

(AUTOMATION and ROBOTICS)

Code: 18MEC325

QUESTION BANK

III - B.TECH / II - SEMESTER

REGULATION: R18

Prepared By Ms.K.Santhosh Priya Mr.D Raju Assistant Professor Dept. of Mechanical Engg.,

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK III B.Tech II Semester

AUTOMATION AND ROBOTICS (18MEC325)

L T P C 3 1 0 3

18MEC325 AUTOMATION AND ROBOTICS

Course Educational Objectives:

- 1. To study the various fundamental and advanced concepts of automation in industry
- 2. To understand the line balancing and flow lines in automated industry
- 3. To learn about basic concepts of drives, sensors used in robots
- 4. To study about the kinematics and dynamics analysis of robots
- 5. To gain knowledge in robot programming and application.

UNIT - 1: BASICS OF AUTOMATION

Basic elements of an automated system – Advanced automation function – Levels of automation – Hardware components for automation and process control – Overview of material handling – Material transport equipments – Analysis of material transport system – Introduction to automated storage and retrieval system

- Conventional storage methods and equipments - Analysis of storage system - Over view of automated identification technique - Bar code technology - Radio frequency techniques - AIDC technologies.

UNIT - 2: AUTOMATED FLOW LINES AND LINE BALANCING

Automated flow lines: Work part transport – Storage buffers – Control of the production line – Applications of flow line in machining system – System design consideration of flow lines. **Assembly line balancing:** Line balancing methods – Ways of improving line balance and flexible assembly lines –Automated assembly system and configuration – Parts delivery at work station and applications.

UNIT – 3: INDUSTRIAL ROBOTICS AND DRIVE SYSTEM

Introduction – Robot anatomy – Robot configuration and motions – Robot specifications – Pitch, yaw, roll, joint notations, speed of motion, pay load – Work volume. Robot Drive System: Pneumatic, hydraulic drive mechanical and electrical drives – Servo motors and stepper motor. Grippers: Mechanical, pneumatic and hydraulic grippers, magnetic grippers and vacuum grippers – Two fingered and three fingeredgrippers – Internal and external grippers. Robot Sensors: Position and velocity sensor – Tactile sensor – Proximity and range sensor – Touch sensor – Force and torque sensor – Uses of sensors in robotics.

UNIT - 4: KINEMATICS AND DYNAMICS OF ROBOTS

Robot Kinematics: Manipulator kinematics – Position representation – Forward and reverse transformation – Adding orientation – Homogeneous transformations – D-H notation – Forward and inverse kinematics. **Robot Dynamics:** Differential transformation – Compensating for gravity – Robot arm dynamics. **Trajectory Planning:** Trajectory planning and avoidance of obstacles – Path planning – Skew motion – Joint integrated motion – Straight line motion.

UNIT - 5: ROBOT PROGRAMMING AND APPLICATION

Robot Programming: Lead through programming – Robot language structure – Motion commands of move, speed control, workplace, path, frames, end effecter operation, sensor operation and react statement – Program sequence and subroutine – Teach pendant programming – VAL II programming.

Robot Applications: Material transfer and machine loading / unloading – Processing applications in spray coating, spot and arc welding – Assembly and inspection automation – Selection of robots in industry applications.

Course Outcomes:

On suc	cessful completion of the course, Students will be able to	POs related to COs
CO1	Summarize the various fundamental and advanced concepts of automation in Industry	PO1, PO2
CO2	Understand the line balancing and flow lines of robotics in automated industry	PO1, PO2
CO3	Demonstrate the basic concepts of drives, sensors used in robots	PO1, PO2
CO4	Compare and analyze the kinematics and dynamics of robots	PO1, PO2
CO5	Explain about robot programming and applications	PO1, PO2, PO3, PO4, PO5

Text books:

- 1. Automation, Production Systems and Computer-Integrated Manufacturing, Mikell.P.Groover, 4/e, 2016, Pearson Education, New Delhi.
- 2. Industrial Robotics: Technology, Programming and Applications, Mikell P Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G Odrey and Ashish Dutta 2/e, 2012, Tata McGraw-Hill Education Pvt. Ltd.,

Reference books:

- 1. Introduction to Robotics: Analysis, Control, Applications, 3/e, 2020, Saeed B.Niku, Wiley India Pvt, Ltd., New Delhi.
- 2. Robotics Technology and Flexible Automation, S.R.Deb and Sankha Deb, 2/e, 2009, Tata McGraw-Hill Education Pvt. Ltd., Noida.
- 3. Robots and Robotics Principles, Systems, and Industrial Applications, Mark R Miller & Rex Miller 2017, McGraw-Hill Education.
- 4. Introduction to Robotics: Mechanics and Control, John J. Craig, 3/e, 2005, Pearson Education, New Delhi.
- 5. Robotics: Fundamental Concepts and Analysis, Ashitava Ghosal, 1/e, 2006, Oxford University Press, New Delhi.
- 6. Robotics: Control, Sensing, Vision and Intelligence, K.S. Fu, R.C.Gonzales and C.S.G.Lee, 1/e, 2008, Tata McGraw-Hill Education Pvt. Ltd., Noida.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3	2	-	-	-	-	-	-	-	-	-	-
CO.2	3	2	-	-	-	-	-	-	-	-	-	-
CO.3	3	2	-	-	-	-	-	-	-	-	-	-
CO.4	3	2	-	-	-	-	-	-	-	-	-	-
CO.5	3	2	2	2	2	-	-	-	-	-	-	-
CO*	3	2	2	2	2	-	-	-	-	-	-	-

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Q.NO	Questions			
	UNIT-I BASICS OF			
	AUTOMATION			
	PART A(TWO MARKS QUESTIONS)	СО	BL	РО
1	What are the advanced automation function.	C01	1	PO1
2	List various levels in automation.	CO1	1	PO1
3	Define automation?	C01	1	PO1
4	What are the hardware components required for automation?	C01	1	PO1
5	List the basic elements of an automated system.	C01	1	PO1
6	Give examples of automation system.	C01	1	PO1
7	What are the types of Automation.	C01	1	PO1
8	Define open loop system?	C01	1,2	PO1
9	List the material handling equipments.	C01	1	PO1
10	List the various types of conveyors.	C01	1	PO1
	PART B (TEN MARKS QUESTIONS)			
1	What are the various types of automation explain in detail.	CO1	1	PO1
2	Describe briefly advanced automation functions	C01	1,2	PO1
3	a) Explain different Levels of automationb) Discuss briefly need of automation	CO1	1.2	PO1
4	Discuss various types of material handling equipment	CO1	1,2	PO1
5	Explain AS (Automated Storage) and RS (Retrieval System) components and terminology	C01	1,2	PO1
6	Explain analysis of AS (Automated Storage) and RS (Retrieval System)	CO1	1,4	PO1
7	Explain briefly Analog-to-Digital Conversion and Digital Conversion -to-Analog	C01	2,3	PO1
8	Define material handling system and explain Principles of Material Handling	C01	1,2	PO1
9	Describe briefly Automated Guided Vehicles (AGVs)	CO1	1,2	PO1
10	Explain Bar code Technology.	CO1	1,2	PO1

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Q.NO					Q	uestions						
	UNIT-2:	<mark>AUT</mark>	OMAT	ED FLO	<mark>DW LIN</mark>	ES AND						
						ANCING				~~~		
	PART A(T	WO	MARI	KS QUI	ESTIO	NS)				CO	BL	PO
1.	What is buffer st	torage	e?							CO2	1	PO1
2.	What is line bala	ancing	g?							CO2	1	PO1
3.	What are the obj	jectiv	es of aut	omated	flow line	?				CO2	1	PO1
4.	What are the rea	sons	to incluc	le buffer	storage	in product	ion line?			CO2	1	PO1,PO
5.	What are the dif	feren	t types o	f flowlin	ies?					CO2	1	PO1
6.	List out the rotar	ry ind	exing m	echanisr	ns.					CO2	1	PO1
7	List out various	meth	ods of tra	ansportir	ig workp	vieceS on f	flow lines			CO2	1,2	PO1
8.	What do you mean by synchronous and asynchronous work transport system?							CO2	1,2	PO1		
9.	Define automated flow line and List out automated flow lines							CO2	1	PO1		
10.	Write down advantages and Dis-advantages of buffer storage								_	CO2	1	PO
		PAR	Т-В (Т	EN M	ARKS (QUESTI	ONS)					
1.	What is an autor					general c	onfiguratio	n of auto	mated	CO2	1,2	PO1
2.	production line. Explain reasons	for us	ts system	age buff	ers in aut	tomated fl	ow lines?			CO2	1,2	PO1
3.	CHITTOON.								-		-,-	
	Explain work pa	irt tra	nster me	thods in	detail.					CO2	1,2	PO1
4.	Explain largest of	candio	late rule	line bala	ancing m	ethod with	h an examp	ole.		CO2	1,3	PO1
5.	Discuss kilbridg	e We	ster met	hod with	an exam	ıple				CO2	1,3	PO1
6.	Explain linear tr	ansfe	r mecha	nisms wi	th neat s	ketch				CO2	1,2	PO1
7.	Given the follow	ving t	asks, tin	ne and se	quence d	levelop a l	balanced lii	ne capabl	e of		,	
	operating with a	10 m	inutes c	ycle time	e, using F	Rank Posit	tional Weig	ght (RPW)			
	methodand calcu	ulate	the i)effi	ciency o	of that lin	e (ii) bala	ince delay.					
	Task element	A	В	С	D	E	F	G	Н		1.0.0	DO1 D
	Time (min)	3	5	7	5	3	3	5	6	_ CO2	1,2,3	PO1,P
	Element	-	A	В	-	с	B,D	D	G			
		1										

	0.5 3,5 0 a	9 0.3 7,8	10 0.6 6,9	CO2	1,2,3	P01,P02							
Task Element 1 2 3 4 5 6 7 Time (min) 0.5 0.3 0.8 0.2 0.1 0.6 0.4 predecessors - 1 1 2 2 3 4,5 9 Given the following data describe line balancing problem, develop solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in	0.5 3,5 0 a	0.3	0.6	CO2	1,2,3	PO1,PO2							
Time (min) 0.5 0.3 0.8 0.2 0.1 0.6 0.4 predecessors - 1 1 2 2 3 4,5 9 Given the following data describe line balancing problem, develop solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in	0.5 3,5 0 a	0.3	0.6	CO2	1,2,3	PO1,PO2							
9 Given the following data describe line balancing problem, develop solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in	3,5 3,5			02	1,2,3	POI,PO							
 9 Given the following data describe line balancing problem, develop • solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in) a	7,8	6,9										
 9 Given the following data describe line balancing problem, develop • solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in) a	7,8	6,9										
solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in													
solutionusing largest candidate rule method allowing a cycle time minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in													
minutes. Calculate i) efficiency of line (ii) balance delay (iii) smoothness in	01 3												
I Tack Floment I A I B I C I D I F I F I G I	Calculate i) efficiency of line (ii) balance delay (iii) smoothness index												
	H I		C	CO2	1,2,3	PO1,PO2							
Time (min) 1 1 2 1 3 1 1	2 1												
predecessors - A B B G, D A F	G F, H	H											
	I												
1 .A manual production flow line is arranged with six stations and a													
0 used to move parts along the line .The belt speed is 1.8m/min and work parts along the line is one every 1.5m .The total line length is				CO2	1,2	PO1							
station length equals 2.25m.Determine the following (1)Feed rate(2)Tolerance time(3)Theoritical cycle time.					1,4								

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Q.No	Questions			
	UNIT-3: INDUSTRIAL ROBOTICS AND DRIVE SYSTEM PART-A(TWO MARK QUESTIONS)	СО	BL	PO
1.	Mention any 4 components of a robot.	CO3	1	PO1
2.	What is Tactile sensor	CO3	1	PO1
3	List out any two common Robot configurations	CO3	1	PO1
4.	What is meant by work envelope?	CO3	1	PO1
5.	Define a drive system in robot.	CO3	1	PO1
6.	What are the various types of drives used in robot?	CO3	1	PO1
7.	State any two advantages and disadvantages of pneumatic drive?	CO3	1	PO1
8.	What are the various types of grippers used in robot?	CO3	1	PO1
9	What are the advantages of magnetic gripper?	CO3	1	PO1
10	Define Pitch, Yaw and roll.	CO3	1	PO1
	PART-B (TEN MARKS QUESTIONS)			
1.	Explain anatomy of robot with a neat sketch.	CO3	1	PO1
2.	Sketch and explain the four basic robot configurations classified according to the coordinate system.	CO3	1,2	PO1
3	Discuss about magnetic and vacuum grippers.	CO3	1,2	PO1
4	Write short notes on the following: (i) Types of robot controls (ii) Spatial resolution (iii) Repeatability.	CO3	1	PO1
5	Briefly explain the working principle of position sensors and tactile sensors with neat sketch.	CO3	1,2	PO1
6	Explain briefly working of pneumatic drive and state advantages and disadvantages of pneumatic drive.	CO3	1	PO1
7	With neat sketches, explain velocity sensors and touch sensors used in Robots.	CO3	1	PO1
8	Explain the different types of electrical servo motors used in robot actuation.	CO3	1,2	PO1
9	With a neat sketch explain the magnetic gripper and List its advantages and limitations	CO3	2	PO1
10.	With suitable illustration explain working on external and internal grippers.	CO3	1	PO1
11.	Discuss in detail the selection and design considerations of grippers in robots.	CO3	2	PO1

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

Q.NO	Questions			
	UNIT-4: KINEMATICS AND DYNAMICS OF			
	ROBOTS			
	PART-A(TWO MARK QUESTIONS)			Р
		-	L	0
1.	Define degrees of freedom of a robot.	CO4		PO1
2.	What is trajectory planning?	CO4	1	PO1
3.	Define transformation matrix?	CO4	1	PO1
4.	Define D-H notation	CO4	2	PO1
5.	Write any two differences between forward and inverse kinematics?	CO4	1,2	PO1
6.	What is robot arm Dynamics?	CO4	1	PO1
7.	Write about forward and inverse dynamics?	CO4	1	PO1
8.	What is link?	CO4	1,2	PO1
9.	Differentiate between joint and link.	CO4	1,2	PO1
10.	Define Manipulator kinematics.	CO4	1	PO1
	PART-B (TEN MARKS QUESTIONS)			
1.0000	Explain about forward kinematics transformation RR robot of 2 DOF with a neat sketch.	CO4	1,2,3	PC
2	Differentiate between path planning and trajectory planning in detail.	CO4		PO1
3	Discuss about D-H representation in detail.	CO4	1,2	PO1
4	Explain the following terms in trajectory planningi)Pathii)trajectoryiii)joint space projector planningiv)Cartesian space trajectory planning	CO4	1	PO1
5	Explain the trajectory planning for continous coordinate system.	CO4	1,2	PO1
6	Explain direct kinematics of a manipulated with a neat sketch.	CO4	1,2	PO1
7	Differentiate between joint space and world space of robot manipulator.	CO4	1,2	PO1
8	Explain about homogeneous transformation used in robot manipulator kinematics.	CO4	1,2	PO1
9	Obtain the homogeneous transformation matrix that represents a rotation of $\boldsymbol{\alpha}$ degrees about the current X-axis followed by a translation of b units along the current X-axis, followed by a translation d unit along the current Z-axis followed by a rotation of θ degrees about the current Z-axis	CO4	1,2,3	PO1,P(
10.	For the point $P_{XYZ} = (0,5,2)^{T}$ perform following operations i) rotate 30° about Y-axis followed by translation of 4 units along Z-axis ii) Translate 6 units along Z-axis followed by rotation of 60° along Y-axis	CO4	1,2,3	PO1,P

(Autonomous)

DEPARTMENT of MECHANICAL ENGINEERING

QUESTION BANK

AUTOMATION AND ROBOTICS (18MEC325)

Q.NO	Questions			
	UNIT-5: ROBOT PROGRAMMING AND APPLICATION			
	PART-A(TWO MARK QUESTIONS)	С	В	Р
		0	L	0
1.	. List any two Robot languages.	CO5	1	PO1
2.	What is teach pendant.	CO5	1	PO1
3.	What is Manual Lead through Programing.	CO5	1	PO1
4.	What are the advantages of using robots in spray painting?	CO5	1	PO1
5.	Explain any two commands used in Robot programming.	CO5	1	PO1
6.	List out online robot programming methods.	CO5	1	PO1
7.	Write any four commands in VAL programming.	CO5	1	PO1
8.	List out various applications of robot in manufacturing industry.	CO5	1	PO1
9.	List out basic modes of operation in robot language structure.	CO5	1,2	PO1
10	Mention the safety precautions for robot operation.	CO5	1	PO1
	PART-B (TEN MARKS QUESTIONS)			
1.	Discuss briefly different applications of Industrial robot.	CO5	1	PO1
2	Explain the applications of robots in continuous arc welding & spray painting.	CO5	1	PO1
3	With schematic diagram, explain the robotic applications in weldingindustry.	CO5	1	PO1
4.	Explain lead through programming method in detail.	CO5	1,2	PO1
5.	What are the role of robots in loading and unloading?	CO5	1	PO1
6.	Explain teach pendant method of robot programming	CO5	1	PO1
7.	Explain the different types of Robot languages.	CO5	1,2	PO1
8.	Discuss the relative merits and demerits of different textual robot languages. Explain different program instructions.	CO5	1,2	PO1
9.	Explain the applications of industrial robots in manufacturing area.	CO5	1	PO1
10.	Explain VAL programming commands.	CO5	1,2	PO1

ALL THE BEST