \times r_{1}$
$P_{1}=$ Tension in main spring, $S_{1}=$ Tension in auxiliary spring and $F_{C_{2}}, P_{2}$ and $S_{2}=$ corresponding values of centrifugal force, tension in main spring and tension in auxiliary spring corresponding to maximum speed.

Substituting these values in equation (i), we have for minimum speed

$$
\begin{equation*}
\left(F_{C_{1}}-P_{1}\right) \times a=\frac{\left(M \times g+\frac{S_{1} \times y}{x}\right) \times b}{2} \tag{i}
\end{equation*}
$$

$$
(\because \quad W=m \times g)
$$

Similarly for maximum speed, we have

$$
\begin{equation*}
\left(F_{C_{2}}-P_{2}\right) \times a=\frac{\left(M \times g+\frac{S_{2} \times y}{x}\right) \times b}{2} \tag{iii}
\end{equation*}
$$

Sublacting equation (ii) from equation (iii), we have

$$
\begin{equation*}
\left|\left(F_{C_{2}}-F_{C_{1}}\right)-\left(P_{1}-P_{2}\right)\right| \times a=\left(S_{2}-S_{1}\right) \times \frac{y}{x} \times \frac{b}{2} \tag{iv}
\end{equation*}
$$

When the radius increases from r_{1} to r_{2}, the ball springs will be extended by the amount $\left(d_{2}-d_{1}\right)$ of $2\left(r_{2}-r_{1}\right)$ and auxiliary spring will be extended* by the amount $\left(r_{2}-r_{1}\right) \frac{b}{a} \times \frac{y}{x}$. The main spring consists of two springs.
$\therefore \quad P_{2}-P_{1}=$ Net pull (or tension) in two main spring when radius increases from r_{1} to r_{2}
$=2 \times$ Force extened by each main spring
$=2 \times$ [stiffness of main spring \times extension of ball springs]

$$
\begin{aligned}
& \left.=2 \times \mid s \times 2\left(r_{2}-r_{1}\right)\right] \\
& =4 \times
\end{aligned}
$$

- $\quad=4 \times s \times\left(r_{2}-r_{2}\right)=4, s .\left(r_{2}-r_{1}\right)$
sume. Hence $\frac{h}{b}=\frac{\left(r_{2}-r_{1}\right)}{a}$ or $h=\frac{b}{a}\left(r_{2}-r_{1}\right)$. But h is the lift of lever at point A. The point C will move down. Let h^{*} \& dowinward movement of C |See Figg. 15.17 (b)]. Then $\frac{h}{x}=\frac{h^{*}}{y}$ or $h^{*}=h \times \frac{y}{x}=\frac{b}{a}\left(r_{2}-r_{1}\right) \times \frac{y}{x}$.
$102 \mathrm{VRO}^{\mathrm{RNORS}}$

Fig. 15.17 (b)
The net force in auxiliary spring is given by
$S_{2}-S_{1}=$ stiffness of auxiliary spring \times extension of auxiliary spring

$$
=s^{*} \cdot\left(r_{2}-r_{1}\right) \cdot \frac{b}{a} \cdot \frac{y}{x}
$$

Substituting the values of $\left(P_{2}-P_{1}\right)$ and $\left(S_{2}-S_{1}\right)$ in equation (iv), we get

$$
\begin{aligned}
{\left[\left(F_{C_{2}}-F_{C_{1}}\right)-4 \cdot s \cdot\left(r_{2}-r_{1}\right)\right] \cdot a } & =\left[s * \cdot\left(r_{2}-r_{1}\right) \cdot \frac{b}{a} \cdot \frac{y}{x}\right] \cdot \frac{y}{x} \cdot \frac{b}{2} \\
\left(F_{C_{2}}-F_{C_{1}}\right)-4 \cdot s \cdot\left(r_{2}-r_{1}\right) & =s^{*} \cdot\left(r_{2}-r_{1}\right) \cdot \frac{b}{a} \cdot \frac{y}{x} \cdot \frac{y}{x} \cdot \frac{b}{2} \cdot \frac{1}{a} \\
& =\frac{s^{*}}{2} \cdot\left(r_{2}-r_{1}\right) \cdot\left(\frac{b}{a} \cdot \frac{y}{x}\right)^{2}
\end{aligned}
$$

or

Dividing by $\left(r_{2}-r_{1}\right)$ to both sides, we get

$$
\begin{align*}
\frac{F_{C_{2}}-F_{C_{1}}}{r_{2}-r_{1}}-4 \cdot s & =\frac{s *}{2} \cdot\left(\frac{b}{a} \cdot \frac{y}{x}\right)^{2} \\
\frac{F_{C_{2}}-F_{C_{1}}}{r_{2}-r_{1}} & =4 \cdot s+\frac{s *}{2}\left(\frac{b}{a} \cdot \frac{y}{x}\right)^{2} \tag{15.13}
\end{align*}
$$

If auxiliary spring is not used, then $s^{*}=0$, then

$$
\begin{equation*}
\frac{F_{C_{2}}-F_{C_{1}}}{r_{2}-r_{1}}=4 . s \tag{15.14}
\end{equation*}
$$

Problem 15.14. The mass of each ball in a Wilson-Hartnell type of governor is 2.5 kg . The length of bollarm of each bell-crank lever is 100 mm whereas the length of the sleeve arm of bell-crank lever is 80 mm . The minimum equilibrium speed is 200 r.p.m. when radius of rotation is 100 mm . When the sleeve is lifted by
 The lever for the auxiliary spring is pivoted at the mid-point. Find the stiffness of the auxiliary spring.

Sol. Given :
$m=2.5 \mathrm{~kg} ; a=100 \mathrm{~mm}=0.1 \mathrm{~m} ; b=80 \mathrm{~mm}=0.08 \mathrm{~m} ; N_{1}=200$ r.p.m.
or $\mathrm{o}_{1}=\frac{2 \pi N_{1}}{60}=\frac{2 \pi \times 200}{60}=20.94 \mathrm{rad} / \mathrm{s} ; r_{1}=100 \mathrm{~mm}=0.1 \mathrm{~m} ; h=8 \mathrm{~mm} ; N_{2}=212 \mathrm{r} . \mathrm{p} . \mathrm{m}$
 Ree Let us first find the values of centrifugal forces. The radius of rotation r_{1} is known, but r_{2} is unknown.

$$
\mathrm{lift}=\frac{b}{a}\left(r_{2}-r_{1}\right)
$$

Let us deth
(i) Sensitiveness
(iii) Isochronism and

15.9.1. Sensitiveness

A governor is said to be sensitive if with a given fractional change of speed, the diaplacement of the sleve is bigger. Hence the movement of the sleeve for a fractional change of speed is the measure of nensitivity of a governor. A governor is also said to be sensitive if for a given displacement of the sterve, the fractional ohatge of speed is smaller. This definition of sensitiveness is quite sat fislactory when the peovernor se considered as an independent mechanism. But when the governor is lifted to an engine the practical requirement is simply that the change of equilibrium speed from the full load to zero load position of the sleceve, should be as small a fraction as possible of the mean equilibrium speed. The actual displacement of the slecere is immaterial, provided that it is suflicient to change the energy supplied to the engine by the required amoun. For this reason sensitiveness is also defined as the ratio of difference between the maximum and minimum crunilibrinm speeds to the mean equilibrium speed.

Let $\quad N_{1}=$ Minimum equilibrium speed corresponding to full-load condition, $N_{2}=$ Maximum equilibrium speed corresponding to zero load condition

$$
N=\text { Mean equilibrium speed }=\frac{N_{1}+N_{2}}{2}
$$

Then sensitiveness of the governor

$$
\begin{aligned}
& =\frac{\text { Difference of maximum and minimum equilibrium specds }}{\text { Mean equilibrium speed }} \\
& =\frac{N_{2}-N_{1}}{N}=\frac{N_{2}-N_{1}}{\frac{N_{1}+N_{2}}{2}}=\frac{2\left(N_{2}-N_{1}\right)}{N_{1}+N_{2}} .
\end{aligned}
$$

15.9.2. Stability

A governor is said to be stable when for each speed there is only one radius of rotation of the governor balls at which the governor is in equilibrium. The speed should be within the working range of the governor.

15.9.3. Isochronism

A governor is said to be isochronous if the equilibrium speed is constant for all radii of rotation of the balls within the working range. This means that when radius of rotation changes from minimum radius to maximum radius, the equilibrium speed remains constant.

Let
$r_{1}=$ Minimum radius of rotation
$r_{2}=$ Maximum radius of rotation
N_{1} and $N_{2}=$ corresponding speeds.
Then for isochronism, $N_{1}=N_{2}$.

15.9.4. Hunting

speed, the the speed of the engine controlled by the governor fluctuates continuously above and below the mean gevernor is said to be hunting. This is caused by a too sensitive governor which changes the fuel incty by a large amount when a small change in speed of rotation takes place. For example, if a slight load sleeve ies on the engine, the speed of the engine will decrease. If the governor is very sensitive, the governor ${ }^{\text {the engine will now be in excess of its requirements, so that the speed will rapidly increase again and the slecve }}$
will rise to its highest position. Due to this movement of the sleeve, the control valve will cut off the fuel supply a governor would admit either the maximum or minimum amount of fuel and could not possibly admit in amount of fuel between these two extremes. The effect of this will be to cause wide fluctuations in the engive speed or in other words, the engine will hunt.
15.10. Governor Effort and Power

Governor Effort. The effort of the governor is the force excrted by the governor at the sleeve and the sleeve tends to move. When the speed is constant, the force exerted to the sleeve is zero as the sleeve does erat tend to move and hence at constant speed, the effort of the governor is zero. But when the speed changes, be slecve tends to move to its new equilibrium position and hence a force is exerted on the sleeve. This fore gradually diminisbes to zero as the sleeve moves to the equilibrium position corresponding to new speed. The mean force exerted on the sleeve during a given change of speed, is known as the effort of the governor. The given charge of speed is taken generally as 1%. Hence the effort is defined as the force exerted on the slecie for 1% change of speed.

Governor Power. The power of a governor is defined as the work done at the sleeve for a given percentage change of speed. Hence the power of a governor is the product of the govemor effor and the displacement of the sleeve. Mathematically,

Power of a governor = Governor effort \times displacement of sleeve.

15.10.1. Method of Determining the Effort and Power of a Governor

The effort and power of a governor may be determined by the following method. Let us apply this method on Porter governor. The same principle will be used for any other type of governor.

Fig. 15.19
Fig. 15.19 shows the two positions of a Porter governor.
Let $N=$ Equilibrium speed corresponding to configuration shown in Fig. 15.19 (a)
$W=$ Weight of sleeve $=M \times g$ where M is the mass of the sleeve
$h=$ Height of governor corresponding to speed N
$c . N=$ Increase of speed
$c=$ A factor which when mukiplied to equilibrium speed, gives the increase in speed.

[^0]: Since the fluctuation of energy is negative, therefore it is shown below the mean resisting torque curve. in Fig. 16.16.

[^1]: * Superfluous data.

[^2]: FTom Table 21.1 (column 6) we see that the couple is $-m_{1}, r_{1} I_{1}$.

